La Vie en Bleu with La Vita Rossa – Prescott – May 2016

Barring an interruption to activities during the second World War, there has been hill-climbing at Prescott, on the north-western slopes of the Cotswolds, for close on 80 years. And if you look at pictures of both the hill climb itself and the surrounding site from almost any point since the 1938 acquisition to today, very little appears to have changed. For sure, the surface is better than it was, and there are now far more safety provisions to protect participants and spectators, but the essence of Prescott really has not changed. The cars in the car parks are sometimes the best clue for dating a photo. It’s the sort of place to which many form a deep and very long lasting affection, to which they return either as competitor or spectator on a regular basis for literally decades. But in this day and age, no venue or event, no matter how successful or well known can assume that they can continue to exist on the same basis as they have done, regardless of their history or current public affection. The population of the twenty-first century has far more choice in what to do and where to go than before, and far more information to help them make their decisions, so every venue, every event, every activity is constantly looking for something new. Whilst the core of Prescott is still about how fast a whole series of different cars and drivers can ascend the hill, with participants split into different classes, to even things out, and the cars have evolved over the years as new models become available, the team have been very creative in thinking of how to inject additional variety and interest into the half a dozen or so Hill-climb meets that take place every season. The “La Vie en Bleu” idea was first run in 2007, and it extended the idea of being a home for the Bugatti Owners Club into a weekend to celebrate all things French: cars, cuisine, music and entertainment. Despite some rather disappointing weather in the first couple of years, it was a formula that really resonated with the crowds and every subsequent event was bigger than the last. It is now, by some margin, the most popular Prescott event of the year. I was very excited when I learned that the plan for 2016 was to augment the French theme with an Italian one, so “La Vie en Bleu” would now be “La Vie en Bleu with La Vita Rossa”. Given the popularity of Italian cars, that looked like a sure fire winner, with not just the prospect of some fabulous old Alfa Romeo, Lancia and Fiats from the back catalogue but some of the very latest Italian hypercars to join the Bugatti Veyrons, which would be a real draw for the younger audience. Here’s what I was able to capture on camera from the two whole days that I spent at this legendary location, absolutely in my element.

IN THE PADDOCK

At all other meets here, the Paddock area is given over solely for cars that are going to be climbing the hill. It’s not big enough for the average entry field of around 200 cars, so they spill over from the tarmac area onto the grass heading towards the Club House, and some use the Upper Paddock, which has the advantage of being flat. But for this event, whilst space is still needed for all the cars that are going to go up the hill, and there are just as many as at other meets, the main area of the Paddock is given over to a series of special displays and attractions which form the heart of the event. A stage is erected for some of the live entertainment, and there are a number of marquees to provide some protection from the worst the weather might throw at the event (it did not, thankfully, this time around!) for the most valuable cars. The contents here are carefully thought through and are generally the most special vehicles of the event – the ones that were sought out, thanks to the sterling efforts of Rebecca Leppard, who put so much thought and hard work into this event (and others). Some of the cars attend for the whole weekend, whilst others are there only for one of the days, and with some arriving before the event started and others not until well into the day, there was generally something fresh to see every time I meandered around the paddock. The majority of the vehicles here were Italian or French, in accordance with the theme, and they were spread over an age of almost brand new to ones that were more than 100 years old.  Some live relatively locally, whereas others had travelled significant distances to be here.

ALFA ROMEO

On the Saturday, this rather splendid 6C 1750 was to be seen, with an unusual body. I’ve not been able to find out anything much about it, sadly, though I do know it is on Dutch plates, and I found one reference which dated it to 1931.

 photo Picture 465_zpsdtj2gmmj.jpg  photo Picture 501_zpsff9wlsxv.jpg  photo Picture 502_zpsajdixmw0.jpg  photo Picture 500_zpsbqsestpn.jpg g photo Picture 506_zpsipsy609r.jpg  photo Picture 505_zpsfbifprbf.jpg

Making another, and very welcome appearance at Prescott was this fabulous 1933 8C 2300 Corto Touring Spider, belonging to Paul Gregory. Heart of this car, which followed the 6 cylinder 6C 1750 cars, was its 8 cylinder engine, hence the 8C name. designed by Vittorio Jano, this straight 8 unit was Alfa Romeo’s primary racing engine from its introduction in 1931 to its retirement in 1939. In addition to the two-seater sports cars it was used in the world’s first genuine single-seat Grand Prix racing car, the Monoposto ‘Tipo B’ – P3 from 1932 onwards. In its later development it powered such vehicles as the twin-engined 1935 6.3-litre Bimotore, the 1935 3.8-litre Monoposto 8C 35 Type C, and the Alfa Romeo 8C 2900B Mille Miglia Roadster. It also powered top-of-the-range coach-built production models, including a Touring Spider and Touring Berlinetta. The 8C 2300 was the first model to use it, appearing in 1931. It enjoyed huge success racing. The 8C 2300 Spider, driven by Tazio Nuvolari won the 1931 and 1932 Targa Florio race in Sicily, the 1931 Italian Grand Prix victory at Monza gave the “Monza” name to the twin seater GP car, a shortened version of the Spider. The Alfa Romeo factory often added the name of events won to the name of a car. So, the 8C 2300 tipo Le Mans’ was the sport version of the ‘8C 2300’, with a super-charged engine. It had a successful debut in the 1931 Eireann Cup driven by Henry Birkin. It won the 24 Hours of Le Mans in 1931 (Howe-Birkin); 1932 (Chinetti-Sommer); 1933 (Nuvolari-Sommer) and 1934 (Chinetti-Etancelin). Initially, Alfa Romeo announced that the 8C was not to be sold to private owners, but by autumn 1931 Alfa sold it as a rolling chassis in Lungo (long) or Corto (short) form with prices starting at over £1000. The chassis were fitted with bodies from a selection of Italian coach-builders (Carrozzeria) such as Zagato, Carrozzeria Touring, Carrozzeria Castagna, Pininfarina and Brianza, even though Alfa Romeo did make bodies. Some chassis were clothed by coach-builders such as Graber, Worblaufen and Tuscher of Switzerland and Figoni of France. Alfa Romeo also had a practice of rebodying cars for clients, and some racing vehicles were sold rebodied as road vehicles. Some of the famous first owners include Baroness Maud Thyssen of the Thyssen family, the owner of the aircraft and now scooter company Piaggio Andrea Piaggio, Raymond Sommer, and Tazio Nuvolari. This car has quite some history as it has been a Diplomat’s super car and a playboy’s racer in it’s life and has been brought back to it’s former glory from an Arizona barn find box of bits. It was finished just ahead of and shown at the GRRC in September 2014. Born as a long-chassis cabriolet with body by Castagna it was powered by a supercharged 2.3-litre straight eight. It was owned by an Italian diplomat who took it to America with him, where it was sold to the playboy racer Tommy Lee. Subsequent owners weren’t respectful of its Italian power-plant, which was replaced with a Cadillac V8, generally destroying the car! It also had 400 holes drilled in the chassis to lighten it. The beautiful Alfa became a hybrid hot rod, not an uncommon fate in the US at the time. It was subsequently hidden away in shed in Tucson, Arizona, until a chance “˜barn find” by an American enthusiast who stripped out all the original Alfa parts. He was just about to pass them over to renowned Alfa specialist Jim Stokes in Waterlooville for restoration when the American owner was shot dead by his janitor! Paul bought the parts and had them shipped over to Jim, who commenced rebuilding and restoring it in 2011. According to the GRRC website, Paul had had Alfas for years but had always hankered after an 8C, all that held him back was the cost. This project was the only affordable way according to Paul. The car has been recreated as a replica of a Touring of Milan-bodied open tourer 8C“ not how chassis 229 began it’s life, but period correct. Paul ensured its accuracy by photographing and carefully measuring an original Touring-bodied 8C in Italy. It is not a matching numbers car. as it has a Jim Stokes engine (the original is in an 8C in Australia), the body has been made in Britain and the chassis holes are now filled, but with the weld marks showing, to preserve the history of this car. As a Jim Stokes car (a world leading 8C engineer) the car has a fascinating story, great quality with a great exhaust note. It is indeed a very special thing. And the best thing is that Paul uses it wherever possible, and had taken it to numerous events since completion of the rebuild. Fabulous!

 photo Picture 625_zpsyyeeemym.jpg  photo Picture 626_zps7invhckk.jpg

There was a second 8C here. This was a 1934 8C2300 4 seater Torpedo with Brianza body, owned by Colin Crabbe.

 photo Picture 679_zpsfkeq0ohj.jpg  photo Picture 646_zpse9k4cbby.jpg

This is the 1955 Alfa Satta Special, a unique Alfa car inspired by the work of Dr Orazio Satta Puliga, the man responsible for designing the ‘1900’ model and also for the final development of the Alfetta Grand Prix racer. Work to create it commenced in New Zealand, the basis for the monoposto being an Alfa Romeo 1900 Super saloon (chassis number ‘13140’) that previously belonged to Betty Roycroft, wife of well-known local racing driver, Ron Roycroft. Apart from the tubular steel chassis frame, the De Dion rear suspension and the body, all the Satta Special’s major mechanical components are from this same donor car, dating from 1955 or earlier.  All work has been done to a high standard of engineering with no expense spared to produce a car comparable with a factory-built racer, which although not a copy of the World Championship-winning Alfetta 158/159 is very much in the spirit of those legendary models. Most of the work had been completed in New Zealand before the Alfa was brought to the UK, where the restoration was completed in 2012 with assistance from Keith Pointing. Peter Bruin built the chassis frame and De Dion rear suspension in 2002, completing the task in only 12 weeks, while the aluminium bodywork was constructed by the late Fred Gosley, who worked at Vickers Brooklands during the 1930s. Post-war, Fred worked for both Alta and HWM, constructing bodywork for monoposto racing cars. General mechanical work was carried out by George Darbyshire.  Graham Brayshaw, an experienced racing car engineer, built one 1,975cc engine from two 1900 units. The inlet manifold and two twin-choke Weber 45 carburettors are from a 1900 Superleggera and have air trumpets with gauzes. Designed and built by a racing engineer, the competition extractor exhaust system features paired headers from cylinders one and four and cylinders two and three, which feed a single expansion chamber complete with period-style shaped and drilled cover. The Webers have been set up by Jeremy Brewster using a rolling-road dynamometer. Apart from the aforementioned modifications, the engine is to standard specification.  Although taken from a 1900 saloon, the front suspension and finned aluminium brake drums look entirely convincing on this 1950s-era monoposto ‘special’, which is perhaps not so surprising given Alfa Romeo’s competition heritage. De Dion rear suspension was common on 1950s racing cars and the Satta’s incorporates an aluminium-cased 1950s Alfa Romeo differential and open half-shafts. This is supported by an adjustable transverse leaf spring enabling the suspension to be set up correctly for competition. A similar arrangement is employed at the front. Damping at the rear is courtesy of a pair of new Houdaille lever-arm shock absorbers, as fitted to many 1950s racing cars, while a pair of second-hand Houdailles is fitted at the front. Shod with Dunlop Racing tyres, the alloy-rimmed Borrani wheels are mounted on new-old-stock splined hubs all round.  There is a new aluminium fuel tank, which is shaped to fit inside the tail unit and is filled via a large, period, flip-top, racing filler cap. The battery is mounted in the tail, as is the new SU electric fuel pump. Copied from a period original, the racing windscreen was made by hand, as were the bonnet louvres. Fully rebuilt at great cost, the large tachometer is mounted on the aluminium dashboard alongside correct Aric oil pressure and water temperature gauges.  The correct, racing-type steering wheel was copied from a 1950s original, consisting of an aluminium centre and 32-piece walnut rim, while the seat is authentically upholstered in brown corduroy. The end result is a beautifully constructed 1950s-style racing car, built using period-correct components, that promises some wonderful driving experiences for the fortunate new owner.

 photo Picture 724_zpskqpidwzh.jpg  photo Picture 723_zpshyfiondl.jpg  photo Picture 722_zpsouak3egw.jpg  photo Picture 1057_zpspztlxwgp.jpg

Because prices of these cars have reached levels that only the fortunate few can afford, on the rare occasions that they come up for sale, if you want a car that looks like a 30s Alfa, then your only other alternative is to do as David Roots did when he created his car, variously referred to as Alfa Special or a “Bitsarrini”. I had always assumed that it was designed an homage to the 1935 8C Tipo C 35 Monoposto, a race car of which just 8 were built in 1935 and in which Tazio Nuvolari won the 1936 Coppa Ciano, but in fact, the real inspiration, and car of David’s dreams was the 8C2900. This was produced at around the same time in 1935, but to understand it, you have to go back a bit earlier in the 1930s to the equally desirable 8C2300. This was the first car with the now legendary 8 cylinder engine, developed by Vittorio Jano and which went on to score at least one victory in every major race and championship. In its initial 1931 configuration, the engine displaced 2336 cc, it grew gradually to 2905 cc, primarily by increasing the stroke. The engine was created by mounting two alloy blocks of four cylinders on a single crankcase. On top of the two blocks an alloy head was installed, housing two camshafts. Aspiration was forced, through two Roots-Type Superchargers. Although the engine increased in size throughout its career, its layout and auxiliaries remained very much similar to Jano’s 1931 design. One of the best known racing cars powered by the 8 cylinder engine was the Tipo B or P3 of 1932, which is to date considered as one of the finest Grand Prix racers ever constructed. Run by Enzo Ferrari’s Scuderia Ferrari, the Alfa Romeos were almost unbeatable. From its 1931 introduction, the 8C 2300 took four straight victories in the 24 Hours of Le Mans, driven by talented drivers like Tazio Nuvolari and Luigi Chinetti. Tazio Nuvolari’s brilliance was even more visible when driving the P3, the first single seater racer ever. The P3 was unbeaten in 1933, but eventually succumbed to defeat by the greater budgets being spent by Mercedes-Benz and Auto Union. With the rise of the German Grand Prix teams, Alfa Romeo focused more of its attention on sportscar and road racing. Designed specifically for Italy’s most legendary road race, the Mille Miglia, was the 8C 2900. Much like the contemporary Grand Prix racers, the 8C 2900 featured all-round independent suspension, with wishbones at the front and swing-axles at the rear. Installed in the chassis was a 220 bhp version of the 2905cc eight cylinder engine, which was created by mounting two four-cylinder alloy blocks on a single crankcase with twin Roots-type superchargers attached. The suspension was all-independent with wishbones in the front and the rear had swing-axles. A total of six of these road racers, later known as 8C 2900A, were constructed. Three of these were entered in the 1936 running of the Mille Miglia. The new cars were immediately successful and occupied the first three places at the finish with the Brivio and Ongaro driven 8C on top. A year the cars secured a second victory and the next two places. With the winning cars as a base, a road going customer version was constructed. Dubbed 8C 2900B, the road car featured a de-tuned engine, with 40 hp less, but other than that were very similar to the racer and even in this guise they were the fastest production vehicle in the world at the time. Two versions were available, the 2800 mm short wheelbase (Corto) and 3000 mm long wheelbase (Lungo) versions. Most of these were sent to Touring to be fitted with Berlinetta, Spyder and Roadster bodies. With its competition chassis and high top speed it was faster and quicker than anything its competition had to offer. Due to its high price, only a very few of these supercars were constructed, just 10 Lungo and 20 Corto chassis cars. Being very similar to the competition 8C 2900A, it came as no surprise the 8C 2900B was used as a racer as well. To suit this purpose Alfa Romeo constructed a further 13 8C 2900B chassis fitted with the 220 bhp engine. Many of these were fitted with roadster bodies and were entered in road races like the Mille Miglia. After the two 8C 2900A victories in 1936 and 1937, another two victories were scored by the 8C 2900B in 1938 and 1947. No other Alfa Romeo has scored as many Mille Miglia victories as the 8C 2900. Needless to say, on the rare occasions that one of these legends comes up for sale, there is an eight figure price tag, putting the car well out of reach of most of us. Like many of us, David dreamed of owning a car like the original, but unlike most of us, he did the next best thing to paying the millions and decided to create his own. The story starts back in 1989, somewhat deterred by the thought of the hours that could be spent lying underneath a rusty wreck at the side of the road, missing some obscure part that would need to be made specially, he decided to opt for a special combining retro styling with new bodywork and reasonably modern mechanics. A company called Classic Specials created that something, combining a bespoke chassis using MGB mechanics with a Lenham Healey bodyshell. Ten years later, in 1999, at the Castle Combe Classic Action Day he  ‘blew’ the trusty B Series engine and that was the turning point which caused him to wonder if he could not actually design his own car. Many of us dream of doing this, but he actually decided to set about the task. Using the MG-Lenham chassis and Lenham Healey rear bodywork, the MG engine and gearbox were replaced with those from a 1969 Alfa Romeo 1750 GTV. Then a body had to be designed and constructed. This was done by making a buck from the aeroscreens forward, which was used to make a mould and moulding. Whilst it is not a precise rendering of the classic 8C2900, the result is impressive and the car always generates lots of positive and appreciative comments whenever it is displayed. Today was no exception.

 photo Picture 024_zpsep2rksus.jpg  photo Picture 025_zpstcfdyw9l.jpg  photo Picture 508_zpslbizmqna.jpg  photo Picture 509_zpsv7mkow9o.jpg  photo Picture 461_zps6wmquk79.jpg  photo Picture 523_zps8xbxw5un.jpg

Final Alfa here was a 156 as entered in the European Touring Car championship. The 156 competed in various motor racing championships including the World Touring Car Championship, European Touring Car Championship and the British Touring Car Championship. The 156 touring car program was run by Fiat Group’s partner N.Technology S.p.A., founded as Nordauto Squadra Corse to compete in Italian Touring Car Championship. In 1994 name was changed to Nordauto Engineering and 2001 to N.Technology. In 1998 Alfa Romeo offered for sale the 156 Group N version for the track. The 156 Group N had no carpets, seats or upholstery, but included additional track safety devices. The car won a number of titles including the Italian SuperTouring Car Championship in 1998 and 1999, and the European Championship between 2001 and 2003.

 photo Picture 019_zpsrybbwxmm.jpg  photo Picture 681_zpsk132h8dq.jpg  photo Picture 680_zpshko0ad4y.jpg  photo Picture 459_zpsemvmt7p2.jpg  photo Picture 539_zpstjk73hs1.jpg

BEDELIA

One of the “cyclecars” which were popular in France in period, this rather curious automobile, where the driver sits behind the passenger, was manufactured by the Bourbeau et Devaux Co. of Paris between 1910 to 1925 to a design by Robert Bourbeau. Rather than scaling down existing motor-car designs, Bourbeau chose to adapt mainly motor-cycle practice for his design, giving rise to the cyclecar designation. The low and light car carried its two passengers in tandem with the passenger seated at the front, while in the rear was the person doing the steering. Single-cylinder or 10 hp V-twin engines were used. Drive was to the rear wheels through a belt which could be moved between pulleys to give a two speed transmission. The front axle was centre pivotted with suspension by a single mid mounted coil spring and the steering was by a cable and bobbin. Elliptic leaf springs were used at the rear. The method of changing gear was unusual. The rear driver had to operate a lever which slackened the belt by moving the rear axle forwards and then the passenger had to move the belt between pulleys by means of a separate lever. Quite how the car was driven without a passenger is not clear. On later cars the levers were moved so that the driver could steer the car for himself. The car’s launch coincided with a “Petroleum/gasoline War” involving the competing commercial interests of the United States, Romania and other countries. France, having no indigenous oil supplies of its own, and the Algerian reserves not yet discovered, was particularly badly hit, and the government exacerbated the challenge for the infant auto-industry with new car taxes. The light-weight Bedélia cyclecar’s introduction was therefore timely, and the marque gained a further impetus as a result of a Bédélia winning the 1913 Cyclecar Grand Prix held at Amiens. In fact, a Morgan came in first, Morgan enthusiasts have claimed it as a win to the present day and it was largely on publicity from this success that Morgan broke into the French market, resulting in the creation of the Darmont company and, tangentially, Sandford, an example of which was also to be seen here. Despite Morgan’s claims, the second placed French car was subsequently awarded the victory. Before World War I, Bédélia cyclecars sold very well, even in Britain. Manufacturing rights were obtained by a dealer, a Monsieur Binet in 1920 and he had an updated version of the cars made for him by Mahieux of Levallois-Perret, Seine. The body design was modified to let the driver and passengers sit and a conventional three speed gearbox was fitted. Engines of up to 990 cc were offered. But by the mid 1920s, the cyclecar boom was over, with affordable “proper” cars, such as the Austin Seven and Citroen 5CV, seen as infinitely preferable to these small machines, and in 1925, the Bédélia Company collapsed. Only 6 are known to be in working order.

 photo Picture 450_zpsxfqum2ua.jpg  photo Picture 1047_zpsarozsrho.jpg  photo Picture 1046_zpsx2webtnk.jpg  photo Picture 1048_zpstjshkjue.jpg  photo Picture 1049_zpsekfreabb.jpg

BERLIET

This imposing machine is a 1904 40HP, one of 2 known in the country, the other being a shorter wheelbase car. Owned by the same person for 30 years, he described it as being as easy as a Fiesta to drive. I am sure it is no, though not only had he driven it up from Stroud, he said that he has often taken it on rallies in Europe and only if they are particularly distant does he trailer it there. It copes well with hills, not least because the car was built in a hilly area, around Lyon so the makers would have to make sure it could cope with the local terrain. The body is known variously as a Phaeton or Double Tourer. there is a roof, which anchors to points behind the front wheels, there being no windscreen to which it can be attached, but it is apparently useless at keeping out the wind and rain. It is a large vehicle the size of the later Silver Ghost, and weights 1.7 tons. It would not have been cheap when new.

 photo Picture 685_zpstkq65x3n.jpg

BUGATTI

Highlight for many people, year after year, is the chance to see a Bugatti Veyron. And this year, there were two. Both of them belong to Surjit Rai, an enthusiastic supporter of the event and the Bugatti Owners Club. His cars are a SuperSport and a PurSang.

 photo Picture 014_zpsxpvx48u3.jpg  photo Picture 013_zpss7qbjhpz.jpg  photo Picture 1095_zpsstejdtx8.jpg  photo Picture 1094_zpsz38gbeis.jpg  photo Picture 001_zps4t5ndtdp.jpg  photo Picture 002_zpsl5ruomvv.jpg  photo Picture 476_zpspuy4cihy.jpg  photo Picture 480_zpsqbdmbomd.jpg  photo Picture 479_zpssqx8xtpr.jpg  photo Picture 478_zpszbqvnsti.jpg photo Picture 475_zpsktorhca4.jpg  photo Picture 477_zpsvekduekn.jpg  photo Picture 474_zpszjzevaov.jpg  photo Picture 547_zpsckuedx0p.jpg  photo Picture 548_zps4nylcwgf.jpg  photo Picture 546_zpsrjmpa19u.jpg  photo Picture 549_zps1grcakxu.jpg  photo Picture 483_zpsk3av9ity.jpg  photo Picture 482_zpsl0mxrudj.jpg  photo Picture 484_zpssvjhrw8w.jpg  photo Picture 552_zpskz1ib31r.jpg  photo Picture 551_zpsdek2mbem.jpg  photo Picture 550_zpshbjvgsge.jpg  photo Picture 485_zpstupbys8k.jpg  photo Picture 1079_zpsu0oqkn3q.jpg  photo Picture 1078_zpsha0x3k1r.jpg  photo Picture 1077_zpsfngaidxj.jpg  photo Picture 495_zpsjzlkbmya.jpg  photo Picture 499_zpsquh813g5.jpg  photo Picture 498_zpsdxaidz9t.jpg photo Picture 497_zpsfays1gee.jpg

On the second day, there was also an example of the EB110.

 photo Picture 573_zpsgfic4ysv.jpg  photo Picture 569_zpsyrkgsqai.jpg  photo Picture 693_zpsd9tbtvlh.jpg  photo Picture 698_zps4ror7ypz.jpg  photo Picture 574_zpstdr0ojen.jpg  photo Picture 577_zpsn2i5xvwy.jpg

Classic Bugatti models included the Type 13 Brescia and the iconic Type 35.

 photo Picture 016_zpslegyeung.jpg  photo Picture 507_zps2xauvviw.jpg  photo Picture 169_zpszklamrez.jpg  photo Picture 171_zpstqpkst8w.jpg  photo Picture 156_zpsd0qlgkqe.jpg

Also here was a Type 52, the small half scale Bugatti Type 35 electric racing cars, made for children. About 90 examples were produced at the Molsheim factory between 1927 and 1936, and the cars were frequently used both as playthings and for more serious racing among the children of the European elite. The number 52 was probably given by the late Hugh Conway and was never used by the factory. The factory always referred to the car as Baby. The first example of a Type 52 was built for Ettore’s son, five-year-old Roland, and was first shown at an exhibition in Milan. The Type 52 was powered by a single 12 volt electric motor with front and reverse. Braking was done by way of expanding wooden shoes at the front and rear drums. The car was originally just 1200 mm (47.2 in) between the wheels, but this was expanded to 1350 mm (53.1 in) when it was found that even children had difficulty with leg room. The car was about 1800mm long overall with a 625 mm (24.6 in) track width. In previous years, a whole number of these have been assembled and there was even a race along part of the track, but this time, the car was purely a static exhibit.

 photo Picture 412_zpsm4scf6rn.jpg

Ivor Dutton had a marquee at the top of the paddock, with a couple of cars in it which were for sale. You would need to be deep of pocket, though, as, predictably, neither was cheap. The Type 35 was offered at £990,000, whereas the larger Type 49 was “only” £300,000.

 photo Picture 629_zps19kvdsa5.jpg  photo Picture 630_zpsf1zuugrj.jpg  photo Picture 691_zpsbenaajxu.jpg

On the second day there were rather more Bugatti cars to be seen. The Upper Paddock contained a nice collection of them with several Types 13, 35 and 37 parked up, most of which took to the hill during the day.

 photo Picture 719_zpsqhmlhb1t.jpg  photo Picture 718_zps4dq5zepe.jpg  photo Picture 1076_zpsrlxyxcr3.jpg  photo Picture 720_zpsociyvemk.jpg  photo Picture 721_zpsjnjh3ypx.jpg photo Picture 717_zpss8tgfapf.jpg  photo Picture 716_zpssadbbdwe.jpg  photo Picture 715_zpslm6trk86.jpg  photo Picture 714_zpsl1i8inro.jpg  photo Picture 712_zps5kf8pu21.jpg  photo Picture 444_zps8lif0oav.jpg   photo Picture 1059_zpsrktat13s.jpg  photo Picture 1114_zpsxonnfhpp.jpg  photo Picture 1058_zpsrxp0gwu5.jpg  photo Picture 1115_zps2wgquhgp.jpg  photo Picture 1073_zpsy1f4swny.jpg  photo Picture 1072_zps4adnmndj.jpg  photo Picture 1099_zpsdmrhya9s.jpg

Elsewhere I came across a Type 43 and an elegant Type 57.

 photo Picture 1056_zpsuljyrdph.jpg  photo Picture 1071_zpsyyzfa2xq.jpg

CITROEN

Seen in the Paddock was this beautifully presented 1925 5CV. Following a lengthy and fastidious restoration, this car made its first Prescott appearances in 2014, when I saw it a number of times at different events throughout the year. It was good to see it again. Citroën made around 81,000 of these light cars between 1922 and 1926. Originally called the Type C, it  was updated to the C2 in 1924 which was in turn superseded by the slightly longer C3 in 1925. The Type C was, and still is, also well known as the 5CV due to its French fiscal rating of its engine for taxation purposes. More colloquial sobriquets, referring to the tapered rear of the little car’s body, were ‘cul-de-poule’ (hen’s bottom) and ‘boat deck Citroën’. Only open bodies were made with the original Type C, often nicknamed the “Petit Citron” (little lemon), due to it only being available in yellow at first, as one of the more popular variants. The C2 tourer was a two-seat version but the C3 was a three-seat “Trefle” (Cloverleaf) model with room for a single passenger in the rear. There were also C2 and C3 Cabriolets made. This particular car is a three seater model. Its original owner in 1925 was  Major Bertrand Stevenson whose uncle was Robert Louis Stevenson of  Treasure Island  fame. The car had been dismantled some 44 years prior to purchase by the current owner, largely forgotten about. Purchased as a pile of bits in April 2008, it was fully restored over the next 12 months. The ‘ bits ‘ were in very poor condition but they were complete so it was a matter of finding out where they all fitted , restoring them and putting them back in one piece.  This sounds easy but was a long job fraught with problems and costing quite a lot of money. However, the end result shows it to have been well worth it, and the final result is a Concours car restored to its original condition with a very low mileage of only 13,960 miles in its long lifetime. The car is known as ‘Miss Buttercup’ because of her bright Yellow and Black livery and is apparently a delight to drive and is a real head turner. Reliability has been proved in several VSCC Light  Car events.

 photo Picture 012_zpsx1ea8waj.jpg  photo Picture 393_zpsxbhvx4xx.jpg  photo Picture 1032_zpsvyhocxax.jpg

On the Sunday, there was a lovely example of the SM to enjoy. This glamorous Sports/GT Coupe still wows people over 45 years since its debut. The Citroën SM was first shown at the 1970 Geneva Motor Show, but work on the car had started way back in 1961, with ‘Project S’, which was envisaged to be a a sports variant of the revolutionary Citroen DS. For the next few years, many running concept vehicles were developed, and these became increasingly complex and upmarket from the DS. In 1968, Citroën purchased Maserati, with the intention of harnessing Maserati’s high-performance engine technology to produce a true Gran Turismo car, which would combine Citroen’s advanced suspension with a V6 Maserati engine. The car was a sensation when revealed, with its distinctive styling, an amazingly low drag coefficient of just 0.26, and as well as the advanced features from the DS such as lights that swivelled with the steering and the advanced hydropneumatic self-levelling suspension there were numerous technical innovations such as variable assistance for the power steering, rain sensitive wipers and the option of lightweight wheels of composite alloys. It was a further six months before customers could get behind the wheel, with the SM finally going on sale in France in September of that year. The origin of the model name ‘SM’ is not clear. The ‘S’ may derive from the Project ‘S’ designation, and the ‘M’ may refers to Maserati, hence SM is often assumed to stand for ‘Sports Maserati’. Another common hypothesis is that SM stood for Série Maserati and others have suggested it is short for ‘Sa Majesté’ (Her Majesty in French), which would aligns with the explanation that the DS model was so called as a contraction of the French word ‘Déesse’ (The Goddess). Regardless of the origins of the name, it attracted lots of attention, and came third in the 1971 Car of the Year competition (behind Citroen’s own revolutionary GS model). For a couple of years, sales were reasonable, but they fell off dramatically in 1973, not just because of the Oil Crisis that struck late that year, but largely because the SM’s technical complexity came with a price tag of some terrible reliability problems, something which owners of rival cars simply did not experience. To compound the owner’s misery, they needed to find and pay for Citroen specialists who understood the hydraulics and a Maserati specialist for the engine. Both categories were kept busy. Citroen declared bankruptcy in 1974 and the company was purchased in May 1975. Thanks to changes in US legislation, sales in that market, which had hitherto been the SM’s largest had ceased,  and so with global sales of under 300 SMs in 1974, having divested itself of Maserati, new owner Peugeot took the obvious decision to cease production of the SM almost immediately. During the SM’s 5 year product life,  a total of 12,920 cars were produced. With the exception of a handful of conversions for the Australian market, all SMs were made in left hand drive, which is perhaps one reason why UK sales amounted to just 325 cars from that total.  Although this is often labelled as one of the 4 “nightmare cars of the apocalypse” (along with the Triumph Stag and Alfa Montreal), the reality is that the surviving cars have largely been “fixed” and they are now not the fearsome ownership proposition that many still assume.

 photo Picture 1075_zpsbkftybhg.jpg  photo Picture 1116_zpsd4lsxoqd.jpg

CLEMENT-TALBOT

 photo Picture 639_zpsuvzjkzr2.jpg  photo Picture 640_zps1vzpzeib.jpg

De DION BOUTON

 photo Picture 017_zpsfbsubeoi.jpg

ERA

No fewer than 4 ERA cars were here. Always very popular with the crowds, and with me, they were present as there was an ERA Class as part of the Hill Climb. Rather than banish them to the Upper Paddock, they took pride of place right in the middle of the Lower Paddock, probably a necessity anyway, given that they all have to be push-started to get them going. ERA was founded by Humphrey Cook, Raymond Mays, and Peter Berthon in November 1933 and established in Bourne, Lincolnshire, next to Eastgate House, the family home of Raymond Mays. Their ambition was to manufacture and campaign a team of single seater racing cars capable of upholding British prestige in Continental European racing. With the cost of competing in full Grand Prix racing prohibitive, ERA’s efforts were targeted at the smaller voiturette—1500cc supercharged—class of motor racing, the Formula 2 equivalent of the day. Humphrey Cook financed the operation—using the wealth from the family drapery business, Cook, Son & Co., of St Paul’s Churchyard, London. Peter Berthon was responsible for the overall design of the cars, while Raymond Mays became its principal driver, having already successfully raced several other makes including Vauxhall, Bugatti and Riley. A new chassis was conceived by British designer Reid Railton (who had also successfully designed the Bluebird land speed record cars for Malcolm Campbell) and was constructed by Thomson & Taylor at Brooklands. The engine was based on the well proven Riley 6-cylinder unit, albeit this was modified in a number of significant ways. A stronger forged crankshaft with a large centre Hyatt roller bearing was made and an entirely new aluminium cylinder head designed. The engine was supercharged using a bespoke supercharger designed by Murray Jamieson who had worked with Mays & Berthon on the White Riley. The ERA engine was designed around three capacities—a base 1500cc, an 1100cc and also was capable of being expanded up to 2000 cc. It ran on methanol and in its 1500cc form was capable of producing around 180–200bhp with in excess of 250–275bhp in 2000cc form. The panel-beating brothers George and Jack Gray hand-fashioned the new car’s single-seater bodywork, to a design credited to a Mr Piercy who had previously designed the bodywork for Malcolm Campbell’s ‘Bluebird’ record breaker. The unveiling of the first ERA—chassis R1A—to the press and public took place at Brooklands on 22 May 1934. After initial chassis handling problems, which required a number of modifications, soon ERA had a winning formula. By the end of the year ERAs had scored notable victories against many more established marques. In 1935, in a major race at the Nürburgring, ERAs took first, third, fourth and fifth places. Through the remainder of the decade, with drivers of the calibre of Dick Seaman in the team, ERA dominated voiturette racing.

 photo Picture 428_zpsnyzqa0qq.jpg  photo Picture 429_zpsbyi2jqk8.jpg  photo Picture 422_zpskasjrnkv.jpg

Every car that was built thereafter is different, so the cars are all referred to by their unique name. Initially a series of four A-Type ERAs, R1A through R4A, were built and raced by the works team in 1934 and 1935. For the first privateers, a slightly revised B-Type chassis featuring a more reliable engine became available in 1935. 13 of these cars were built, R1B through R14B. Chassis number 13 was not used for superstitious reasons. Two of the cars became particularly famous, acquiring nicknames as well. That came about as two Siamese princes, Chula Chakrabongse and Bira Birabongse, ran their own team, operating from The White Mouse Garage. Prince Chula owned the team, and initially he bought the car now known as Romulus as a present for his cousin, Prince Bira, who was the team’s driver. In 1936, when another car was acquired, they named R2B, the first car they had, “Romulus” and the R5B, the new one,  “Remus” after the Roman Twins. Both were painted in their team colours of light blue with yellow wheels, a livery they wear to this day. Prince Bira won the Albi Grand Prix in what was otherwise an unsuccessful year in terms of the high standards expected by the “White Mouse” team. It is probably true to say that this duo are the most famous of all the ERAs. Whilst Romulus still lives in Thailand, “Remus” is resident in the UK. and can be seen in action quite frequently.

 photo Picture 633_zpsnottea5g.jpg  photo Picture 632_zpsvle6ej7n.jpg  photo Picture 634_zpstnascvwf.jpg  photo Picture 635_zpsevdm5mdw.jpg

R4D is the last development of this classic voiturette racing car, the only D-Type ever built. Originating as R4B in 1935, the car was rebuilt as a C-Type by modifying the front end of the chassis frame to accommodate independent Porsche-type torsion bar front suspension. Over the winter of 1937-38 the car was given a completely new fully boxed frame, and was designated R4D. This was the first ERA to be fitted with a Zoller supercharger (in 1935), and R4D accumulated a formidable competition record in its various guises, finally being purchased from the works by Raymond Mays,  and running as a privately entered car in 1939. Mays set numerous pre-war records in R4D, including Prescott and Shelsley Walsh hill climbs, Brighton Sprints and Brooklands Mountain Circuit. Mays describes his history with the car in his book Split Second. After World War II R4D continued in active competition, but the demands on Mays’s time created by the evolving BRM project meant he competed less frequently. In 1952 Mays sold R4D to Ron Flockhart. In 1953 Flockhart had a phenomenally successful season, winning the Bo’ness hill climb in a record setting 33.82 seconds. The car was featured on the cover of Autosport magazine. This success led to his joining the BRM team as a works driver, and later successes at Le Mans and elsewhere. In 1954 Ken Wharton purchased R4D from Flockhart and used the car to win the RAC Hill Climb Championship. In 1955 he used R4D and his Cooper to finish equal first in the hill climb championship with Tony Marsh. Since Wharton was a multiple previous winner, the RAC awarded the championship to newcomer Marsh. An achievement of R4D in the post-war era is that it has won the Brighton Speed Trials seven times, driven by Raymond Mays four times and Ken Wharton three times, more wins than any other car at this event. The owner after Ken Wharton was the pseudonymous “T. Dryver,” creator of the aero-engined De Havilland-M.G. Special. He raced the ERA in the Brighton Speed Trials in 1957 but his chance of achieving fastest-time-of-the-day was spoiled by rain.From the mid-fifties onward, the car had a variety of owners, but achieved notable success in historic racing in the hands of Neil Corner and Willie Green (the latter driving for Anthony Bamford). R4D rose to pre-eminence again in the hands of Anthony Mayman, achieving many successes and setting many pre-war records at various venues. In recent years the car has been owned and driven by James Baxter and Mac Hulbert, and continues to be one of the most successful pre-war racing cars still active in competition, having set new pre-war records at numerous venues. That trend continued, with Baxter winning the class at this event.

 photo Picture 010_zpswfmbpedc.jpg  photo Picture 430_zpsgko34nop.jpg

R7B was made in 1936 with a 1.5 litre engine with a white paint scheme and a chrome plated radiator for Arthur Dobson. Cyril Paul drove its first three races, until Dobson took over. 1937 saw success and the start of a string of ERA versus ERA battles with “B.Bira”. Charles Brackenbury raced R7B at Donington Park once (whilst Dobson was otherwise engaged). In 1938, the highlight of another good year was a third place in the Modena Grand Prix, Italy and sixth in the Donington Grand Prix behind the might of Auto Union and Mercedes-Benz. But in 1939, the new ERA E-type taking Dobson’s main interest with R7B being less widely used. Immediately after WW2 Leslie Brooke raced R7B widely. For a long time the car was painted red, but it was returned to white fairly recently. This car was here, driven by Julian Wilton.

 photo Picture 011_zpsyloxbrtx.jpg  photo Picture 427_zps1bjpwncb.jpg  photo Picture 1117_zpsqjfwhhtc.jpg  photo Picture 424_zpstwhwlgyb.jpg

Anthony J. Merrick prepared and raced R1A until its then owner sold the car. Being without a car the resourceful Merrick shuffled his stock of genuine ERA parts and came up with AJM1. The 1980s brand new 1930s car is said to be an 80% original ERA B-type car using a 1.5litre engine and light green early works colour scheme, though it has since been repainted in red.

 photo Picture 425_zpsqzw2rhoa.jpg  photo Picture 426_zps3ximlynl.jpg  photo Picture 423_zpsqiodffi3.jpg

Final ERA of the quartet was R12C,  a car whose complete history gets a bit tricky. The story starts with R12B, which was a 1936 works car with a 2 litre engine and in the works black colour scheme. Raymond Mays successfully hill climbed R12B at Shelsley Walsh and raced at Brooklands. In 1937, the works rebuilt R12B to C-type specification with a 1.5litre engine and a long-range fuel tank. Pat Fairfield was to be the main works driver of R12B/C for the year. After a win with R12B/C at Crystal Palace and Donington Park, Fairfield was killed in the Le Mans 24-hour sportscar race. R12B/C was successfully used by other drivers during the rest of the year. The Albi Grand Prix was won by Humphrey Cook/ Raymond Mays.  The Berne Grand Prix, Switzerland and the JCC 200 mile race were won Arthur Dobson. The Brooklands Siam Trophy was won by Raymond Mays. In 1938 the car was sold to Prince Chula for “B.Bira” to drive. R12B/C was painted with a light blue body and yellow chassis and wheels of the “White Mouse” stable and made the national racing colours of Siam (Thailand). In the tradition of “White Mouse” cars, following R2B “Romulus” and R5B “Remus” R12C was named “Hanuman”. “B.Bira” used R12C to gain wins at Brooklands, Donington Park and Cork, Ireland. In 1939,  “B.Bira” raced R12B/C to win the Nuffield Trophy at Donington Park. Somewhat less successfully Bira crashed R12B/C at in practice for the Coupe de la Commission Sportive at Rheims, France. Bira suffered only minor injuries but the car was badly damaged, and it is what happened next which makes history a bit more complex, for as happens with many well raced cars repair and modification keeps cars on the track but complicates their history. R12B had been modified to C-type spec. and was now repaired with the only available chassis frame (a B-type, probably from R8B left over from its rebuild up to C-type spec.) so that the cars code letter reverted to “R12B” and its name was moved on to  “Hanuman II”. The spare parts from sorting out the mess were set aside – see R12C “Hanuman”, below, for what happened to them. In 1982, respected car restorer and ERA expert W.R.G. “Bill” Morris rebuilt the wreckage left over from the R12B/C “Hanuman” crash and rebuild, useing the original mangled chassis frame from R12B/C, other R12B/C parts and other period parts with any gaps filled by remanufactured parts. The result was “R12C – Hanuman” a C-type ERA as if the 1939 Rheims accident had not happened.  As at the time Bill Morris owned both “R12B – Hanuman II” and “R12C – Hanuman” the question of whether one or the other or both or neither was “genuine” was a matter he would have had to fight out with himself! These days R12C is owned by Terry Crabb, and it is a regular sight at Prescott and Shelsley (and doubtless other places that I’ve not yet visited).

 photo Picture 578_zpsqvhjrwe7.jpg  photo Picture 416_zpsrb5z0h4s.jpg  photo Picture 578_zpsjnd6y4vb.jpg  photo Picture 417_zpsjr7j76c7.jpg

FERRARI

Highlight for many would be a chance to see a LaFerrari up close, with Michael Oliver’s dark red car proving to be a star attraction.

 photo Picture 494_zpss932xyhx.jpg  photo Picture 496_zpsi3ridrng.jpg  photo Picture 419_zpspqw6esuc.jpg  photo Picture 704_zpsorefazty.jpg  photo Picture 1084_zps98jzfxal.jpg  photo Picture 1083_zps2srbogxu.jpg  photo Picture 1093_zpsclud9lgk.jpg  photo Picture 1081_zpsjfbugfmj.jpg  photo Picture 1080_zpsywxvvvsm.jpg  photo Picture 1082_zpswm9x7n6z.jpg  photo Picture 491_zpssefqrmzs.jpg  photo Picture 418_zpsmjehiolc.jpg  photo Picture 493_zpsqe1a44o4.jpg  photo Picture 492_zps7ntovjdq.jpg  photo Picture 481_zpskgpiyzwl.jpg  photo Picture 473_zpsvxudssub.jpg  photo Picture 472_zpsczjphgws.jpg  photo Picture 511_zpswl9m0uku.jpg  photo Picture 510_zpswd77mnql.jpg  photo Picture 705_zpspeajawda.jpg  photo Picture 702_zps8ridjkcl.jpg  photo Picture 701_zpssg5pz521.jpg  photo Picture 487_zpstqrldi54.jpg

Also a big crowd-puller still is the Enzo, and there was one of these here, too.

 photo Picture 521_zpspff2pqwv.jpg  photo Picture 520_zpsad8rk22u.jpg  photo Picture 522_zpsmx7nbh5m.jpg  photo Picture 519_zpshix7ycad.jpg  photo Picture 515_zpsc1vtqfwv.jpg  photo Picture 447_zpsnyopszub.jpg  photo Picture 446_zpswd6g8p4i.jpg  photo Picture 448_zpsbvxt7bw5.jpg  photo Picture 517_zps6tuw6zlv.jpg  photo Picture 516_zps0g07qsnm.jpg  photo Picture 513_zpsx5ynprsm.jpg  photo Picture 512_zps1gzbzue3.jpg

This 1953 Ferrari 166 V12 Oblin Barchetta Mille Miglia is a regular at Prescott, and I have seen it at plenty of other events as well. It always attracts a large crowd of people eager to get a closer look and to learn more about it. The lucky owner, Bernard Worth, has previously told me that he bought it for “not a lot of money” from a small ad in the back of a motoring magazine in about 1960 and he has had the car ever since. In his younger days he use to drive it competitively but nowadays it has a slightly easier time of things, and it has returned to having a 2 litre V12 under the bonnet where once a 3 litre engine sat.

 photo Picture 443_zpsdlcjiwoa.jpg  photo Picture 621_zpsxygxjdxg.jpg  photo Picture 682_zpsdekfzpgn.jpg  photo Picture 620_zps5f5hkyy4.jpg  photo Picture 622_zps4bsyqb2s.jpg  photo Picture 458_zpsqsbm9nkp.jpg  photo Picture 602_zpsacfrobdd.jpg  photo Picture 503_zps84bc38es.jpg

Joining the classic Ferrari cars on the Sunday was this 250 GT SWB, which would be interesting enough in its own right, but this one has added pedigree, as it is the car in which Stirling Moss won the 1960 Tourist Trophy at Goodwood and these days is owned by Ross Brawn.

 photo Picture 572_zpsbu8nnc0f.jpg  photo Picture 571_zpskdpqgjtd.jpg  photo Picture 570_zpsqmz26wpu.jpg  photo Picture 690_zpsjq81kjfq.jpg  photo Picture 628_zpsixqivecl.jpg  photo Picture 627_zpschaie4bs.jpg

I’ve seen this car at Prescott a number of times before. It looks very much like the classic Testarossa of the late 1950s, but it is not. It is a recreation of a 1958 196S, as an online check will reveal, It will also tell you that it has a 2417 cc engine, a capacity you’d normally associate with a 246 Dino V6 from the early 1970’s. Other online sources label the car as a 1958 Ferrari 196S Fantuzzi Spyder. Yet more research will inform you that if you check by chassis number, there is no 196S model for 1958. There are however two 246S models listed for 1959 and 1960 the first chassis #0776TR owned by Sir Antony Bamford appears to also be known as a 196S, which looks similar to this car but with a prominent additional scoop on the drivers side of the bonnet along with a perspex scoop for the carburettors. The second 246S listed is chassis #0784, and it is not that, either. The mystery resolved itself with further web research, as others have been puzzled, too. It turns out to be one of a batch of 12 196S replicas built more or less from scratch possibly in Modena possibly by ‘”Old Timers” that worked for Fantuzzi. Due to risk of these people losing their pensions, they work in secret. Further research that others have done have revealed two more cars from this mystery batch of around 12 which appear to have been built in the 1990’s, one yellow and one red the latter lists the name of the first owners as Mecanic – Import a specialist vehicle dealer in Belgium. There’s not more than this available, though.

 photo Picture 624_zpssz9ye0wx.jpg  photo Picture 623_zpsoolceu8k.jpg

This is a 275 GTB, from a series of two-seat front-engined V12-powered models produced in GT, roadster, and spyder form by Ferrari between 1964 and 1968. The first Ferrari to be equipped with a transaxle, the 275 was powered by a 3286 cc Colombo 60° V12 engine that produced 280-300 hp. Pininfarina designed the GT and roadster bodies, Scaglietti the rare NART Spyder, among the most valuable of all Ferraris made. The standard 275 GTB coupe came first. It was produced by Scaglietti and was available with 3 or 6 Weber twin-choke carburettors. It was more of a pure sports car than the GT name suggested. Some cars were built with an aluminium body instead of the standard steel body. A Series Two version with a longer nose appeared in 1965. The 275 GTB/4 debuted in 1966. A much updated 275 GTB, it generated 300 bhp from a substantially reworked 3286 cc Colombo V12 engine, still with two valves per cylinder but now with a four-cam engine and six carburettors as standard. In a departure from previous Ferrari designs, the valve angle was reduced three degrees to 54° for a more-compact head. The dual camshafts also allowed the valves to be aligned perpendicular to the camshaft instead of offset as in SOHC engines. It was a dry-sump design with a huge 17 qt (16 litre) capacity. The transaxle was also redesigned. A torque tube connected the engine and transmission, rather than allowing them to float free on the body as before. This improved handling, noise, and vibration. Porsche synchronizers were also fitted for improved shifting and reliability. The 275 GTB/4 could hit 268 km/h (166.5 mph). With new bodywork, it was the first Ferrari to not be offered with wire wheels. A total of 280 were produced through to 1968 when it was replaced by the 365 GTB/4 Daytona.

 photo Picture 008_zpsrhox3ljm.jpg  photo Picture 009_zpshtpdvr5y.jpg  photo Picture 007_zps7jdjcas5.jpg  photo Picture 006_zpspfjlmtfm.jpg  photo Picture 460_zpsc99ts9ru.jpg  photo Picture 504_zpsxpefgkwf.jpg

The first of the 365 Ferrari models came at the 1966 Geneva Show, replacing the 330 GTC and 500 Superfast cars. A number of different models would join the range over the next few years, all with the same 4.4 litre V12 engine under the bonnet, but clothed in various different bodystyles. One of them was here, a 365 GTC, which, along with an open-topped GTS model,  replaced the visually very similar 330 GTC and GTS in 1968. This was essentially a re-engine of the 330 GTC/GTS, with the engine increasing from 4.0 litres and 300 bhp to 4.4 litres and 320 bhp. The styling remained almost unchanged: on both body styles differences were limited to vents moved from behind the front wheels to the bonnet. Like all 365s, the GTC and GTS were powered by a 4,390 cc Colombo V12 engine, specifically its Tipo 245/C variant. Fed by three twin-choke Weber 40 DFI carburettors, it produced 320 PS at 6,600 rpm. Integrating the gearbox with the final drive gave these cars a balanced 50:50 weight distribution. The 365 GTC and GTS retained the independent rear suspension, employing coil springs and wishbones, of its immediate predecessor. Brakes were servo-assisted discs all-round with a split circuit system. 168 examples of the coupé were built (including 22 in right hand drive) between the 1968 and 1970. It was replaced by the Ferrari 365 GTC/4. Just 20 spiders were built before its place was assumed by the 365 GTB/4-based Daytona Spider. There were different 365GTC models here on the two days.

 photo Picture 159_zpsjdhv7gpm.jpg  photo Picture 684_zpsdj32vk4r.jpg  photo Picture 683_zpspei8byag.jpg  photo Picture 601_zpscbj0wton.jpg  photo Picture 600_zps3s1asu8e.jpg

Object of many a poster on a young enthusiast’s bedroom wall when the car was new was the Testarossa and there was a couple of nice examples here. A replacement for the BB512i, the final iteration of Ferrari’s first ever mid-engined road car, the Testarossa was launched at the Paris Show in October 1984. The Pininfarina-designed car was produced until 1991, with the same basic design then going through two model revisions, with the  512 TR and later F512 M which were produced from 1992 to 1996 before the model was replaced by the front-engined 550 Maranello. Almost 10,000 Testarossas, 512 TRs, and F512 Ms were produced, making it one of the most-produced Ferrari models, despite its high price and exotic design. The Testarossa followed the same concept as the BB512, but was intended to fix some of the criticisms of the earlier car, such as a cabin that got increasingly hot from the indoor plumbing that ran between the front-mounted radiator and the midships-mounted engine and a lack of luggage space. This resulted in a car that was larger, and at 1,976 millimetres (78 in) wide the Testarossa was half a foot wider than the Boxer and immediately condemned for being too wide, though these days it does not appear anything like as wide as it did when new. This resulted in an increased wheelbase that stretched about 64 mm (2.5 in) to 2,550 mm (100 in) which was used to accommodate luggage in a carpeted storage space under the front forward-opening lid. The increase in length created extra storage space behind the seats in the cabin. Headroom was also increased with a roofline half an inch taller than the Boxer. The design came from Pininfarina with a team of designers led by design chief Leonardo Fioravanti, the designer of many contemporary Ferraris. The design was originated by Nicosia, but the guidance of Fioravanti was equally important. Being a trained aerodynamicist, Fioravanti applied his know-how to set the aerodynamics layout of the car. This meant the large side intakes were not only a statement of style but actually functional – they drew clean air to cool the side radiators and then went upward and left the car through the ventilation holes located at the engine lid and the tail. As a result, the Testarossa did not need a rear spoiler like Lamborghini’s Countach yet produced zero lift at its rear axle. The aerodynamic drag coefficient of 0.36 was also significantly better than the Lamborghini’s 0.42. Pininfarina’s body was a departure from the curvaceous boxer—one which caused some controversy. The side strakes sometimes referred to as “cheese graters” or “egg slicers,” that spanned from the doors to the rear wings were needed for rules in several countries outlawing large openings on cars. The Testarossa had twin radiators in the back with the engine instead of a single radiator up-front.  In conjunction the strakes provided cool air to the rear-mounted side radiators, thus keeping the engine from overheating. The strakes also made the Testarossa wider at the rear than in the front, thus increasing stability and handling. One last unique addition to the new design was a single high mounted rear view mirror on the driver’s side. On US based cars, the mirror was lowered to a more normal placement in 1987 and quickly joined by a passenger side rear view mirror for the driver to be able to make safe easy lane changes. Like its predecessor, the Testarossa used double wishbone front and rear suspension systems. Ferrari improved traction by adding 10-inch-wide alloy rear wheels. The Testarossa drivetrain was also an evolution of the BB 512i. Its engine used near identical displacement and compression ratio, but unlike the BB 512i had four-valve cylinder heads that were finished in red. The capacity was 4,943 cc, in a flat-12 engine mid mounted. Each cylinder had four valves,  lubricated via a dry sump system, and a compression ratio of 9.20:1. These combined to provide a maximum torque of 490 Nm (361 lb/ft) at 4500 rpm and a maximum power of 390 hp at 6300 rpm. That was enough to allow the Testarossa to accelerate from 0–60 mph in 5.2 seconds and on to 100 mph. The original Testarossa was re-engineered for 1992 and released as the 512 TR, at the Los Angeles Auto Show, effectively as a completely new car, with an improved weight distribution of 41% front: 59% rear. The F512 M was introduced at the 1994 Paris Auto Show, with the M standing for “modificata”.  That car is easy to spot as it lost the pop-up headlights and gained awkward glazed in units.

 photo Picture 678_zpsghytj1ey.jpg  photo Picture 677_zpsye1dubw0.jpg

FIAT

One of the stars of this event, just as it is wherever it goes, bore Fiat badges, the redoubtable “Beast of Turin”. It had made its first public appearance at the 2015 Goodwood Festival of Speed and has been seen at a number of major venues since then. You could always hear when it was in action, no matter where you were on the site. and it made a spectacular entrance back into the Paddock. The S76, as the car is known was built in 1911, not some ill-judged lash-up with a 28 litre airship engine, as some might imagine, but a high tech masterpiece, created with no expense spared. In fact, two of these cars were made over the winter of 1910/1911. Visually similar, thee were detailed differences between the two. The cars wowed everyone when they first appeared, but the novelty was short lived, as regulation changes for Grand Prix cars, limiting the size of the engines and forcing designers to concentrate on high revving units with multiple camshafts, the complete antithesis of this Fiat. Even so., it was still used for a couple more years, with the car achieving timed runs of 132.37 mph over the flying kilometre along the sea front at Ostend in the summer of 1913, although these results were not officially recognised by the French-regulated speed record authorities. A couple of years earlier, the S76 had made its debut at Brooklands. The first outing wasn’t entirely successful, with 23 year old driver Pietro Bordino only able to us half throttle because of the track’s bumpy surface, and to stay on the lower part of the banking. Undeterred, Bordino then decided to drive the car on the road up to the Saltburn Sands in North Yorkshire for the annual speed trails that were held on the beach there. The accompanying mechanic reported seeing 120 mph on the speedometer, and at the time the Land Speed Record was only 126 mph. Come the day of the trial, though, the sand was saturated by overnight rain, which limited speeds. Bordino set a new world flying mile record of 116.3 mph, which was all the more impressive when you learn that the next fastest car achieved just 81.04 mph. Bordino then set about driving the car back to London, saying he did not need lights, as the “thunder and lightning” from the exhausts would suffice.  With the new Grand Prix regulations taking effect for 1912, Fiat took little persuading when approached by a car-loving Russian aristocrat, Prince Boris Soukhanov, who wanted to buy the car. He had it converted for road use, which consisted of fitting an ugly chimney-sized exhaust system and a pair of basic chain guards. He soon found it was simply too fast, though for use on the road, and decided instead to make an attempt on the flying kilometre record, and he contracted racing ace Arthur Duray to drive it for him. He had the car shipped to Brooklands, but it was concluded that the circuit was not suitable, which is when the idea of using the 7 mile straight along the Ostend seafront came in. This proved hard, as the weather conditions were generally awful in those final weeks of 1913., but in the end it was an obstreperous tramway director that really caused the problems. There was a tramway parallel with the road, and Duray was forbidden from making an attempt when the tram was making its 40 minute journey. The tramway company would not alter their timetable, and to get an official record, Duray was going to have to make two runs, in opposite directions, so although there was a run timed at 132.37 mph, it did not officially county. And that was that. In 1914, with war clouds looming, no further thoughts were given at another attempt, and Soukhanov quietly disappeared from Moscow, and was never heard of again.

 photo Picture 005_zpsrjb5ndxx.jpg  photo Picture 004_zpstolkzkm5.jpg  photo Picture 003_zpsyvo3lfth.jpg  photo Picture 168_zpsavx7wpjp.jpg

As to the cars, there are still some unknowns. It is thought that car number 2 was cut up for scrap. Certainly Fiat had a policy of destroying all their obsolete racing cars to protect their designs. But car number 1 did survive. It was spirited out of Russia ad the chassis was used to build a 1920s special, probably with a Continental engine from a Stutz. There are photos from 1921/22 showing the S76 rebodied in a lower style, with a U-shaped cross-member to carry the engine. After that, though, no-one really knows, but the rolling chassis, terribly battered and bent, but complete with axles, steering box, springs and pedals was found in a ravine in New South Wales, Australia in the 70s. It passed through various hands over the next 30 years, but no-one did anything with it. What it did not have, though, was an engine. Fiat did not begin building airship engines until 1915, so the unit used in the S76 was completely different, however, it turned out that a genuine one had survived, in Turin. It was at one of Fiat’s many buildings in Turin, dismantled, but largely complete apart from a magneto and most of the fiendishly complex carburettor. And so, the story of the restoration, or recreation, as there are indeed lots of new parts that had to be made, as the originals simply no longer existed, and that is where current owner Duncan Pittaway comes in. In 2003, he was on the re-run of the 1903 Paris-Madrid “Race of Death” with a load of other Edwardian car owners and he said that he really fancied restoring a large engined car. The Fiat S76 was mentioned, and one of the others present, Mark Walker who owns the 1905 Darracq sketched the outline of the car from memory. And so began a project which was only completed earlier this year, some 12 years later. It was a massive undertaking, Pittaway spent 10 years sourcing and restoring all the surviving original parts and arranging for all the missing elements to be recreated. Building the body proved to be one of the more difficult tasks, because there are some subtle curves spread over a large surface area. Once he had the original engine, it needed a replacement of the seized pistons and con-rods, but most of the other components could be rebuilt, and Pittaway was lucky to find an Italian magneto specialist who not only found but rebuilt the Fiat’s unique triple-spark ignition and made a special set of mica plugs.  A new gearbox had to be created, but the most of the rest of the chassis and mechanical components of the finished product are from an original S76.

 photo Picture 449_zpslrfhohis.jpg  photo Picture 687_zps19nwvunm.jpg  photo Picture 686_zps987uqmbk.jpg  photo Picture 688_zpss0cq3hxn.jpg

When a video of the finished car was released, last year, with sheets of flames jetting from the exhaust stubs, it went viral, and who can be surprised. It is an amazing machine. It may look elephantine in profile, but it is surprisingly aerodynamic, and the body has a narrow cross-section of just 800mm (2 ft 7.5″) at its widest point. Clearly it has to have a tall bonnet, to accommodate that 28,354cc 4 cylinder SOHC iron-block 3 valves per cylinder engine. Its ungainly proportions did lead to it being ridiculed somewhat when new, but that was to miss the point. It is very different in execution to much of what followed. That huge engine puts out 300 bhp, at just 1000 rpm, with the unit idling at just 80/90 rpm. Get it above 500 rpm, and the whole thing starts to shake, apparently, The steering is very direct, with just one turn lock to lock. It is, in other respects, not that difficult to drive, with an easy and quick gearchange and brakes that work well, though there is limited ground clearance so care needs to be taken not hit the sump plug on speed bumps. Of course what makes it so intriguing is the fact that it spits out real flames as it goes along. And when the hill climbs were done here, Pittaway could probably have cooked breakfast for the entire paddock with the heat that emanated from the engine. An amazing machine, and an amazing story.

 photo Picture 543_zpsjb9gozgn.jpg  photo Picture 631_zpstkkxt93o.jpg  photo Picture 542_zpsyesgiahz.jpg

A collection of the Nuova 500 models including some early cars and an Abarth-tuned one were creating plenty of interest, too. There were more in the Orchard display area.

 photo Picture 466_zpsoprbyabm.jpg  photo Picture 468_zpsmfwe4ock.jpg  photo Picture 467_zpsnepkbyxb.jpg  photo Picture 470_zpswywzmra4.jpg photo Picture 471_zpsoxhxrlkm.jpg  photo Picture 469_zps55gsrvbw.jpg  photo Picture 576_zpsqdrp9tjj.jpg  photo Picture 575_zpsmibxgc9e.jpg  photo Picture 486_zpspcggxs1b.jpg

FORMULA ONE

Two Formula one cars were part of the display. The Benetton dates from 1990 and is as driven by Nelson Piquet and there was also a Renault

 photo Picture 420_zpsjusjbjl5.jpg  photo Picture 421_zpsxequystp.jpg

LAMBORGHINI

Oldest of the Lamborghini cars here, was this Miura, known as the “Twiggy car” as it was owned by her manger back in the day. The Miura, produced between 1966 and 1973, is widely considered to have instigated the trend of high performance, two-seater, mid-engined sports cars. When released, it was the fastest production road car available. The Miura was originally conceived by Lamborghini’s engineering team, Gian Paolo Dallara, Paolo Stanzani, and Bob Wallace who in 1965 put their own time into developing a prototype car known as the P400. The engineers envisioned a road car with racing pedigree – one which could win on the track and be driven on the road by enthusiasts. The three men worked on its design at night, hoping to convince Lamborghini such a vehicle would neither be too expensive nor distract from the company’s focus. When finally brought aboard, Lamborghini gave his engineers a free hand in the belief the P400 was a potentially valuable marketing tool, if nothing more. The car featured a transversely-mounted mid-engine layout, a departure from previous Lamborghini cars. The V12 was also unusual in that it was effectively merged with the transmission and differential, reflecting a lack of space in the tightly-wrapped design. The rolling chassis was displayed at the Turin Salon in 1965. Impressed showgoers placed orders for the car despite the lack of a body to go over the chassis. Bertone was placed in charge of styling the prototype, which was finished just days before its debut at the 1966 Geneva motor show. Curiously, none of the engineers had found time to check if the engine would fit inside its compartment. Committed to showing the car, they decided to fill the engine bay with ballast and keep the car locked throughout the show, as they had three years earlier for the début of the 350GTV. Sales head Sgarzi was forced to turn away members of the motoring press who wanted to see the P400’s power plant. Despite this setback, the car was the highlight of the show, immediately boosting stylist Marcello Gandini’s reputation. The favourable reaction at Geneva meant the P400 was to go into production by the following year. The name “Miura”, a famous type of fighting bull, was chosen, and featured in the company’s newly created badge. The car gained the worldwide attention of automotive enthusiasts when it was chosen for the opening sequence of the original 1969 version of The Italian Job. In press interviews of the time company founder Ferruccio Lamborghini was reticent about his precise birth date, but stressed that he was born under the star sign Taurus the bull. Early Miuras, known as P400s (for Posteriore 4 litri), were powered by a version of the 3.9 litre Lamborghini V12 engine used in the 400GT at the time, only mounted transversely and producing 350 hp. Exactly 275 P400 were produced between 1966 and 1969 – a success for Lamborghini despite its then-steep price. Taking a cue from the Mini, Lamborghini formed the engine and gearbox in one casting. Its shared lubrication continued until the last 96 SVs, when the case was split to allow the correct oils to be used for each element. An unconfirmed claim holds the first 125 Miuras were built of 0.9 mm steel and are therefore lighter than later cars. All cars had steel frames and doors, with aluminium front and rear skinned body sections. When leaving the factory they were originally fitted with Pirelli Cinturato 205VR15 tyres (CN72). The P400S Miura, also known as the Miura S, made its introduction at the Turin Motorshow in November 1968, where the original chassis had been introduced three years earlier. It was slightly revised from the P400, with the addition of power windows, bright chrome trim around external windows and headlights, new overhead inline console with new rocker switches, engine intake manifolds made 2 mm larger, different camshaft profiles, and notched trunk end panels (allowing for slightly more luggage space). Engine changes were reportedly good for an additional 20 hp. Other revisions were limited to creature comforts, such as a locking glovebox lid, a reversed position of the cigarette lighter and windshield wiper switch, and single release handles for front and rear body sections. Other interior improvements included the addition of power windows and optional air conditioning, available for US$800. About 338 P400S Miura were produced between December 1968 and March 1971. One S #4407 was owned by Frank Sinatra. Miles Davis also owned one, which he crashed in October 1972 under the influence of cocaine, breaking both ankles. The last and most famous Miura, the P400SV or Miura SV featured different cam timing and altered carburettors. These gave the engine an additional 15 hp to a total of 380 hp. The last 96 SV engines had a split sump. The gearbox now had its lubrication system separate from the engine, which allowed the use of the appropriate types of oil for the gearbox and the engine. This also alleviated concerns that metal shavings from the gearbox could travel into the engine with disastrous and expensive results and made the application of an optional LSD far easier. The SV can be distinguished from its predecessors from its lack of “eyelashes” around the headlamps, wider rear wings to accommodate the new 9-inch-wide rear wheels and Pirelli Cinturato tyres, and different taillights. 150 SVs were produced.

 photo Picture 545_zpsas20yvva.jpg  photo Picture 544_zpsngjk4oyf.jpg  photo Picture 160_zpsdssucrue.jpg  photo Picture 436_zpsfewvqj4m.jpg  photo Picture 435_zpsavusqzkx.jpg  photo Picture 434_zpsbczdhcq5.jpg  photo Picture 490_zpswx0xscnp.jpg

Which small boy (and perhaps car loving girl) did not lust after a Countach back in the 1970s and 1980s. A dramatic looking car, this was the stuff of dreams that you would only ever see at the London or NEC Motor Shows. Countach first made an appearance, as a concept in 1971, but it was 1973 before the production car made its debut, and despite unfortunate timing with fuel shortages and a recession, and a number of financial problems for its maker, the car sold well throughout its production life. The Countach entered production as the LP400 with a 3929 cc engine delivering 370 hp. The first production Countach was delivered to an Australian in 1974. Externally, little had altered from the final form of the prototype except at the rear, where conventional lights replaced the futuristic light clusters of the prototype. The styling had become rather more aggressive than Gandini’s original conception, with the required large air scoops and vents to keep the car from overheating, but the overall shape was still very sleek. The original LP400 rode on the quite narrow tyres of the time, but their narrowness and the slick styling meant that this version had the lowest drag coefficient of any Countach model. The emblems at the rear simply read “Lamborghini” and “Countach”, with no engine displacement or valve arrangement markings as is found on later cars. By the end of 1977, the company had produced 158 Countach LP400s. In 1978, a new LP400 S model was introduced. Though the engine was slightly downgraded from the LP400 model (350 bhp), the most radical changes were in the exterior, where the tyres were replaced with 345/35R15 Pirelli P7 tyres; the widest tyres available on a production car at the time, and fibreglass wheel arch extensions were added, giving the car the fundamental look it kept until the end of its production run. An optional V-shaped spoiler was available over the rear deck, which, while improving high-speed stability, reduced the top speed by at least 16 km/h (10 mph). Most owners ordered the wing. The LP400 S handling was improved by the wider tires, which made the car more stable in cornering. Aesthetically, some prefer the slick lines of the original, while others prefer the more aggressive lines of the later models, beginning with the LP400 S. The standard emblems (“Lamborghini” and “Countach”) were kept at the rear, but an angular “S” emblem was added after the “Countach” on the right side. 1982 saw another improvement, this time giving a bigger, more powerful 4754 cc engine. The bodywork was unaltered, however the interior was given a refresh. This version of the car is sometimes called the 5000 S, which may cause confusion with the later 5000 QV. 321 of these cars were built. Two prototypes of the 1984 Countach Turbo S were built by Lamborghini, of which one is known to exist. The Turbo S weighed 1,515 kg (3,340 lb), while its 4.8 litre twin-turbo V12 had a claimed maximum power output of 758 PS and a torque output of 876 N·m (646 lb·ft), giving the car an acceleration of 0–100 km/h (0–62 mph) in 3.7 seconds and a top speed of 335 km/h (208 mph). A turbo adjuster, located beneath the steering wheel, could be used to adjust the boost pressure from 0.7 bar to 1.5 bar at which the engine performed its maximum power output. The Turbo S has 15″ wheels with 255/45 tyres on the front and 345/35 on the rear. In 1985 the engine design evolved again, as it was bored and stroked to 5167 cc and given four valves per cylinder—quattrovalvole in Italian, hence the model’s name, Countach 5000 Quattrovalvole or 5000 QV in short. The carburettors were moved from the sides to the top of the engine for better breathing—unfortunately this created a hump on the engine deck, reducing the already poor rear visibility to almost nothing. Some body panels were also replaced by Kevlar. In later versions of the engine, the carburettors were replaced with fuel injection. Although this change was the most notable on the exterior, the most prominent change under the engine cover was the introduction of fuel injection, with the Bosch K-Jetronic fuel injection, providing 414 bhp, rather than the six Weber carburettors providing 455 bhp. As for other markets, 1987 and 1988 model Quattrovalvoles received straked sideskirts. 610 cars were built. The only Countach model here was a 5000Qv.

 photo Picture 023_zpsdwmq5d8n.jpg  photo Picture 022_zpspavvsyc5.jpg  photo Picture 015_zpsb2jidjtl.jpg  photo Picture 162_zpsjvxa9zdu.jpg  photo Picture 442_zpsdgwenra7.jpg  photo Picture 441_zpsvqyt5ve0.jpg  photo Picture 689_zpsjcpesbhh.jpg  photo Picture 1096_zpsl31mjsb4.jpg photo Picture 1098_zpsu53etk2q.jpg

At a time when the company was financed by the Swiss-based Mimran brothers, Lamborghini began development of what was codenamed Project 132 in June 1985 as a replacement for the Countach model. The brief stated that its top speed had to be at least 315 km/h (196 mph). The design of the car was contracted to Marcello Gandini, who had designed its two predecessors. When Chrysler bought the company in 1987, providing money to complete its development, its management was uncomfortable with Gandini’s designs and commissioned its design team in Detroit to execute a third extensive redesign, smoothing out the trademark’s sharp edges and corners of Gandini’s original design, and leaving him famously unimpressed. In fact, Gandini was so disappointed with the “softened” shape that he would later realise his original design in the Cizeta-Moroder V16T. The car became known as the Diablo, carrying on Lamborghini’s tradition of naming its cars after breeds of fighting bulls. The Diablo was named after a ferocious bull raised by the Duke of Veragua in the 19th century, famous for fighting an epic battle with ‘El Chicorro’ in Madrid on July 11, 1869 In the words of Top Gear presenter Jeremy Clarkson, the Diablo was designed “solely to be the biggest head-turner in the world.” The Diablo was presented to the public for sale on January 21, 1990. Its power came from a 5.7 litre 48-valve version of the existing Lamborghini V12 featuring dual overhead cams and computer-controlled multi-point fuel injection, producing a maximum output of 499 PS and 580 N·m (428 lb/ft) of torque. The vehicle could reach 100 km/h in about 4.5 seconds, with a top speed of 202 mph. The Diablo was rear-wheel drive and the engine was mid-mounted to aid its weight balance. The Diablo came better equipped than the Countach; standard features included fully adjustable seats and steering wheel, electric windows, an Alpine stereo system, and power steering from 1993 onwards. Anti-lock brakes were not initially available, although they would eventually be used. A few options were available, including a custom-moulded driver’s seat, remote CD changer and subwoofer, rear spoiler, factory fitted luggage set and an exclusive Breguet clock for the dash. The Diablo VT was introduced in 1993. Although the VT differed from the standard Diablo in a number of ways, by far the most notable change was the addition of all wheel drive, which made use of a viscous centre differential (a modified version of LM002’s 4WD system). This provided the new nomenclature for the car (VT stands for viscous traction). The new drivetrain could direct up to 25% of the torque to the front wheels to aid traction during rear wheel slip, thus significantly improving the handling characteristics of the car. Other improvements debuting on the VT included front air intakes below the driving lamps to improve brake cooling, larger intakes in the rear arches, a more ergonomic interior with a revised dashboard, electronically adjustable dampers, four-piston brake calipers, power steering, and minor engine refinements. Many of these improvements, save the four-wheel drive system, soon transferred to the base Diablo, making the cars visually nearly identical. Further updates would follow before the car gave way to the Murcielago in 2001. The Diablo sold in greater numbers than its predecessor with 2898 examples being made during its 11 year production life.  The car seen here is a late model, produced after the pop-up headlights had been outlawed.

 photo Picture 021_zpszpwvog3k.jpg  photo Picture 489_zpshmse3ktk.jpg

In its turn, the Diablo gave way to the Murcielago in 2001. Taking its name from the Spanish for “bat”, this was Lamborghini’s first new design in eleven years and more importantly, the brand’s first new model under the ownership of German parent company Audi, which was manifest in a much higher level of quality and reliability. The Murcielago was styled by Peruvian-born Belgian Luc Donckerwolke, Lamborghini’s head of design from 1998 to 2005. Initially it was only available as a Coupe. The Murciélago was an all-wheel drive, mid-engined supersports car. With an angular design and an exceptionally low slung body, the highest point of the roof is just under 4 feet above the ground. One of the vehicle’s most distinguishing features are its scissor doors. which lends to the extreme image. First-generation Murciélagos, produced between 2001 and 2006, were powered by a Lamborghini V12 that traces its roots back to the company’s beginnings in the 1960s. The rear differential is integrated with the engine itself, with a viscous coupling centre differential providing drive to the front wheels. Power is delivered through a 6-speed manual transmission. The Murciélago suspension uses an independent double-wishbone design, and bodywork features carbon fiber, steel and aluminium parts. The rear spoiler and the active air intakes integrated into the car’s shoulders are electromechanically controlled, deploying automatically only at high speeds in an effort to maximise both aerodynamic and cooling efficiency. The first generation cars were produced between 2001 and 2006, and known simply as Murciélago, sometimes Murciélago VT. Their V12 engines produced just under 580 PS (572 hp), and powered the car to 100 km/h (62 mph) in 3.8 seconds. Subsequent versions incorporated an alphanumeric designation to the name Murciélago, which indicated their engine configuration and output. However, the original cars are never referred to as “LP 580s”. The Murciélago Roadster was introduced in 2004. Primarily designed to be an open top car, it employed a manually attached soft roof as cover from adverse weather, but a warning on the windshield header advised the driver not to exceed 100 mph (160 km/h) with the top in place. The designer used the B-2 stealth bomber, the Wally 118 WallyPower yacht, and architect Santiago Calatrava’s Ciutat de les Arts i les Ciències in Valencia, Spain as his inspiration for the roadster’s revised rear pillars and engine cover. In March 2006, Lamborghini unveiled a new version of its halo car at the Geneva Motor Show: the Murciélago LP 640. The new title incorporated the car’s name, along with an alphanumeric designation which indicated the engine’s orientation (Longitudinale Posteriore), along with the newly updated power output. With displacement now increased to 6.5 litres, the new car made 640 PS ( 631 hp) at 8000 rpm. The Murciélago’s exterior received a minor facelift. Front and rear details were revised, and side air intakes were now asymmetrical with the left side feeding an oil cooler. A new single outlet exhaust system incorporated into the rear diffuser, modified suspension tuning, revised programming and upgraded clutch for the 6-speed “e-Gear” automated sequential transmission with launch control rounded out the performance modifications. Interior seating was also re-shaped to provide greater headroom, and a new stereo system formed part of the updated dashboard. Optional equipment included Carbon fibre-reinforced Silicon Carbide (C/SiC) ceramic composite brakes, chrome paddle shifters and a glass engine cover. At the 2006 Los Angeles Auto Show, Lamborghini announced that the roadster version of the Murciélago would also be updated to LP 640 status. At the 2009 Geneva Motor Show, Lamborghini unveiled the ultimate version of the Murciélago, the LP 670–4 SuperVeloce. The SV moniker had previously appeared on the Diablo SV, and Miura. SV variants are more extreme and track-oriented, and are released at the end of each model’s production run. The SuperVeloce’s V12 produced 670 PS (661 hp) at 8000 rpm and 660 N·m (490 lbf·ft) of torque at 6500 rpm, thanks to revised valve timing and upgraded intake system. The car’s weight was also reduced by 100 kg (220 lb) through extensive use of carbon fibre inside and out. A new lighter exhaust system was also used. As a result of the extensive weight loss, the SV had a power-to-weight ratio of 429 bhp/ton. Also standard were the LP 640’s optional 15-inch carbon-ceramic disc brakes with 6 piston calipers. The original production plan for the SV was limited to 350 cars, , but in fact only 186 LP 670-4s were produced before the factory had to make room for the new Aventador production line. Numbered cars 1–350 do not represent the order in which cars were manufactured. Only 5-6 were made with manual transmission. Production of the Murciélago ended on November 5, 2010, with a total run of 4,099 cars. Its successor, the Aventador, was released at the 2011 Geneva Motor Show.

 photo Picture 164_zpsw3u0fbib.jpg  photo Picture 163_zpsgb23vyz3.jpg

More recent models included the Gallardo Spyder and the latest Huracan.

 photo Picture 170_zpstb199qdh.jpg  photo Picture 167_zpsujsgm44u.jpg  photo Picture 165_zpsohkbvoa7.jpg  photo Picture 166_zps8llun9oz.jpg  photo Picture 037_zpsoj4zrbpy.jpg  photo Picture 445_zpstiqiei8r.jpg

LANCIA

Sole Lancia models in the Paddock were a duo of Aurelia GT Coupe cars. Designed by Vittorio Jano, the Lancia Aurelia was launched in 1950 and production lasted until the summer of 1958. The very first Aurelias were the B10 Berlinas. They used the first production V6 engine, a 60° design developed by Francesco de Virgilio who was, between 1943 and 1948 a Lancia engineer, and who worked under Jano. The first cars had a capacity of 1754 cc, and generated 56 hp. During production, capacity grew from 1.8 litres to 2.5 litres across six distinct Series. Prototype engines used a bore and stroke of 68 mm x 72 mm for 1569 cc; these were tested between 1946 and 1948. It was an all-alloy pushrod design with a single camshaft between the cylinder banks. A hemispherical combustion chamber and in-line valves were used. A single Solex or Weber carburettor completed the engine. Some uprated 1991 cc models were fitted with twin carburettors. At the rear was an innovative combination transaxle with the gearbox, clutch, differential, and inboard-mounted drum brakes. The front suspension was a sliding pillar design, with rear semi-trailing arms replaced by a de Dion tube in the Fourth series. The Aurelia was also first car to be fitted with radial tyres as standard equipment. Aurelia was named after Via Aurelia, a Roman road leading from Rome to France. The B21 version was released in 1951 with a larger 1991 cc 70 hp engine and a 2-door B20 GT coupé appeared that same year. It had a shorter wheelbase and a Ghia-designed, Pininfarina-built body. The same 1991 cc engine produced 75 hp in the B20. In all, 500 first series Aurelias were produced. This is generally believed to the first car to use the name GT, or Gran Turismo. The B20 GT Aurelia had a successful career in motorsport, too. In the 1951 Mille Miglia the 2-litre Aurelia, driven by Giovanni Bracco and Umberto Maglioli, finished 2nd beaten only by the Ferrari America. The same year it took first in class and 12th overall at LeMans. Modified Aurelias took the first three places on 1952’s Targa Florio with Felice Bonetto as the winner and another win on Lièges-Rome-Lièges of 1953.

 photo Picture 413_zpst3p3kxv2.jpg  photo Picture 415_zpscls0hq35.jpg  photo Picture 414_zps29qupnpi.jpg

MASERATI

This rather fabulous Type 61 “BirdCage” was a hill climb competitor as well as a glorious display car. The Maserati Tipo 61 is a sports racing car of the early 1960s. The car was produced between 1959 and 1961 for racing in sports car events including the 24 Hours of Le Mans endurance classic. It used an intricate tubular space frame chassis, containing about 200 chro-moly steel tubes welded together, hence the nickname “Birdcage”. This method of construction provided a more rigid and, at the same time, lighter chassis than other sports cars of the time. By recessing the windscreen base into the bodywork, Maserati was able to reduce the effect of new Le Mans rules demanding a tall windscreen. The Camoradi team became famous racing the Tipo 61s but, despite being very competitive, the Birdcage was somewhat unreliable and occasionally retired from many races due to problems with the drivetrain.

 photo Picture 645_zpsifjpmqqy.jpg  photo Picture 644_zpscgwmzfwp.jpg  photo Picture 643_zps7qofkunr.jpg  photo Picture 161_zps62lucpfb.jpg

MISC

 photo Picture 018_zpsgugfnpmh.jpg  photo Picture 462_zpszgmgesok.jpg

PAGANI

On the second day, we were all treated to the sight of a Pagani Zonda, not a car I can recall ever seeing at Prescott before.

 photo Picture 614_zpssrohpvug.jpg  photo Picture 616_zps42jwlqcy.jpg  photo Picture 697_zpsz8tvugbg.jpg  photo Picture 615_zpsokd2aqve.jpg  photo Picture 619_zpsabg0ptbu.jpg  photo Picture 618_zpsafmea9iz.jpg  photo Picture 617_zpsohyxbegq.jpg  photo Picture 613_zpsh3snnzaf.jpg  photo Picture 612_zpssphhvn96.jpg  photo Picture 696_zpswcirqowj.jpg  photo Picture 695_zpsvqrm06x3.jpg  photo Picture 694_zpso1h4mkwp.jpg  photo Picture 692_zpsmesfygi2.jpg  photo Picture 1088_zps0fdh1b07.jpg  photo Picture 1087_zpsz3u7ssos.jpg  photo Picture 1091_zpsj7gwch5z.jpg photo Picture 1092_zpszukk5zm7.jpg  photo Picture 1090_zpsdjycsvhp.jpg  photo Picture 642_zps6n73m0qh.jpg

PANHARD

This was the first of two Dyna PL17 models I would come across at the event. Believe it or not, under that huge bonnet, powering a rather sizeable family saloon is a 2 cylinder engine with a capacity of a mere 851cc, which put out just 42 bhp.  First presented in 1959, the model’s name was derived from “PL” for “Panhard et Levassor” (the original full name of the company), with the “17” coming from the sum of 5+6+6, being 5 CV (fiscal horses, in the French power rating system) plus 6 for the car’s six seats, plus 6 for the car’s economy of 6 L/100 km (47 mpg). The car was relatively expensive, though, costing more than a 1300cc Simca Aronde, and although it had roominess on its side, the lack of syncromesh in the gearbox made it hard to drive.

 photo Picture 158_zpssxmlakcx.jpg  photo Picture 157_zpsppeu1ksw.jpg  photo Picture 433_zpsx4i0gudl.jpg  photo Picture 1074_zps9wlxdqta.jpg

ROLLS ROYCE

Tucked as discretely out of the way as you can do with something quite this big and imposing was a Phantom Drophead.

 photo Picture 432_zps5zxopnug.jpg  photo Picture 431_zpsxqi2cwy4.jpg  photo Picture 553_zpsks289xi5.jpg

VOISIN

Gabriel B. Voisin was an aviation pioneer and manufacturer who in 1919 started producing cars using Knight-type sleeve valve engines at Issy-les-Moulineaux, an industrial suburb to the southwest of Paris. Former student of the Fine Arts School of Lyon and enthusiast for all things mechanical since his childhood, Voisin’s uncompromisingly individual designs made extensive use of light alloys, especially aluminium. One of the company’s most striking early designs was the Laboratoire Grand Prix car of 1923; one of the first cars ever to use monocoque chassis construction, and utilising small radiator-mounted propeller to drive the cooling pump. The characteristic Voisin style of ‘rational’ coachwork he developed in conjunction with his collaborator André Noel. Noel prioritized lightness, central weight distribution, capacious luggage boxes and distinctively angular lines. The 1930s models with underslung chassis were strikingly low. In the early 1930s, Gabriel Voisin could not pay all of his draftsmen any more and a young creative engineer called André Lefèbvre quit, recommended by Gabriel to Louis Renault. Lefèbvre finally entered Citroën where he led three particularly significant car projects: the Traction Avant, the 2CV and the DS, using a lot of Gabriel’s lessons. The final Voisin cars were made in 1939. Frighteningly expensive when new, only small numbers of cars were made, and now they are highly prized, with their exquisite detailing adding tot the charm. The largest collection of the cars are to be seen in Peter Mullin’s collection in Oxnard, California where several of these cars are on display at any one time. You rarely see them elsewhere, so it was no surprise to find this one attracting lots of attention. It is a 1934 17CV Carene, and the design will be familiar to many, as it was the subject of an exquisite model produced by French die-cast maker Solido as part of their L’Age d’Or series in the 1960s, and the model has been produced more or less continuously ever since.

 photo Picture 1054_zpswipc6u1k.jpg  photo Picture 1055_zps0gtamqjm.jpg  photo Picture 1053_zpssevquum9.jpg

ENTERTAINMENT

Although the cars are very much the stars of this event, there is plenty of other entertainment. A temporary stage is constructed in the middle of the Paddock, and a variety of acts are assembled to use during the day. Mark Halliday, widely known for his Dean Martin act, who will channel the fabled crooner as he performs That’s Amore, Mambo Italiano and more. And, in possibly a first for a motorsport event, “Oyster Opera,” a group of professional opera singers performed. Alongside the roving accordion player and popular stilt walkers -who seemed to roam all over the site, complete with their “Allo Allo” style accents, further entertainment was provided by the stunning Vegas Showgirls who swapped their feathers for flapper dresses and performed Charleston routines to French inspired Electro Swing songs.

 photo Picture 463_zpsksynrwx8.jpg  photo Picture 172_zpsu9umotrk.jpg  photo Picture 440_zps3zxaspm8.jpg  photo Picture 439_zpsywgs6rnb.jpg  photo Picture 438_zpsx5mabjhh.jpg  photo Picture 437_zpsonoquir2.jpg

COMPETING ON THE HILL

As well as all the special displays, this remains a Hill Climb meet, and accordingly, there is a full program on both days, with around 200 cars entered to tested against the clock on the slopes. Further interest came from the fact that this was effectively two one-day meets, so the cars entered on the Saturday were completely different to those taking part on the Sunday. There were a variety of different classes on both days, with some focused on a single marque and others categorised according to the type of car and engine size. With all the other attractions, it is all too easy to neglect the Hill Climb aspects of an event like this, and that would be a pity, as there is plenty of interest in seeing people make their ascents on what is not as easy as it looks.  Sadly, on the Saturday there was an issue with the timing equipment, which restricted entrants to one competitive run, the hill time after that being filled with a number of the cars that had paraded up the hill at lunchtime going up again, and again. I am not sure that everyone in the crowd was entirely disappointed by this improvised activity.

 photo Picture 707_zpsitebrcsl.jpg  photo Picture 706_zpsdkskg6we.jpg  photo Picture 1097_zpstz8jchwi.jpg  photo Picture 700_zpsdd33c6mc.jpg  photo Picture 699_zpsqqagpgbg.jpg

Competition on the Saturday began with a huge Bugatti Owners Club class of 30 cars, run on a handicap basis, which meant that Duncan Pittaway’s 28 litre Fiat, a trio of Allards, a type 51 Bugatti, that wonerful Birdcage Maserati, a Brabham single seater, a raft of classic sports cars which included an MGB and Ford Escort as well as an Austin A35 were all grouped together.

 photo Picture 175_zpsnzxprj6w.jpg  photo Picture 174_zps11vneabj.jpg  photo Picture 177_zpsfftce6qn.jpg  photo Picture 178_zpsdavdmvsl.jpg  photo Picture 176_zpsx6moslbr.jpg  photo Picture 173_zpssgg0xadd.jpg

A round of the TVR Club Championship saw just about every V8 TVR version in action, with a 5 litre Griffith of Steve Mogg being the winner. Two MG Car classes followed, with an MGB and an MGR V8 taking the honours and these were followed by two Paul Matty supported Lotus handicap classes. Then came a class of Classic Marques, won by Steve Lyle in a Porsche Boxster and this was followed by two classes of Austin Seven – road car and track car.

 photo Picture 452_zpsdpyo8pt6.jpg  photo Picture 453_zpslctwfjvp.jpg  photo Picture 451_zpsu0exl5rz.jpg  photo Picture 464_zpsux6kvebd.jpg photo Picture 181_zps9evmfnf5.jpg  photo Picture 180_zpsthwqy1qv.jpg  photo Picture 179_zpsfhwsjuco.jpg  photo Picture 184_zpshv0kxmwp.jpg  photo Picture 183_zpsbnpb8qhc.jpg

There was a class of all Italian cars, all Ferraris and these encompassed a variety of 8 cylinder cars including the 308 GT4 Dino, 308 GTB as well as later models such as the F355 Berlinetta.

 photo Picture 457_zpscl3tjbcz.jpg  photo Picture 456_zpswkdk6cs0.jpg  photo Picture 454_zps9kssilt4.jpg  photo Picture 455_zpskjcvydcp.jpg  photo Picture 541_zpsv6gegmo2.jpg  photo Picture 540_zpsxr2fa2kb.jpg

The ERAs rounded things off, with Nick Topliss reaching the finish line fastest in R4D, and a time of 52.59 seconds.

On the second day, there were plenty of French cars competing, but it was this rarity which really caught my eye. An Abarth-tuned Lombardi Grand Prix.

 photo Picture 1060_zpsz2yeyjcj.jpg  photo Picture 1063_zpsyhbvvryl.jpg  photo Picture 1061_zps87xcjgge.jpg  photo Picture 1062_zpsnjb3o57u.jpg photo Picture 1064_zpsqzezx9hl.jpg

Classes included those for Pre War up to 1100cc, up to 1500cc and for over 4000cc pre-war cars. GN cars did well, with Grannie winning the first of these, whilst the up to 1500cc class went to Sue Dabryshire in er Morgan Super Aero JAP 3 wheeler. Other cars competing included a number of fabulous 1930s Aston Martins and James Crabb, son of ERA-driving Terry, was there with his Riley Nine Special.

 photo Picture 1086_zpsfpqdycyp.jpg  photo Picture 1085_zpsxs4esg9l.jpg  photo Picture 1089_zpsfhckzcju.jpg  photo Picture 1070_zpslfasgrrn.jpg  photo Picture 611_zpswhrlldmy.jpg  photo Picture 608_zpstrdoqwza.jpg  photo Picture 610_zpsvgc2jclr.jpg  photo Picture 607_zpsjpu64yve.jpg  photo Picture 605_zpsjc7ej28b.jpg  photo Picture 606_zpsvh597ryg.jpg  photo Picture 604_zpskiccfebk.jpg  photo Picture 609_zpsyrvhvlxx.jpg

There were classes for pre- and post- 1972 saloons, which saw a wide variety of entrants ranging from the Alfa 1750 Berlina and BMW 2002 to Hillman Imps and MG Midgets as well as more recent machines like the Sierra Cosworth and Peugeot 205 as well as Porsche 924 and the earlier 914.

 photo Picture 725_zpsqz79xead.jpg  photo Picture 726_zpsyxszbiaj.jpg  photo Picture 727_zpsjsv0tw9z.jpg  photo Picture 728_zpsdigr5idz.jpg  photo Picture 729_zpsl3ykvhmz.jpg  photo Picture 708_zpslgdjbfui.jpg  photo Picture 709_zpsrjccjtn2.jpg  photo Picture 710_zpsywejbhkp.jpg  photo Picture 711_zpsrnivqi2i.jpg  photo Picture 1069_zpscgmadwmb.jpg  photo Picture 1068_zpsostp43kg.jpg

There was also a class for the diminutive 500cc racers that were so popular in the post war period.

 photo Picture 1067_zps7syqvm0b.jpg

ITALIAN CARS

As well as the Paddock displays, a large part of the Orchard was allocated for cars that complied with the dual themes of French and Italian cars. The idea was that Clubs and individual owners would bring their cars to assemble sizeable collections of the different marques and models from each of the two countries. Although both were welcome on both days, there was more of an emphasis on Italian cars on the Saturday and French ones on the Sunday. The reality was that this meant that the cars and the displays were different on both days, and there was lots to see, with a mix of familiar and more recent cars as well as some lovely older and rarer machines.

ABARTH

Response from Abarth Owners Club members to take part in this was a little disappointing, with only a handful of cars that we could assemble each day. For some reason, this event does not seem to capture the imagination of that many of the members, though all those who do come always comment favourably on the setting, the location and the event itself. The majority of the cars on both days were 595-based, and, as is always the case, were all different, in subtle ways, varying from my 180 bhp Competzione and Alec McFee’s Turismo to Luther Jackson and Ian Coulson’s modified cars.

 photo Picture 040_zpsqpme7u8k.jpg  photo Picture 1107_zpsy89yuvlr.jpg  photo Picture 1106_zpsfqbb9txo.jpg  photo Picture 1108_zpsdzvy80qy.jpg  photo Picture 843_zpscdn4qodq.jpg  photo Picture 041_zpsfdfh1lhg.jpg  photo Picture 842_zpsypnoydnq.jpg  photo Picture 845_zps1bh26cdu.jpg  photo Picture 844_zpsdcufwy8i.jpg  photo Picture 083_zpsmfqujwho.jpg  photo Picture 082_zpsligqbkd3.jpg  photo Picture 382_zpsorke5mdp.jpg  photo Picture 379_zps4l97hcy5.jpg  photo Picture 385_zpslvyoz8uq.jpg  photo Picture 381_zpszhjwe11g.jpg  photo Picture 380_zpss5qscubo.jpg  photo Picture 384_zps58sbl9ng.jpg  photo Picture 383_zpsdgmyxyip.jpg  photo Picture 155_zpslghjur6m.jpg  photo Picture 1040_zpskh3fl5jo.jpg  photo Picture 1030_zpsr2tmlf7d.jpg  photo Picture 1039_zpsxpl5dmqo.jpg  photo Picture 1031_zpsyy3udend.jpg  photo Picture 154_zpsiuqqw4y5.jpg  photo Picture 115_zpsjpdatmum.jpg  photo Picture 153_zpsw8xcmnqe.jpg  photo Picture 114_zpsevbyx8je.jpg  photo Picture 042_zpsrgxai4em.jpg  photo Picture 526_zps7axoh0nf.jpg  photo Picture 079_zpsul8aklxf.jpg  photo Picture 078_zps2tr26yv4.jpg  photo Picture 077_zpsctgb0rfa.jpg  photo Picture 080_zpsfocqm1pf.jpg  photo Picture 076_zpstmdmfaa1.jpg  photo Picture 525_zpshgf9mo88.jpg  photo Picture 595_zpsfytwrry9.jpg  photo Picture 591_zpssgevczgl.jpg  photo Picture 534_zps62fpk94f.jpg  photo Picture 1133_zpsspzswkyl.jpg  photo Picture 1131_zpsnihjx0hn.jpg  photo Picture 1139_zpsicse1rgc.jpg  photo Picture 1124_zpscyocybkc.jpg

 photo Picture 1136_zpsslkgyfag.jpg  photo Picture 1129_zps1uyib2ct.jpg  photo Picture 1135_zpsrsbwze6h.jpg  photo Picture 1130_zpsezj7ahyb.jpg  photo Picture 1137_zpsffie8xhj.jpg  photo Picture 1134_zpshj2pckp8.jpg  photo Picture 1132_zpsie0cnolt.jpg  photo Picture 1128_zpskxuwj8ls.jpg  photo Picture 1127_zpsmm7hh5gd.jpg  photo Picture 1123_zpshnwnn9nw.jpg  photo Picture 1126_zps3xyhlmoq.jpg  photo Picture 1125_zps7fegdnpl.jpg

There were a couple of Punto models here, too. Gavin Jenkins’ Punto Evo was a welcome addition to the display on the Saturday, and on the second Stuart Theobald’s Punto Supersport was a car we managed to sneak in, despite him not having an officially issue parking pass.

 photo Picture 835_zps1uyfribw.jpg  photo Picture 834_zpsbkxhbim3.jpg  photo Picture 378_zps8sjx6sh0.jpg  photo Picture 150_zpslaabe6tq.jpg  photo Picture 151_zpsfymb8gmf.jpg  photo Picture 590_zps0r8mx9lj.jpg  photo Picture 589_zps3dysasp8.jpg  photo Picture 588_zpsuf8opbm3.jpg

We were joined on the second day by a classic 595SS model. Along with the visually similar, but more powerful  695SS, the 595SS was based on Fiat’s diminutive 500.  For the 595 SS, Abarth increased the engine capacity to 594 cc, just under the limit for the European 600cc racing sedan class. High compression 10:1 pistons were used together with a special camshaft, a specific alloy sump, Abarth valve covers and air filter, propped up engine lid and wheels were fitted and of course the exhaust system was a special in house model. This package together with lowered suspension, flared arches and 10 inch rims amounted to what was known as the Assetto Corsa SS model. These cars have become very rare as many were crashed in competition or simply rotted away due to bad rust protection in the 70s  A number of recreations have been built, but this is actually an original.

 photo Picture 592_zpsf8p8vdrd.jpg  photo Picture 594_zpsrgeuw0cr.jpg  photo Picture 593_zpsunaesyt5.jpg  photo Picture 1041_zpsmtycwany.jpg

ALFA ROMEO

Oldest of the Alfa designs out in the Orchard was an example of the Giulia Spider. This started out, of course, in mid 1955, as the open two-seat Giulietta Spider, featuring convertible bodywork by Pininfarina, a part of the 750 Series of Giulietta cars. Alfa replaced the Giulietta with the Giulia in 1962, but as the Coupe and Spider were not ready, the Giulietta based models were kept in production, and renamed as Giulia. They gained a larger 1600cc engine, and this meant that the bonnet need to be raised a little to accommodate the new unit, so the easy recognition beyond Giulietta and Giulia Spiders is whether there is a flat bonnet or one with a slight hump and a vent in it.

 photo Picture 848_zpswtyvlcsr.jpg

First of the all-new Giulia models to appear was the Berlina, launched in 1962. The styling was quite straight forward, but great attention was paid to detail. The engine bay, cabin and boot were all square shaped. But the grille, the rooflines and details on the bonnet and boot made for an integrated design from bumper to bumper. Thanks to Alfa Romeo using a wind tunnel during its development, the Giulia was very aerodynamic with a drag coefficient of Cd=0.34, which was particularly low for a saloon of the era and not a bad figure even for cars of today. Couple that with the fact that Alfa Romeo was one of the first manufacturers to put a powerful engine in a light-weight car (it weighed about 1,000 kilograms) and thanks to an array of light alloy twin overhead camshaft four-cylinder engine, similar to that of the earlier Giulietta models range, the car had a lively performance which bettered that of many sports cars of the day. The Tipo 105.14 was the first model, with a 1,570 cc Twin Cam engine with single down-draft carburettor generating 91 hp at 6500 rpm. The “TI” nomenclature referred to a class of Italian saloon car racing known as “Turismo Internazionale”, and had previously been applied to higher-performance versions of the 1900 and Giulietta saloons in the 1950s. However, for the Giulia saloon, the Ti was at first the only version available, and later, with the introduction of the TI Super and Super, the TI became the base version for the 1,600 cc engine class. The steering column gearchange (the only one in the Giulia range) was replaced with a floor change for 1964 (Tipo 105.08). Right hand drive cars, available from 1964, only ever had a floor change (Tipo 105.09). Brakes were by drums all around at first. Discs were introduced later, first at the front, and later all around. A brake servo was not fitted at first, but was introduced in later cars. The steering wheel featured the only horn ring ever in the Giulia range. The dashboard with a strip speedo is a notable feature, as is the steering wheel with a horn ring. The Giulia TI was phased out in 1968 and re-introduced as the austerity model 1600 S.  Tipo 105.16 was a special racing model introduced in 1963. Quadrifoglio Verde stickers on the front wings were a distinguishing feature. Only 501 were made for homologation and today it is very rare and desirable. The 1,570 cc engine was fitted with two double-choke horizontal Weber 45DCOE carburettors for 110 hp at 6500 rpm. The body was lightened and a floor gearchange was fitted as standard, as were alloy wheels of very similar appearance to the standard steel ones of the TI. The TI’s instrument cluster with its strip speedometer was replaced with a three-instrument binnacle comprising speedometer, tachometer and a multi-gauge instrument (fuel, water temperature, oil temperature and pressure) – these instruments were similar to those fitted to the contemporary Giulia Sprint and Sprint Speciale coupes and Spider convertibles. The steering wheel was a three-spoke item with centre hornpush, also similar to that of the more sporting models. Braking was by discs all around, although the first cars used drums and early disc models lacked a servo which was introduced later. The police cars seen in The Italian Job were of this type. Tipo 105.06 was an austerity model made from 1964 to 1970 with a 1,290 cc single-carburettor engine for 77 hp at 6000 rpm. Four-speed gearbox with floor change fitted as standard (the 1300 was the only Giulia model not fitted with a five-speed gearbox). Though the engine was given a 105 series type number, it was basically the engine from the 101 series Giulietta Ti. This model appears not to have been exported to many markets outside Italy, if at all. Braking was by discs all around, without a servo at first, later with a servo. Tipo 105.26 was introduced in 1965. It transferred the technology from the racing TI Super to a road car, to make the most successful Giulia saloon. 1,570 cc engine with two double-choke Weber 40DCOE carburettors for a milder, but torquier tune than the TI Super – 97 hp at 5500 rpm. There was a new dashboard with two large round instruments (speedo and tacho) and clock, a sportier steering wheel with three aluminium spokes and centre horn push, similar to that of the Ti Super, later changed for one with the horn pushes in the spokes. All-around disc brakes with servo were fitted as standard from the outset. The serpent crest of the Sforza family appears in a badge on the C-pillar and is a distinguishing feature of the Super. For 1968, there was a suspension update, including revised geometry and a rear anti-roll bar. The wheels were changed in size from 5J x 15 to 5J x 14, and tyres from 155/15 to 165/14. For 1970, updates included dual-circuit brakes, centre-mounted handbrake lever to replace under-dash “umbrella handle”, larger external doorhandles, and top-hinged pedals (the latter in left hand drive models only; right hand drive continued with bottom-hinged pedals to the end of production). In 1972, Tipo 105.26 was rationalised into the Giulia 1.3 – Giulia 1.6 range. Tipo 105.39 built from 1965 to 1972. Right hand drive model replaced in 1970 by the 1300 Super. 1,290 cc engine with single down-draft carburettor for 81 hp at 6000 rpm. Unlike the re-deployed 101-series Giulietta engine of the austerity-model 1300, the 1300 ti motor was a 105 series engine, basically that of the sportier GT1300 Junior coupe with different camshaft timing (but the same camshafts) and induction system. Five-speed gearbox. Three-spoke bakelite steering wheel with plastic horn push covering the centre and spokes. Dashboard initially with strip speedo like that of the TI. For 1968, updates included a dashboard based on that of the Super, but with a simpler instrument binnacle, still featuring two large round instruments (speedo and tacho) and a separate fuel gauge, and the same suspension, wheel and tire updates applied to the Giulia Super in the same year. For 1970, updates included dual-circuit brakes, centre handbrake, larger external doorhandles and top-hinged pedals (on left hand drive cars only), again as applied to the Super for that year. Tipo 105.85 was basically a Giulia TI re-introduced in 1968 as a lower-level model to come between the 1300 and 1300 ti on one hand, and the Super on the other. It had a re-interpretation of the 1,570 cc single-carburettor engine for 94 hp at 5500 rpm and similar trim to the 1300 ti. Replaced in 1970 by the 1300 Super which offered similar performance in a lower tax bracket. The last cars from 1970 featured the top-hinged pedals, centre handbrake and dual-circuit brakes as for the Super and 1300 ti. Tipo 115.09 was introduced in 1970. It was basically a 1300 ti fitted with the engine from the GT 1300 Junior coupe that featured two double-choke horizontal carburettors; the engine actually had the GT 1300 Junior type number. This model was rationalised into the Giulia Super 1.3 – Giulia Super 1.6 range in 1972. In 1972 a rationalisation of the Giulia range saw the Super 1300 (Tipo 115.09) and the Super (Tipo 105.26) re-released as the Super 1.3 and Super 1.6. The two models featured the same equipment, interior and exterior trim, differing only in engine size and final drive ratio. The 1300 ti was dropped. A small Alfa Romeo badge on the C-pillar is a distinguishing feature, as are hubcaps with exposed wheel nuts. In December 1972 Alfa-Romeo South Africa released the 1600 Rallye. This locally developed more powerful 1600 cc version of the 1300 Super used the 1300’s single-headlight body shell. The car was largely ready for competition and was only planned to be built in limited numbers, and was fitted with racing-style rear-view mirrors, rally lamps, fully adjustable seats, and a limited-slip differential. Claimed power was 125 hp. The Giulia Super range was re-released in 1974 as the Nuova Super range, including the Giulia Nuova Super 1300 and 1600 This featured a new black plastic front grille and a flat boot lid without the characteristic centre spine. Otherwise the cars differed little from their Giulia Super predecessors and bore the same Tipo numbers with an S suffix. A Nuova Super fitted with a Perkins 1,760 cc diesel with 54 hp at 4000 rpm, was the firm’s first attempt at diesel power. The same Perkins diesel was used also in Alfa Romeo F12 van. The diesel version was slow, 138 km/h (86 mph), and the engine somehow unsuitable for a sport sedan so it was not big seller, only around 6500 examples were made in 1976 and the car was not sold in the UK. Production of the Giulia ceased in 1977. There are relatively few of these cars in the UK, and many of these are left hand drive models which have been re-imported relatively recently, or have been converted for historic racing, so it was good to see a nice road-going model here.

 photo Picture 373_zpsfnhpsvet.jpg  photo Picture 372_zps9q9i0gvb.jpg

Far more numerous now are the Coupe models, and there was one of those here, too. The first car was called the Alfa Romeo Giulia Sprint GT, and was revealed at a press event held at the then newly opened Arese plant on 9 September 1963, and displayed later the same month at the Frankfurt Motor Show. In its original form the Bertone body is known as scalino (step) or “step front”, because of the leading edge of the engine compartment lid which sat 1/4 an inch above the nose of the car. The Giulia Sprint GT can be distinguished from the later models by a number of features including: Exterior badging: Alfa Romeo logo on the front grille, a chrome script reading “Giulia Sprint GT” on the boot lid, and rectangular “Disegno di Bertone” badges aft of the front wheel arches; flat, chrome grille in plain, wide rectangular mesh without additional chrome bars; single-piece chrome bumpers; no overriders. Inside the cabin the padded vinyl dashboard was characterised by a concave horizontal fascia, finished in grey anti-glare crackle-effect paint. Four round instruments were inset in the fascia in front of the driver. The steering wheel was non-dished, with three aluminium spokes, a thin bakelite rim and a centre horn button. Vinyl-covered seats with cloth centres and a fully carpeted floor were standard, while leather upholstery was an extra-cost option. After initially marketing it as a four-seater, Alfa Romeo soon changed its definition of the car to a more realistic 2+2. The Giulia Sprint GT was fitted with the 1,570 cc version of Alfa Romeo’s all-aluminium twin cam inline four (78 mm bore × 82 mm stroke), which had first debuted on the 1962 Giulia Berlina. Breathing through two twin-choke Weber 40 DCOE 4 carburettors, on the Sprint GT this engine produced 105 hp at 6,000 rpm. Like all subsequent models, the Sprint GT was equipped with an all-synchromesh 5-speed manual transmission. The braking system comprised four Dunlop disc brakes and a vacuum servo. The rear brakes featured an unusual arrangement with the slave cylinders mounted on the axle tubes, operating the calipers by a system of levers and cranks. According to Alfa Romeo the car could reach a top speed of “over 180 km/h (112 mph)”. In total 21,902 Giulia Sprint GT were produced from 1963 to 1965, when the model was superseded by the Giulia Sprint GT Veloce. Of these 2,274 were right hand drive: 1,354 cars fully finished in Arese, and 920 shipped in complete knock-down kit form for foreign assembly. For 1966, the Giulia Sprint GT was replaced by the Alfa Romeo Giulia Sprint GT Veloce, which was very similar but featuring a number of improvements: a revised engine—slightly more powerful and with more torque—better interior fittings and changes to the exterior trim. Alongside the brand new 1750 Spider Veloce which shared its updated engine the Sprint GT Veloce was introduced at the 36th Geneva Motor Show in March 1966, and then tested by the international specialist press in Gardone on the Garda Lake.  Production had began in 1965 and ended in 1968. The Giulia Sprint GT Veloce can be most easily distinguished from other models by the following features: badging as per Giulia Sprint GT, with the addition of round enamel badges on the C-pillar—a green Quadrifoglio (four-leaf clover) on an ivory background—and a chrome “Veloce” script on the tail panel; black mesh grille with three horizontal chrome bars; the grille heart has 7 bars instead of 6; stainless steel bumpers, as opposed to the chromed mild steel bumpers on the Giulia Sprint GT. The bumpers are the same shape, but are made in two pieces (front) and three pieces (rear) with small covers hiding the joining rivets. Inside the main changes from the Giulia Sprint GT were imitation wood dashboard fascia instead of the previous anti-glare grey finish, front seats revised to a mild “bucket” design, and a dished three aluminium spoke steering wheel, with a black rim and horn buttons through the spokes. The Veloce’s type 00536 engine, identical to the Spider 1600 Duetto’s, featured modifications compared to the Giulia Sprint GT’s type 00502—such as larger diameter exhaust valves. As a result it produced 108 hp at 6,000 rpm, an increase of 3 hp over the previous model, and significantly more torque. The top speed now exceeded 185 km/h (115 mph). Early Giulia Sprint GT Veloces featured the same Dunlop disc brake system as the Giulia Sprint GT, while later cars substituted ATE disc brakes as pioneered on the GT 1300 Junior in 1966. The ATE brakes featured an handbrake system entirely separate from the pedal brakes, using drum brakes incorporated in the rear disc castings. Though the Sprint GT Veloce’s replacement—the 1750 GT Veloce—was introduced in 1967, production continued throughout the year and thirty final cars were completed in 1968.  By then total Giulia Sprint GT Veloce production amounted to 14,240 examples. 1,407 of these were right hand drive cars, and 332 right hand drive complete knock-down kits. The Alfa Romeo 1750 GT Veloce (also known as 1750 GTV) appeared in 1967 along with the 1750 Berlina sedan and 1750 Spider. The same type of engine was used to power all three versions; this rationalisation was a first for Alfa Romeo. The 1750 GTV replaced the Giulia Sprint GT Veloce and introduced many updates and modifications. Most significantly, the engine capacity was increased to 1779 cc displacement. Peak power from the engine was increased to 120 hp at 5500 rpm. The stroke was lengthened from 82 to 88.5 mm over the 1600 engine, and a reduced rev limit from 7000 rpm to 6000 rpm. Maximum torque was increased to 137 lb·ft at 3000 rpm. A higher ratio final drive was fitted (10/41 instead of 9/41) but the same gearbox ratios were retained. The result was that, on paper, the car had only slightly improved performance compared to the Giulia Sprint GT Veloce, but on the road it was much more flexible to drive and it was easier to maintain higher average speeds for fast touring. For the United States market, the 1779 cc engine was fitted with a fuel injection system made by Alfa Romeo subsidiary SPICA, to meet emission control laws that were coming into effect at the time. Fuel injection was also featured on Canadian market cars after 1971. Carburettors were retained for other markets. The chassis was also significantly modified. Tyre size went to 165/14 from 155/15 and wheel size to 5 1/2J x 14 instead of 5J x 15, giving a wider section and slightly smaller rolling diameter. The suspension geometry was also revised, and an anti-roll bar was fitted to the rear suspension. ATE disc brakes were fitted from the outset, but with bigger front discs and calipers than the ones fitted to GT 1300 Juniors and late Giulia Sprint GT Veloces. The changes resulted in significant improvements to the handling and braking, which once again made it easier for the driver to maintain high average speeds for fast touring. The 1750 GTV also departed significantly from the earlier cars externally. New nose styling eliminated the “stepped” bonnet of the Giulia Sprint GT, GTC, GTA and early GT 1300 Juniors and incorporated four headlamps. For the 1971 model year, United States market 1750 GTV’s also featured larger rear light clusters (there were no 1970 model year Alfas on the US market). Besides the chrome “1750” badge on the bootlid, there was also a round Alfa Romeo badge. Similar Quadrofoglio badges to those on the Giulia Sprint GT Veloce were fitted on C pillars, but the Quadrofoglio was coloured gold instead of green. The car also adopted the higher rear wheelarches first seen on the GT 1300 Junior. The interior was also much modified over that of earlier cars. There was a new dashboard with large speedometer and tachometer instruments in twin binnacles closer to the driver’s line of sight. The instruments were mounted at a more conventional angle, avoiding the reflections caused by the upward angled flat dash of earlier cars. Conversely, auxiliary instruments were moved to angled bezels in the centre console, further from the driver’s line of sight than before. The new seats introduced adjustable headrests which merged with the top of the seat when fully down. The window winder levers, the door release levers and the quarterlight vent knobs were also restyled. The remote release for the boot lid, located on the inside of the door opening on the B-post just under the door lock striker, was moved from the right hand side of the car to the left hand side. The location of this item was always independent of whether the car was left hand drive or right hand drive. Early (Series 1) 1750 GTV’s featured the same bumpers as the Giulia Sprint GT Veloce, with the front bumper modified to mount the indicator / sidelight units on the top of its corners, or under the bumper on US market cars. The Series 2 1750 GTV of 1970 introduced other mechanical changes, including a dual circuit braking system (split front and rear, with separate servos). The brake and clutch pedals on left hand drive cars were also of an improved pendant design, instead of the earlier floor-hinged type. On right hand drive cars the floor-hinged pedals were retained, as there was no space for the pedal box behind the carburettors. Externally, the series 2 1750 GTV is identified by new, slimmer bumpers with front and rear overriders. The combined front indicator and sidelight units were now mounted to the front panel instead of the front bumper, except again on the 1971-72 US/Canadian market cars. The interior was slightly modified, with the seats retaining the same basic outline but following a simpler design. 44,269 1750 GTVs were made before their replacement came along. That car was the 2000GTV. Introduced in 1971, together with the 2000 Berlina sedan and 2000 Spider, the 2 litre cars were replacements for the 1750 range. The engine displacement was increased to 1962 cc. Oil and radiator capacities remained unchanged. The North American market cars had fuel injection, but everyone else retained carburettors.  Officially, both versions generated the same power, 130 hp at 5500 rpm. The interior trim was changed, with the most notable differences being the introduction of a separate instrument cluster, instead of the gauges installed in the dash panel in earlier cars. Externally the 2000 GTV is most easily distinguished by its grille with horizontal chrome bars, featuring protruding blocks forming the familiar Alfa heart in outline, smaller hubcaps with exposed wheel nuts, optional aluminium alloy wheels of the same size as the standard 5. 1/2J × 14 steel items, styled to the “turbina” design first seen on the alloy wheels of the Alfa Romeo Montreal, and the larger rear light clusters first fitted to United States market 1750 GTV’s were standard for all markets. From 1974 on, the 105 Series coupé models were rationalised and these external features became common to post-1974 GT 1300 Junior and GT 1600 Junior models, with only few distinguishing features marking the difference between models. 37,459 2000 GTVs were made before production ended and these days they are very sought after with prices having sky-rocketed in recent years.

 photo Picture 377_zpsgvknvbp1.jpg

Alfa replaced the Giulia-based Spider model with an all-new design which finally made its debut in 1966 together with the Giulia Sprint GT Veloce at an event organised in Gardone Riviera. With its boat tailed styling, it quickly found favour, even before taking a starring role in the film “The Graduate”. The original 1600cc engine was replaced by a more powerful 1750cc unit at the same time as the change was made to the rest of the range, and the car continued like this until 1970, when the first significant change to the exterior styling was introduced on the 1750 Spider Veloce, with the original’s distinctive elongated round tail changed to a more conventional cut-off tail, called the “Kamm tail”, as well as improving the luggage space. Numerous other small changes took place both inside and out, such as a slightly different grille, new doorhandles, a more raked windscreen, top-hinged pedals and improved interior trim. 1971 saw the Spider Veloce get a new, larger powerplant—a 1962 cc, 132 hp unit—and consequently the name was changed from 1750 Spider Veloce to 2000 Spider Veloce. The 1600 Spider restarted production a year later as the Spider 1600 Junior, and was visually identical to the 1300. 1974 saw the introduction of the rare, factory request, Spider-Targa. Based upon the Spider, it featured a Porsche style solid rear window and lift out roof panels, all made out of black GRP type material. Less than 2,000 models of such type were ever made and was the only part solid roof Spider until the introduction of the factory crafted hard top. The 1300 and 2000 cars were modified in 1974 and 1975 respectively to include two small seats behind the front seats, becoming a “two plus two” four seater. The 1300 model was discontinued in 1977. Also, between 1974 and 1976, the early-style stainless-steel bumpers were discontinued and replaced with black, rubber-clad units to meet increasingly stringent North American crash requirements. 4,557 examples of the 1300 Junior were made and 4,848 of the 1600 Junior as well as 16,320 2000 Spider Veloces and 22,059 of 2000 Spider Veloce US version. There were also 4,027 1750 Spider Veloces produced.  Examples of the Series 1 and Series 2 cars were to be seen here on the second day.

 photo Picture 1037_zpsabsvzcfx.jpg  photo Picture 839_zpsbn5uq5kz.jpg  photo Picture 836_zps6a3hyxwf.jpg

Although demand for the car in Europe dropped in the 1980s, it remained popular in the US, which meant that Alfa not only kept the car in production, but also updated a couple more times. The S4 marked the final major change to the long running Spider when it came out in 1990. Mechanically, the biggest different was the use of Bosch Motronic electronic fuel injection with an electric fan. Externally, the Spider lost its front under-bumper spoiler and the rather ungainly rear boot spoiler of the S3, and picked up 164-style rear lights stretching across the width of the car as well as plastic bumpers the same colour as the car. This also marked the first generation of the car with automatic transmission, as well as on-board diagnostics capabilities. The car had remained in production largely thanks to continued demand in North America, though this market had to wait until 1991 for the changes to appear on their cars. European markets were offered a car with a 1600cc engine and carburettors as well as the 2 litre injected unit.  As with the earlier S3, the car was not sold new in the UK by Alfa Romeo, but a number of them were imported at the time, and more have found their way to the UK since. Production finally ended in 1993, with an all new model, the 916 Series Spider appearing a year later.

 photo Picture 376_zpsj0guyhkl.jpg

It was nice to see an AlfaSud Ti  model here. These characterful small cars evoke a very positive reaction, with many people wistfully recollecting one that they, or their parents, owned back in the 1970s, but observing that the car, whilst divine to drive, simply rusted away almost before your very eyes. There are a lot more of these cars left in the UK than you might imagine, but most of them are on SORN, needing massive restorations that may or may not ever happen. Alfa Romeo had explored building a smaller front wheel drive car in the 1950s but it was not until 1967 that firm plans were laid down for an all-new model to fit in below the existing Alfa Romeo range. It was developed by Austrian Rudolf Hruska, who created a unique engineering package, clothed in a body styled by Giorgetto Giugiaro of ItalDesign. The car was built at a new factory at Pomigliano d’Arco in southern Italy, hence the car’s name, Alfa Sud (Alfa South). January 18, 1968, saw the registration at Naples of a new company named “Industria Napoletana Costruzioni Autoveicoli Alfa Romeo-Alfasud S.p.A.”. 90% of the share capital was subscribed by Alfa Romeo and 10% by Finmeccanica, at that time the financial arm of the government controlled IRI. Construction work on the company’s new state sponsored plant at nearby Pomigliano d’Arco began in April 1968, on the site of an aircraft engine factory used by Alfa Romeo during the war. The Alfasud was shown at the Turin Motor Show three years later in 1971 and was immediately praised by journalists for its styling. The four-door saloon featured an 1,186 cc Boxer water-cooled engine with a belt-driven overhead camshaft on each cylinder head. It also featured an elaborate suspension setup for a car in its class (MacPherson struts at the front and a beam axle with Watt’s linkage at the rear). Other unusual features for this size of car were four-wheel disc brakes (with the front ones being inboard) and rack and pinion steering. The engine design allowed the Alfasud a low bonnet line, making it very aerodynamic (for its day), and in addition gave it a low centre of gravity. As a result of these design features, the car had excellent performance for its engine size, and levels of roadholding and handling that would not be equalled in its class for another ten years. Despite its two-box shape, the Alfasud did not initially have a hatchback. Some of the controls were unorthodox, the lights, turn indicators, horn, wipers and heater fan all being operated by pulling, turning or pushing the two column stalks. In November 1973 the first sport model joined the range, the two-door Alfasud ti—(Turismo Internazionale, or Touring International).Along with a 5-speed gearbox, it featured a more powerful version of the 1.2 engine, brought to 67 hp by adopting a Weber twin-choke carburettor; the small saloon could reach 160 km/h. Quad round halogen headlamps, special wheels, a front body-colour spoiler beneath the bumper and rear black one around the tail distinguished the “ti”, while inside there were a three-spoke steering wheel, auxiliary gauges, leatherette/cloth seats, and carpets in place of rubber mats. In 1974, Alfa Romeo launched a more upscale model, the Alfasud SE. The SE was replaced by the Alfasud L (Lusso) model introduced at the Bruxelles Motor Show in January 1975. Recognisable by its bumper overriders and chrome strips on the door sills and on the tail, the Lusso was better appointed than the standard Alfasud (now known as “normale”), with such features as cloth upholstery, headrests, padded dashboard with glove compartment and optional tachometer. A three-door estate model called the Alfasud Giardinetta was introduced in May 1975. It had the same equipment of the Alfasud “L”. It was never sold in the UK and these models are particularly rare now. The Lusso model was produced until 1976, by then it was replaced with the new Alfasud 5m (5 marce, five speed) model, the first four-door Alfasud with a five-speed gearbox. Presented at the March 1976 Geneva Motor Show, it was equipped like the Lusso it replaced.  In late 1977 the Alfasud Super replaced the range topping four-door “5m”; it was available with both the 1.2- and 1.3-litre engines from the “ti”, though both equipped with a single-choke carburettor.The Super introduced improvements both outside, with new bumpers including large plastic strips, and inside, with a revised dashboard, new door cards and two-tone cloth seats. Similar upgrades were applied to the Giardinetta. In May 1978 the Sprint and “ti” got new engines, a 78 hp 1.3 (1,350 cc) and a 84 hp 1.5 (1,490 cc), both with a twin-choke carburettor.  At the same time the Alfasud ti received cosmetic updates (bumpers from the Super, new rear spoiler on the boot lid, black wheel arch extensions and black front spoiler) and was upgraded to the revised interior of the Super. The 1.3 and 1.5 engines were soon made available alongside the 1.2 on the Giardinetta and Super, with a slightly lower output compared to the sport models due to a single-choke carburettor. All Alfasuds were upgraded in 1980 with plastic bumpers, new instrument panel, headlamps and rear lights as well as other revisions. The Ti version was now fitted with a twin-carburettor version of the 1490 cc engine that had been fitted to the Sprint the previous year, developing 95 bhp A three-door hatchback was added to the range in 1981 in either SC or Ti trim and the two-door Ti and Giardinetta were deleted from most markets around this time. Belatedly in 1982 the four-door cars were replaced by five-door versions as by now, most of its competitors were producing a hatchback of this size, although some also produced a saloon alternative. The range was topped by the five-door Gold Cloverleaf, featuring the 94 hp engine from the Ti and enhanced interior trim. In 1983 an attempt to keep pace with the hot hatchback market, the final version of the Alfasud Ti received a tuned 1490 cc engine developing 105 PS Now named Quadrifoglio Verde (Green Cloverleaf) this model was also fitted with Michelin low profile TRX tyres on metric rims as well as an enhanced level of equipment. The five-door Alfasud saloons were replaced by the 33 models in 1983. The 33 was an evolution of the AlfaSud’s floorpan and running gear, including minor suspension changes and a change from four-wheel disc brakes to front disc and rear drum brakes to reduce costs. The three-door versions continued for a further year before being replaced by the unsuccessful Alfa Romeo Arna a joint venture between Alfa Romeo and Nissan.

 photo Picture 051_zpsrivqiljh.jpg  photo Picture 050_zpsmcq9e6xh.jpg  photo Picture 052_zpsjva3cqi3.jpg

There was a much longer wait for a Coupe version of the AlfaSud than there had been for the larger Alfetta, the Alfasud Sprint being presented to the press in September 1976 in Baia Domizia and shown at the Turin Motor Show in November some five years after the launch of the saloon. Designed by Giorgetto Giugiaro like the AlfaSud, whose mechanicals it was based on, it had a lower, more angular design, featuring a hatchback, although there were no folding rear seats. The AlfaSud Sprint was assembled together with the AlfaSud in the Pomigliano d’Arco plant, located in southern Italy—hence the original “Sud” moniker. Under the Alfasud Sprint’s bonnet there was a new version of the AlfaSud’s 1186 cc four-cylinder boxer engine, stroked to displace 1,286 cc, fed by a twin-choke carburettor and developing 75 hp at 6,000 rpm. Mated to the flat-four was a five-speed, all-synchromesh gearbox. The interior was upholstered in dark brown Texalfa leatherette and tartan cloth. Options were limited to alloy wheels, a quartz clock and metallic paint. In May 1978 the AlfaSud Sprint underwent its first updates, both cosmetic and technical. Engine choice was enlarged to two boxers, shared with the renewed AlfaSud ti, a 78 hp 1.3 (1,350 cc) and a 84 hp 1.5 (1,490 cc); the earlier 1286 cc unit was not offered anymore, remaining exclusive to the AlfaSud. Outside many exterior details were changed from chrome to matte black stainless steel or plastic, such as the wing mirrors, window surrounds and C-pillar ornaments; the B-pillar also received a black finish, the side repeaters changed position and became square, and the front turn signals switched from white to amber lenses. In the cabin the seats had more pronounced bolsters and were upholstered in a new camel-coloured fabric. Just one year later, in June 1979, another engine update arrived and the AlfaSud Sprint became the AlfaSud Sprint Veloce. Thanks to double twin-choke carburettors (each choke feeding a single cylinder) and a higher compression ratio engine output increased to 85 hp and 94 hp, respectively for the 1.3 and 1.5. In February 1983 Alfa Romeo updated all of its sports cars; the Sprint received a major facelift. Thereafter the AlfaSud prefix and Veloce suffix were abandoned, and the car was known as Alfa Romeo Sprint; this also in view of the release of the Alfa Romeo 33, which a few months later replaced the AlfaSud family hatchback. The Sprint also received a platform upgrade, which was now the same as that of the Alfa Romeo 33; this entailed modified front suspension, brakes mounted in the wheels instead of inboard like on the AlfaSud, and drum brakes at the rear end. Three models made up the Sprint range: 1.3 and 1.5, with engines and performance unchanged from the AlfaSud Sprint Veloce, and the new 1.5 Quadrifoglio Verde—1.5 Cloverleaf in the UK. A multitude of changes were involved in the stylistic refresh; there were a new grille, headlamps, wing mirrors, window surrounds and C-pillar ornaments. Bumpers went from chrome to plastic, and large plastic protective strips were added to the body sides; both sported coloured piping, which was grey for 1.3 cars, red for the 1.5 and green for the 1.5 Quadrifoglio. At the rear new trapezoidal tail light assemblies were pieced together with the license plate holder by a black plastic fascia, topped by an Alfa Romeo badge—never present on the AlfaSud Sprint. In the cabin there were new seats with cloth seating surfaces and Texalfa backs, a new steering wheel and changes to elements of the dashboard and door panels. Sprint 1.3 and 1.5 came with steel wheels with black hubcaps from the AlfaSud ti. The newly introduced 1.5 Quadrifoglio Verde sport variant was shown at the March 1983 Geneva Motor Show. Its engine was the 1,490 cc boxer, revised to put out 104 hp at 6,000 rpm; front brake discs were vented and the gearing shorter. In addition to the green bumper piping, also specific to the Quadrifoglio were a green instead of chrome scudetto in the front grille, a rear spoiler and 8-hole grey painted alloy wheels with metric Michelin TRX 190/55 tyres. Inside a three-spoke leather-covered steering wheel, green carpets and sport seats in black cloth with green embroidery. In November 1987 the Sprint was updated for the last time; the 1.3 variant was carried over, while the 1.5 engine was phased out and the 1.5 QV was superseded by the 116 hp Sprint 1.7 Quadrifoglio Verde. The 1,286 cc engine was directly derived from the 33 1.7 Quadrifoglio Verde, and could propel the Sprint from 0 to 100 km/h in 9.3 seconds; to cope with the increased engine power, the 1.7 QV adopted vented brake discs upfront. the coloured piping and side plastic strips were deleted, and the Quadrifoglio had alloy wheels of a new design. A fuel injected and 3-way Catalytic converter-equipped 1.7 variant, with an engine again derived from a 33, was added later for sale in specific markets. There were a total of 116,552 Sprints produced during its lifespan, which lasted from 1976 to 1989. 15 of these formed the basis of the Australian-built Giocattolo sports car, which used a mid-mounted Holden 5.0 group A V8 engine. The Sprint had no direct predecessor or successor. The car seen here was from the first years of production, with the chrome bumpers.

 photo Picture 528_zpsnmatvbdx.jpg  photo Picture 529_zpsck6yvenq.jpg  photo Picture 527_zps5phbp8y5.jpg

As was still the practice in the 1970s, Alfa followed up the launch of the Alfetta Berlina with a very pretty coupe. Styled by Giugiaro, this car, initially called the GT, and premiered in the autumn of 1974,   looked completely unlike the saloon on which it was based. The first cars had 1.8 litre four cylinder engines and there was one of those on show. In 1976 the range was expanded both up and down with a 1.6 and a 2.0 model, the latter adopting the legendary GTV name. A rare SE model from this period was part of the display, complete with period vinyl roof (look closely), and although the pain does appear a bit like a lot of older Alfa reds, having gone rather pink, this was the actual shade when the car was new. In 1981, with the 2.5 litre V6 engine that had been developed for the ill-fated Alfa 6 luxury saloon available, Alfa was able to create a true rival for the 2.8 litre Capri with the GTV6. A facelift modernised the look of the car with plastic bumpers front and rear and a new interior looked rather better as well as being more ergonomically logical. There was a good mix of the earlier chrome bumpered and later plastic bumpered models, the last with 2.0 and 2.5 GTV6 versions both represented. There was also a car sporting 3.0 badging and right hand drive. This is a South African car. From 1974 South African Alfetta’s were manufactured at Alfa Romeo’s own Brits plant. South Africa was one of two markets to have a turbocharged GTV6, with a Garrett turbocharger and a NACA intake. An estimated 750 were assembled before all production ceased in 1986. The South African range included a 3.0 litre GTV-6, predating the international debut of the factory’s 3.0 litre engine in 1987 (for the Alfa 75). and 212 of these were built in South Africa for racing homologation. The last 6 GTV-6 3.0’s were fuel injected. To this day, the GTV-6 remains the quintessential Alfa Romeo for South Africans.

 photo Picture 053_zpszovh3f1y.jpg

Next up was an Alfa 75, the last Alfa model to be developed before the company was bought by Fiat. It was introduced in May 1985, to replace the 116 Series Giulietta with which it shared many components. It was named to celebrate Alfa’s 75th year of production. The body, designed by head of Alfa Romeo Centro Stile Ermanno Cressoni, was styled in a striking wedge shape, tapering at the front with square headlights and a matching grille. The 75 was only ever sold as a four door saloon, though at the 1986 Turin Auto Salon, a prototype 75 estate was to be seen, an attractive forerunner of the later 156 Sportwagon. This version was, however, never listed for sale, being cancelled after Fiat took control of Alfa Romeo. The car, dubbed the 75 Turbo Wagon, was made by Italian coachbuilder Rayton Fissore using a 75 Turbo as the basis. Two estate versions were to be found at the later 1987 Geneva Motor Show; one was this Turbo Wagon and the other was a 2.0 litre version named the Sportwagon. The 75 featured some unusual technical features, most notably the fact that it was almost perfectly balanced from front to rear. This was achieved by using transaxle schema — mounting the standard five-speed gearbox in the rear connected to the rear differential (rear-wheel drive). The front suspension was a torsion bar and shock absorber combination and the rear an expensive de Dion tube assembled with shock absorbers; these designs were intended to optimise the car’s handling; moreover the rear brake discs were fitted at the centre of the rear axle, near the gearbox-differential group. The engine crankshaft was bolted directly to the two-segment driveshaft which ran the length of the underside from the engine block to the gearbox, and rotated at the speed of the engine. The shaft segments were joined with elastomeric ‘doughnuts’ to prevent vibration and engine/gearbox damage. The 2.0 litre Twin Spark and the 3.0 litre V6 were equipped with a limited slip differential. The 75 featured a then-advanced dashboard-mounted diagnostic computer, called Alfa Romeo Control, capable of monitoring the engine systems and alerting the drivers of potential faults. The 75 engine range at launch featured four-cylinder 1.6, 1.8 and 2.0 litre petrol carburettor engines, a 2.0 litre intercooled turbodiesel made by VM Motori, and a 2.5 litre fuel injected V6. In 1986, the 75 Turbo was introduced, which featured a fuel-injected 1779 cc twin-cam engine using Garrett T3 turbocharger, intercooler and oil cooler.  In 1987, a 3.0 litre V6 was added to the range and the 2.0 litre Alfa Romeo Twin Cam engine was redesigned to have now two spark plugs per cylinder, the engine was named as Twin Spark. With fuel injection and variable valve timing this engine produced 146 hp. This was the first production engine to use variable valve timing. In North America, where the car was known as the Milano, only the 2.5 and 3.0 V6s were available, from 1987 to 1989. The North American 2.5-litres were fundamentally different from their European counterparts. Due to federal regulations, some modifications were required. Most noticeable from the outside were the ‘America’ bumpers, with the typical rubber accordions in them. Furthermore, these bumpers had thick (and heavy) shock-absorbing material inside them and in addition, they were mounted to the vehicle on shock absorbers. To accommodate these shock absorbers, the ‘America’-bodies were slightly different from the European ones. The North American cars also had different equipment levels (depending on the version: Milano Silver, Milano Gold or Milano Platinum). electrically adjustable outside mirrors, electrically reclining seats and cruise control were usually optional in Europe. The car was also available with a 3-speed ZF automatic gearbox option for the 2.5 V6. Other, more common options such as electrically operated rear windows and an A/C system were standard in the USA. The USA-cars also had different upholstery styles and of course different dashboard panels also indicating speed in mph, oil pressure in psi and coolant temperature in degrees F, and as a final touch the AR control was different, including a seat belt warning light. The European-spec 2.5 V6 (2.5 6V Iniezione or 2.5QV) was officially sold only between 1985 and 1987, although some of them were not registered until 1989. Relatively few of them were sold (about 2800 units), especially when the 155 PS 1.8 Turbo was launched, which in some countries was cheaper in taxes because of its lower displacement. To create a bigger space between the V6 and the inline fours, the 2.5 was bored out to 2959 cc’s to deliver 188 PS and this new engine was introduced as the 3.0 America in 1987. As its type designation suggests, the 3.0 only came in the US-specification, with the impact-bumpers and in-boot fuel tank. However, the European ‘America’s’ were not equipped with side-markers or the door, bonnet and boot lid fortifications. Depending on the country of delivery, the 3.0 America could be equipped with a catalytic converter. In 1988 engines were updated again, the 1.8 litre carburettor version was replaced with fuel injected 1.8 i.e. and new bigger diesel engine was added to the range. In the end of 1989 the 1.6 litre carburettor version was updated to have fuel injection and 1990 the 1.8 Turbo and 3.0i V6 got some more power and updated suspension. The 3.0 V6 was now equipped with a Motronic system instead of an L-Jetronic. The 1.8 Turbo was now also available in ‘America’-spec, but strangely enough not available for the USA market. The 3.0 V6 did make it to the United States, and was sold as Milano Verde. The UK never particularly warmed to the 75 when it was new, but its reputation has got ever stronger as the car ages. Many UK cars were snapped up by the owners of driving schools at racing circuits, thanks to its handling characteristics, but there are also some nice road cars left and there was one here.

 photo Picture 085_zpsl1qifer5.jpg  photo Picture 084_zpsfkjnlnza.jpg

It was more than 10 years after the Montreal had ceased production before Alfa offered another high-end and costly Coupe model, and the result, seen for the first time in 1989, could hardly have been more different than its forebear. That car had been praised for its looks, whereas this one, the SZ, and cruelly nicknamed “Il Mostro”, was almost wilfully, well, “different”.  First seen at the 1989 Geneva Show, the car was also first shown simply as a concept, called the ES-30, for Experimental Sports car 3 litre. It was produced by Zagato. Robert Opron of the Fiat design studio was responsible for the initial sketches while Antonio Castellana was largely responsible for the final styling details and interior. Only the ‘Z’ logo of Zagato was kept. The car possessed unusual headlights positioned in a trio on each side – a styling used more subtly on later Alfa Romeos in the 2000s. Mechanically and engine-wise, the car was based on the Alfa 75, production being carried out by Zagato at Terrazzano di Rho near the Alfa factory in Arese. The thermoplastic injection moulded composite body panels were produced by Italian company Carplast and French company Stratime Cappelo Systems. The suspension was taken from the Alfa 75 Group A/IMSA car, and modified by Giorgio Pianta, engineer and team manager of the Lancia and Fiat rally works team. A hydraulic damper system was made by Koni. The SZ was originally equipped with Pirelli P Zero tyres (front 205/55 ZR 16, rear 225/50 ZR 16) and is able to sustain over 1.1 G in cornering, some drivers have measured a cornering force of 1.4 G, which remains an excellent performance figure. Low volume production got underway late in 1989, and over the next three years, 1036 were built, slightly more than planned. With the exception of a black car made for Zagato, all of them were red. Subsequently a convertible version, the RZ (for Roadster Zagato), was produced from 1992 until December 1994. Although almost identical to look at the two cars had completely different body panels save for the front wings and boot. The RZ had a revised bumper and door sills to give better ground clearance and the bonnet no longer featured the aggressive ridges. Three colours were available as standard: black, yellow and red, with black and yellow being the more popular choices. Yellow and red cars got a black leather interior and black cars burgundy. Although the interior layout was almost unchanged from the SZ, the RZ had a painted central console that swept up between the seats to conceal the convertible roof storage area. 350 units were planned but production was halted after 252 units when the Zagato factory producing the cars for Alfa Romeo went in to receivership, a further 32 cars were then completed under the control of the receivers before production finished at 284 units. Of those final three were painted silver with burgundy interior and another pearlescent white.

 photo Picture 086_zps04qhrkxy.jpg  photo Picture 371_zpst0jxd8uj.jpg

I was delighted to see that the larger 164 was also represented here, with Daryl Staddon’s fantastic 164 Cloverleaf Q4 here, as I had the pleasure of driving one for 4 years and 160,000 miles and to this day, it is the car I regret parting with more than any other of the fleet that I have owned over the years. When I bought mine, Alfa were selling a very small number of cars per month in the UK, so they were never that common, and sadly, survival rates are very low. Most people who know anything about the history of the 164 will be aware that this is one of the four so-called Type 4 cars, a joint venture involving Alfa Romeo, Fiat, Lancia and Saab. In 1978 these four marques agreed to each develop an executive saloon based on a shared platform to compete against the likes of the Ford Granada and Opel Rekord (Vauxhall Carlton) as well as more premium saloons by BMW and Mercedes-Benz in the form of the 5-Series and E-Class, respectively. Alfa’s Project 164 started life as Project 154 and was completed in 1981, then still under Alfa Romeo. A year later, that project morphed into the 164 based on the Type Four platform. This new model was designed by Enrico Fumia of Pininfarina, with a wedge shape that afforded it a leading drag coefficient of Cd=0.30. The design would later influence the rest of the Alfa Romeo range starting in 1990 with the major redesign of the 33 and culminating with the 155, and Pininfarina also adapted it (much to the maker’s chagrin) for the 1987 Peugeot 405 and the 1989 Peugeot 605 saloons. Initial testing of the 164’s dynamic elements (engine and drivetrain) began in 1984, where mules based on the then contemporary Giulietta were used. In 1985, the first pre-production 164’s were put through their paces on the road. Heavily disguised, with many false panels and even a false nose design (borrowing heavily from the then equally undeveloped 155), sporting 4 round headlamps, these vehicle mules served to test the 164 for the gruelling 1 million kilometre static and road testing demanded of the design. In 1986 and 1987, the first 150 164’s were given their pre-production testing. In terms of engineering demands, these exceeded every Alfa before, and by quite a substantial margin. In Morocco, desert testing saw 5 grey 164 Twinsparks and V6’s undergo the equivalent of the Paris-Dakar rally. Road conditions varied from good tarmac to off-road conditions, and accelerometers confirmed the superiority of the 164 in terms of passenger comfort. This data was cross-confirmed in the engineering laboratory with a sophisticated dummy in the driver’s seat, with accelerometers both in its seat, and in its ears to mimic that of the semi-circular canals of the ear. The Twinspark and the V6 underwent handling trials at Arese. The Twinspark displayed very mature driving manners at the limit, with minimal skid. The V6 displayed a 25% increase in at-the-limit skid, a natural consequence of its greater nose weight.  ABS testing confirmed that the Twinspark has superior braking to the V6. Brake linings of the 164’s were run at maximum braking until they literally glowed with heat, and displayed no deviation in form. The 164 was the first Alfa to feature slotted double-walled disc brakes. At no point were the discs drilled to release excess heat, the original design being demonstrated to be excellent. Sound production was tested in an anechoic chamber, the car being subjected to stress and road noise testing, with instruments and with live subjects at the wheel, on a specially designed rig. Electromagnetic stability of the complex electronic system was also tested, in an anechoic chamber equipped with EM emitters (radar). The 164 engines were run to destruction, the Twinspark proving to be the most robust, and with the longest possible engine life. The V6 displayed only 10% shorter overall engine life. All this testing meant that by the time the production car, called the 164 was unveiled at the 1987 Frankfurt Motor Show – the last model to be developed while the Alfa Romeo was still a fully independent company, even though the launch was a few months after the takeover by Fiat – that the car was far more thoroughly developed and tested than any Alfa preceding it. There were plenty of innovations in the build, too, thanks to the extensive use of galvanised steel for the frame and various body panels for the first time in the brand’s history. Moreover, the car featured advanced electronics thanks to the most complex wiring harness fitted to any Alfa Romeo. For example: it had three onboard computers (one for air conditioning, one for instrumentation, and one for the engine management); air conditioning and instrument functions shared a multiple-mode coded Zilog Z80-class microcontroller for dashboard functioning). The instrumentation included a full range of gauges including an advanced check-panel.. The car was a sensation at launch. For a start, it looked fantastic thanks to Enrico Fumia of Pininfarina’ design. The first 1:1 scale model of the car had been produced in 1982 and design cues had been publicly revealed on the Alfa Romeo Vivace concept car, which was exhibited at the 1986 Turin Motorshow that went on to influence the design of the Alfa Romeo GTV and Spider (916 series) launched in 1993, but the result was distinctive and elegant and very different from any of its rivals, or indeed any of the other Tipo 4 cars. The 164 became the first Alfa to benefit from extensive use of computer aided design, used to calculate structural stresses that resulted in a very rigid but still relatively lightweight chassis. Although sharing the same platform as that of the Lancia Thema, Fiat Croma and Saab 9000, by virtue of the fact that it was the last of the four to enter production, it featured unique front suspension geometry and the most distinctive styling of the lot. In fact, for example, the other cars all shared identical side door panels. Though still voluminous, the 164 had the tightest aperture to the boot, which had a 510-Litre capacity. The interior was spacious and modern, available with standard velour seating or leather trim depending on the model. Its dashboard continued the avantgarde design of the exterior with a centre dashboard that was dominated by a large number of seemingly identical buttons arranged in rows. Air-direction within the ventilation system was controlled by a pair of servomechanisms, which were constructed using notoriously fragile plastic gears that were prone to failure. Depending on the model, the 164 could feature automatic climate control and electronically controlled damping suspension – the latter, for example, in the sports-oriented Quadrifoglio Verde (“Green Cloverleaf “) and 164S models. This suspension actively reduced damping in response to conditions to provide a dynamic compromise between road holding and comfort. At launch, the original 164 range comprised three models: a 148 bhp 2.0 Twin Spark, the 192 bhp 3.0i V6 12-valve and a  2.5 Turbodiesel (badged “TD”). It took a year before the first cars reached the UK and the first eighteen months saw only the 3 litre model offered. The bigger selling 2.0 TS arrived in the simmer of 1990, just before the range was expanded by the 4-cylinder 2.0i Turbo, the sports-oriented 3.0i V6 Quadrifoglio Verde (badged “QV” or “S”) and North American export versions that included the luxury-oriented 164 L (“L” for Lusso) and the 164 S (in essence, the “QV”). Apart from minor running production upgrades, the next change came in 1993 with the launch of the 164 Super. Key differences on the outside consisted of larger bumpers with chrome trimmings added to the upper edge and revised headlights with a slimmer profile. Inside, there were revised instruments and a centre console that featured more delineated switchgear. The range was now also bolstered by a 3.0 V6 24V with a 24-valve engine upgrade and the 3.0 V6 Quadrifoglio 4 (badged “Q4”), which was the most powerful and sole all wheel drive variant built. Production ended in late 1997, with a gap of nearly two years before the replacement model would go on sale.

 photo Picture 049_zpsq9obdkyu.jpg  photo Picture 048_zpsfaottlp9.jpg

I replaced my 164 with a 916 Series GTV. According to the DVLA records, that car is also no longer with us (though it lived until relatively recently), but, thanks to the much improved rust protection and build quality standards of the late 90s, the survival rate of both the GTV and Spider is good. Whilst values continued to plummet as the cars aged, it was clear that they were classics in the making almost as soon as production ceased and there are plenty of fans of these cars today, and accoridngly there were a large number of these cars here today. The 916 Series cars were conceived to replace two very different models in the Alfa range. First of these was the open topped 105 Series Spider which had been in production since 1966 and by the 1990s was long overdue a replacement. Alfa decided to combine a follow on to the Alfetta GTV, long out of production, with a new Spider model, and first work started in the late 1980s. The task was handed to Pininfarina, and Enrico Fumia’s initial renderings were produced in September 1987, with the first clay models to complete 1:1 scale model made in July 1988. Fumia produced something rather special. Clearly an Italian design, with the Alfa Romeo grille with dual round headlights, recalling the Audi-based Pininfarina Quartz, another design produced by Enrico Fumia back in 1981, the proposal was for a car that was low-slung, wedge-shaped with a low nose and high kicked up tail. The back of the car is “cut-off” with a “Kamm tail” giving improved aerodynamics. The Spider would share these traits with the GTV except that the rear is rounded, and would feature a folding soft-top with five hoop frame, which would completely disappear from sight under a flush fitting cover. An electric folding mechanism would be fitted as an option. Details included a one-piece rear lamp/foglamp/indicator strip across the rear of the body, the minor instruments in the centre console angled towards the driver. The exterior design was finished in July 1988. After Vittorio Ghidella, Fiat’s CEO, accepted the design, Alfa Romeo Centro Stile under Walter de Silva was made responsible for the completion of the detail work and also for the design of the interiors, as Pininfarina’s proposal was not accepted. The Spider and GTV were to be based on the then-current Fiat Group platform, called Tipo Due, in this case a heavily modified version with an all new multilink rear suspension. The front suspension and drivetrain was based on the 1992 Alfa Romeo 155 saloon. Chief engineer at that time was Bruno Cena. Drag coefficient was 0.33 for the GTV and 0.38 for the Spider. Production began in late 1993 with four cars, all 3.0 V6 Spiders, assembled at the Alfa Romeo Arese Plant in Milan. In early 1994 the first GTV was produced, with 2.0 Twin Spark engine. The first premiere was then held at the Paris Motor Show in 1994. The GTV and Spider were officially launched at the Geneva Motor Show in March 1995 and sales began the same year. The cars were well received. At launch, many journalists commented that Alfa had improved overall build quality considerably and that it came very close to equalling its German rivals. I can vouch for that, as I owned an early GTV for eighteen months, and it was a well built and reliable car. In 1997 a new engine, a 24-valve 3.0 litre V6, was available for the GTV along with bigger, 12.0 inch brakes and red four-pot calipers from Brembo. The console knobs were changed from round central to rectangle ones and to a three-spoke steering wheel. Some versions were upgraded with different front bumper mesh to bring the wind noise down to 74 dBA. In May 1998 the cars were revamped for the first time, creating the Phase 2 models. Most of the alterations were inside. The interior was changed with new centre console, painted letters on skirt seals, changed controls and switches arrangement and different instrument cluster. Outside, the main changes included chrome frame around the grille and colour-coded side skirts and bumpers. A new engine was introduced, the 142 hp 1.8 Twin Spark, and others were changed: the 2.0 Twin Spark was updated with a modular intake manifold with different length intakes and a different plastic cover. Power output of the 2.0 TS was raised to 153 hp. Engines changed engine management units and have a nomenclature of CF2. The dashboard was available in two new colours in addition to the standard black: Red Style and Blue Style, and with it new colour-coded upholstery and carpets. The 3.0 24V got a six-speed manual gearbox as standard and the 2.0 V6 TB engine was now also available for the Spider. August 2000 saw the revamp of engines to comply with new emission regulations, Euro3. The new engines were slightly detuned, and have a new identification code: CF3. 3.0 V6 12V was discontinued for the Spider and replaced with 24V Euro3 version from the GTV. 2.0 V6 Turbo and 1.8 T.Spark were discontinued as they did not comply with Euro3 emissions. By the 2001-2002 model year, only 2 engines were left, the  2.0 Twin.Spark and 3.0 V6 24V, until the Phase 3 engine range arrived. The Arese plant, where the cars had been built,  was closing and, in October 2000, the production of GTV/Spider was transferred to Pininfarina Plant in San Giorgio Canavese in Turin. In 2003 there was another and final revamp, creating the Phase 3, also designed in Pininfarina but not by Enrico Fumia. The main changes were focused on the front with new 147-style grille and different front bumpers with offset numberplate holder. Change to the interior was minimal with different centre console and upholstery pattern and colours available. Instrument illumination colour was changed from green to red. Main specification change is an ASR traction control, not available for 2.0 TS Base model. New engines were introduced: 163  hp 2.0 JTS with direct petrol injection and 237 hp 3.2 V6 24V allowing a 158 mph top speed. Production ceased in late 2004, though some cars were still available for purchase till 2006. A total of 80,747 cars were made, and sales of the GTV and Spider were roughly equal. More V6 engined GTVs than Spiders were made, but in 2.0 guise, it was the other way round with the open model proving marginally more popular.

 photo Picture 125_zps9nd133dt.jpg

The current Giulietta arrived in 2010 as a much awaited replacement for the 147. Spy photos had suggested that the car was going to look very like Fiat’s ill-fated Bravo, but the reality was that it had a style all of its own. A range of very efficient petrol and diesel engines were among the most emissions-efficient in their class at the time, and a 250 bhp Quadrifoglio version at the top of the range made sure there was something for the man who wanted a rapid, but quite subtle hatch. The car has enjoyed reasonable success in the UK, and the car has certainly found favour among Alfa enthusiasts, so it was no surprise to find one in the display.

 photo Picture 087_zpsf6shlqsl.jpg

FERRARI

There was a modest showing of Ferrari models, courtesy of the Ferrari Owners Club. Inevitably, the ones here were the more recent and less rare cars, as the older ones had been selected to park up in the Paddock.

Oldest of these was the 348 Spider belonging to Paul Talbot. With styling that had a close link to the Testarossa, the 348 was launched in 1989 as a replacement for the 328 GTB/GTS models. At launch, the 348 series were not that enthusiastically received by the press who found much to complain about.  The 348’s styling differed from previous models with straked side air intakes and rectangular taillights resembling the Testarossa. Launched in two models, a coupe badged 348 tb (Trasversale Berlinetta) and targa roofed 348 ts (Targa), these were soon joined by a fully open car, the 348 Spider. All featured a normally aspirated 3.4-litre version of the quad-cam, four-valve-per-cylinder V8 engine. As with its predecessors, the model number was derived from this configuration, with the first two digits being the displacement and the third being the number of cylinders. The engine, which produced 300 hp was mounted longitudinally and coupled to a transverse manual gearbox, like the Mondial t with which the 348 shared many components. This was a significant change for Ferrari, with most previous small Ferraris using a transverse engine with longitudinal transmission. The “T” in the model name 348 tb and ts refers to the transverse position of the gearbox.  The 348 was fitted with dual-computer engine management using twin Bosch Motronic ECUs, double-redundant anti-lock brakes, and self-diagnosing air conditioning and heating systems. Late versions (1993 and beyond) have Japanese-made starter motors and Nippondenso power generators to improve reliability, as well as the battery located within the front left fender for better weight distribution. Similar to the Testarossa but departing from the BB 512 and 308/328, the oil and coolant radiators were relocated from the nose to the sides, widening the waist of the car substantially, but making the cabin much easier to cool since hoses routing warm water no longer ran underneath the cabin as in the older front-radiator cars. This also had the side effect of making the doors very wide. The 348 was equipped with a dry-sump oil system to prevent oil starvation at high speeds and during hard cornering. The oil level can only be accurately checked on the dipstick when the motor is running due to this setup. The 348 was fitted with adjustable ride-height suspension and a removable rear sub-frame to speed up the removal of the engine for maintenance. Despite trenchant criticism of the car, especially its handling, 2,895 examples of the 348 tb and 4,230 of the 348 ts were produced.

 photo Picture 388_zpsriwqpv8j.jpg  photo Picture 409_zpspuzmu2up.jpg

There were several examples of the F430 here, of course, as this car sold in what were large quantities, by Ferrari standards. Effectively a mid-life update to the 360 Modena, the F430 debuted at the 2004 Paris Motor Show. Designed by Pininfarina, under the guidance of Frank Stephenson, the body styling of the F430 was revised from the  360 Modena, to improve its aerodynamic efficiency. Although the drag coefficient remained the same, downforce was greatly enhanced. Despite sharing the same basic Alcoa Aluminium chassis, roof line, doors and glass, the car looked significantly different from the 360. A great deal of Ferrari heritage was included in the exterior design. At the rear, the Enzo’s tail lights and interior vents were added. The car’s name was etched into the Testarossa-styled driver’s side mirror. The large oval openings in the front bumper are reminiscent of Ferrari racing models from the 60s, specifically the 156 “sharknose” Formula One car and 250 TR61 Le Mans cars of Phil Hill. Designed with soft-top-convertible. The F430 featured a 4.3 litre V8 petrol engine of the “Ferrari-Maserati” F136 family. This new power plant was a significant departure for Ferrari, as all previous Ferrari V8’s were descendants of the Dino racing program of the 1950s. This fifty-year development cycle came to an end with the entirely new unit. The engine’s output was 490 hp at 8500 rpm and 343 lb/ft of torque at 5250 rpm, 80% of which was available below 3500rpm. Despite a 20% increase in displacement, engine weight grew by only 4 kg and engine dimensions were decreased, for easier packaging. The connecting rods, pistons and crankshaft were all entirely new, while the four-valve cylinder head, valves and intake trumpets were copied directly from Formula 1 engines, for ideal volumetric efficiency. The F430 has a top speed in excess of 196 mph and could accelerate from 0 to 100 km/h in 3.9 seconds, 0.6 seconds quicker than the old model. The brakes on the F430 were designed in close cooperation with Brembo (who did the calipers and discs) and Bosch (who did the electronics package),resulting in a new cast-iron alloy for the discs. The new alloy includes molybdenum which has better heat dissipation performance. The F430 was also available with the optional Carbon fibre-reinforced Silicon Carbide (C/SiC) ceramic composite brake package. Ferrari claims the carbon ceramic brakes will not fade even after 300-360 laps at their test track. The F430 featured the E-Diff, a computer-controlled limited slip active differential which can vary the distribution of torque based on inputs such as steering angle and lateral acceleration. Other notable features include the first application of Ferrari’s manettino steering wheel-mounted control knob. Drivers can select from five different settings which modify the vehicle’s ESC system, “Skyhook” electronic suspension, transmission behaviour, throttle response, and E-Diff. The feature is similar to Land Rover’s “Terrain Response” system. The Ferrari F430 was also released with exclusive Goodyear Eagle F1 GSD3 EMT tyres, which have a V-shaped tread design, run-flat capability, and OneTRED technology. The F430 Spider, Ferrari’s 21st road going convertible, made its world premiere at the 2005 Geneva Motor Show. The car was designed by Pininfarina with aerodynamic simulation programs also used for Formula 1 cars. The roof panel automatically folds away inside a space above the engine bay. The conversion from a closed top to an open-air convertible is a two-stage folding-action. The interior of the Spider is identical to that of the coupé. Serving as the successor to the Challenge Stradale, the 430 Scuderia was unveiled by Michael Schumacher at the 2007 Frankfurt Auto Show. Aimed to compete with cars like the Porsche RS-models and the Lamborghini Gallardo Superleggera it was lighter by 100 kg/220 lb and more powerful (510 PS) than the standard F430. Increased power came from a revised intake, exhaust, and an ion-sensing knock-detection system that allows for a higher compression ratio. Thus the weight-to-power ratio was reduced from 2.96 kg/hp to 2.5 kg/hp. In addition to the weight saving measures, the Scuderia semi-automatic transmission gained improved “Superfast”, known as “Superfast2”, software for faster 60 millisecond shift-times. A new traction control system combined the F1-Trac traction and stability control with the E-Diff electronic differential. The Ferrari 430 Scuderia accelerates from 0-100 km/h in 3.6 seconds, with a top speed of 202 miles per hour. Ferrari claimed that around their test track, Fiorano Circuit, it matched the Ferrari Enzo, and the Ferrari F430’s successor, the Ferrari 458. To commemorate Ferrari’s 16th victory in the Formula 1 Constructor’s World Championship in 2008, Ferrari unveiled the Scuderia Spider 16M at World Finals in Mugello. It is effectively a convertible version of the 430 Scuderia. The engine produces 510 PS at 8500 rpm. The car has a dry weight of 1,340 kg, making it 80 kg lighter than the F430 Spider, at a curb weight of 1,440 kg (3,175 lb). The chassis was stiffened to cope with the extra performance available and the car featured many carbon fibre parts as standard. Specially lightened front and rear bumpers (compared to the 430 Scuderia) were a further sign of the efforts Ferrari was putting into this convertible track car for the road. Unique 5-spoke forged wheels were produced for the 16M’s launch and helped to considerably reduce unsprung weight with larger front brakes and callipers added for extra stopping power (also featured on 430 Scuderia). It accelerates from 0-100 km/h in 3.7 seconds, with a top speed of 315 km/h (196 mph). 499 vehicles were released beginning early 2009 and all were pre-sold to select clients. Seen here was a Spider.

 photo Picture 408_zpsuizycx28.jpg  photo Picture 390_zpskof3qe8c.jpg

Firmly placed in Ferrari’s history as one of their finest big GTs, the 550 Maranello’s combination of stylish Pininfarina lines and front mounted 12-cylinder engine meant this car had the potential to become an instant classic, following in the footsteps of its forebear, the 365 GTB/4 ‘Daytona’, and if you look at the way the prices are steading to go, it’s clear that the potential is being realised. Launched in 1996, and with modern styling cues, a 5.5 litre V12 engine producing around 485bhp and a reported top speed of 199mph, the 550 Maranello was a serious motor car. A less frenetic power delivery, the six speed manual box and excellent weight distribution were all factors in the 550 becoming the perfect European Grand Tourer. Ferrari updated the car to create the 575M.

 photo Picture 389_zpsdijjg0kv.jpg  photo Picture 387_zpskiv8qyi6.jpg  photo Picture 833_zpsdzafafb8.jpg

The next V12 engined Ferrari was the 599 GTB (internal code F141) a new flagship, replacing the 575M Maranello. Styled by Pininfarina under the direction of Ferrari’s Frank Stephenson, the 599 GTB debuted at the Geneva Motor Show in February 2006. It is named for its total engine displacement (5999 cc), Gran Turismo Berlinetta nature, and the Fiorano Circuit test track used by Ferrari.  The Tipo F140 C 5999 cc V12 engine produced a maximum 620 PS (612 hp), making it the most powerful series production Ferrari road car of the time. At the time of its introduction, this was one of the few engines whose output exceeded 100 hp per litre of displacement without any sort of forced-induction mechanism such as supercharging or turbocharging. Its 448 ft·lb of torque was also a record for Ferrari’s GT cars. Most of the modifications to the engine were done to allow it to fit in the Fiorano’s engine bay (the original Enzo version could be taller as it would not block forward vision due to its mid-mounted position). A traditional 6-speed manual transmission as well as Ferrari’s 6-speed called “F1 SuperFast” was offered. The Fiorano also saw the debut of Ferrari’s new traction control system, F1-Trac. The vast majority of the 599 GTB’s were equipped with the semi-automatic gearbox, with just 30 examples produced with a manual gearbox of which 20 were destined for the United States and 10 remained in Europe. The car changed little during its 6 year production, though the range did gain additional versions, with the HGTE model being the first,  with a number of chassis and suspension changes aimed at making the car even sharper to drive, and then the more potent 599GTO came in 2010. With 670 bhp, this was the fastest road-going Ferrari ever made. Just 599 were made. The model was superceded by the F12 Berlinetta in 2012.

 photo Picture 832_zpsce1qnel9.jpg

FIAT

Star of the collection of Fiat’s present on the Saturday was this imposing looking machine. a 1928 Fiat 520 Torpedo. Fiat’s “upper middle-class” model in the later 1920s was also designated the 520, but was smaller and more modestly powered than its earlier namesake, though it would appear it does have a 5200cc engine. During the early decades of the 20th century, European automakers, once steering wheels had replaced centrally positioned steering tillers, tended to place the driver and his steering wheel on the right side of the car regardless of local regulations or conventions concerning which side of the road cars should be driven. By the 1920s, as the number of motorised vehicles on the roads increased, clearer consensus had become necessary in the more populous parts of Italy about the need for everyone to drive along the right side of the road. The 1927 Fiat 520 was one of the first cars, presumably in recognition of this trend, to place the steering wheel on the left side of the car. The 520 was replaced by the Fiat 521 in 1928, although the 520 appears to have continued in production until 1929, by when more than 20,000 six-cylinder Fiat 520s had been produced.

 photo Picture 202_zpswpr2gikp.jpg  photo Picture 201_zpsqie4dpuw.jpg  photo Picture 405_zps8wsptbvj.jpg

Known as project 110, the brief for the Nuova 500 was to create a micro-car that would not only carry on the tradition of the earlier Topolino, but which would also take sales away from the ever popular Lambretta and Vespa scooters of the day. It clearly needed to be smaller than the 600 which had been released with a conventional 4 cylinder engine. Not an easy task, but development started in 1953 and by August 1954, two designs were ready to be shown to Fiat management. They selected one, and serious development began. At first the car was referred to as the 400, as it was going to have a 400cc engine, but it was soon realised that this was just too small, so a larger 500cc air-cooled engine was developed. It was signed off in January 1956, with production starting in March 1957 in advance of a June launch. Fiat’s marketing department got busy, with hundreds of the new car taking to the streets of Turin, each with a pretty girl standing through the open sunroof that was a feature of all the early cars. The press loved it. 50 units were shipped to Britain, where the car made its debut at Brands Hatch, and again the reception was enthusiastic. But the orders just did not come in. Fiat went for a hasty rethink, relaunching the car at the Turin Show later that year. power was increased from 13 to 15 bhp, and the poverty spec was lessened a little, with headlight bezels, brightwork on the side and chrome hubcaps, a Nuova500 badge on the engine cover, winding side windows (the launch cars just had opening quarterlights) and the option of a heater fan. It was enough to get sales moving. The original car was still offered, at a lower price, called the Economy. In the first year of production, 28,452 Fiat 500s were made. Over the next 19 years, the car changed little in overall appearance, but there were a number of updates with more power and equipment added. A 500 Sport was launched in August 1958, with a more powerful version of the 499cc engine. It lost the soft top, having a ridged steel roof, to increase strength of the body. It was only available in grey with a red side flash. The first major changes came in 1960 with the 500D. This looks very similar to the Nuova, but with two key differences. One is the engine size: the D features an uprated 499 cc engine producing 17 bhp as standard, an engine which would be used right through until the end of the L in 1973; and the other is the roof: the standard D roof does not fold back as far as the roof on the Nuova, though it was also available as the “Transformable” with the same roof as the Nuova. The D still featured “suicide doors”. There were larger rear light clusters, more space in the front boot thanks to a redesign of the fuel tank and new indicators under the headlights. A year later, Fiat added a light on the rear-view mirrors and a windscreen washer, but the car still lacked a fuel gauge. Sales increased from 20,900 in 1960 to 87.000 in 1961, 132,000 in 1962 and by 1964, the last year of production, they hit 194,000 units.  The D was replaced in 1965 by the 500F, which finally moved the door hinges from back to the front, owing to changes in Italian safety laws. There was a deeper windscreen and thinner door pillars, which increased the height of the car by 10mm, improving visibility for the driver. The 500F ran through to 1975, from 1968 alongside the more luxurious 500L which was added to the range in 1968. The L is easy to tell apart, with its bumper overriders. The final updates created the 500R, which incorporated many changes from the 126 under the skin of the classic shape, and in this form production continued alongside the newer 126 until 1976. There was a whole row of these diminutive little classics.

 photo Picture 1102_zpsed1rnfep.jpg  photo Picture 1101_zpsydkzagpo.jpg  photo Picture 072_zpscb4isc8f.jpg  photo Picture 071_zpsc1i4yyfa.jpg  photo Picture 070_zpskhvus7o3.jpg  photo Picture 386_zps8pdadm9r.jpg

Among my favourite cars of all time are the Fiat Dino Coupe and Spider and I was pleased to see an example of the Spider here. They came about because of Enzo Ferrari’s need to homologate a V6 engine for Formula 2 racing cars. In 1965 the Commission Sportive Internationale de la FIA had drawn up new rules, to be enacted for the 1967 season. F2 engines were required to have no more than six cylinders, and to be derived from a production engine, from a road car homologated in the GT class and produced in at least 500 examples within 12 months. Since a small manufacturer like Ferrari did not possess the production capacity to reach such quotas, an agreement was signed with Fiat and made public on 1 March 1965: Fiat would produce the 500 engines needed for the homologation, to be installed in a yet unspecified GT car. The Fiat Dino was introduced as a 2-seater Spider at the Turin Motor Show in October 1966; a 2+2 Coupé version, built on a 270 mm (10.6 in) longer wheelbase, bowed a few months later at the Geneva Motor Show in March 1967. The two bodies showed very different lines, as they had been designed and were manufactured for Fiat by two different coachbuilders: the Spider by Pininfarina, and the Coupé by Bertone—where it had been sketched out by Giorgetto Giugiaro. Curiously the Spider type approval identified it as a 2+1 seater. The Spider had poorer interior trim than the Coupé, below par for its class: the dashboard was covered in vinyl, the metal-spoke steering wheel had a plastic rim, and the interior switchgear was derived from cheaper Fiat models.  After a few months this issue was addressed, and Spiders produced after February 1967 had a wood-rimmed steering wheel as well as a wood trim on the dashboard like the sister Coupé car had since the beginning. Option lists for both models were limited to radio, metallic paint, leather upholstery, and for the Spider a vinyl-covered hardtop with roll-bar style stainless steel trim. The car was offered with an all-aluminium DOHC 2.0 litre V6, coupled to a 5-speed manual transmission. The same 2.0-litre engine was used in mid-engined, Ferrari-built Dino 206 GT, which was introduced in pre-production form at the 1967 Turin Motor Show and went on sale in 1968. Fiat quoted 160 PS (158 hp) for the Fiat Dino, while in 1967 Ferrari—presenting the first prototype of the Dino 206 GT—claimed 180 hp despite both engines were made by Fiat workers in Turin on the same production line, without any discrimination as to their destination. Jean-Pierre Gabriel in “Les Ferraris de Turin” notes that, “La declaration de Ferrari ne reposait sur aucun fondament technique”—Ferrari’s statement had no technical basis. The real reason for this difference was a mistake in between quotes made in SAE and BHP power output. In 1969, both Ferrari and Fiat introduced new 2.4-litre Dino models. The Fiat Dino 2400 premiered in October 1969 at the Turin Motor show; besides the larger engine, another notable improvements was independent rear suspension.  The V6 now put out 180 PS, and used a cast iron instead of the previous light alloy engine block; the same engine was installed on the Dino 246 GT, Ferrari’s evolution of the 206. Whereas the original Dino was equipped with a rigid axle suspended by leaf springs and 4 shock absorbers, 2.4-litre cars used a coil-sprung independent rear suspension with 2 shock absorbers derived from the Fiat 130. Rather than engine power and absolute speed, the most important consequence of the larger displacement was a marked increase in torque, available at lower engine speeds; the Dino 2400 had much better pickup, and it was found more usable, even in city traffic. Other modifications went on to improve the car’s drivability and safety: larger diameter clutch, new dogleg ZF gearbox with revised gear ratios, wider section 205/70VR -14 tyres, and up-sized brake discs and callipers. Cosmetic changes were comparatively minor. Both models were now badged “Dino 2400”. On the coupé the previous silver honeycomb grille with the round Fiat logo on its centre had been replaced by a new black grille and a bonnet badge. A host of details were changed from chrome to matte black, namely part of the wheels, the vents on the front wings and the cabin ventilation outlets—the latter moved from next the side windows to the rear window. At the rear there were different tail lights. The spider also sported a new grille with two horizontal chrome bars, 5-bolts instead of knock-off wheels, as well as a new bumpers with rubber strips. Inside only the coupé received an entirely redesigned dashboard and new cloth seats, with optional leather seat upholstery; front seat headrests were standard on the coupé and optional on the spider. Spider and coupé bodies were produced respectively by Pininfarina and Bertone. 2.0-litre and early 2.4-litre cars were assembled by Fiat in Rivalta di Torino. Starting from December 1969 the Fiat Dino was assembled in Maranello on Ferrari’s production line, alongside the 246 GT. Between 1966 and 1969 there were 3,670 2.0-litre coupés and 1,163 2.0-litre spiders made; with only 420 built, the 2400 Spider is the rarest of the Fiat’s Dinos. Of the total 7,803 Fiat Dino produced, 74% were the popular coupés and only 26% were spiders. Spiders are worth big money now – good ones are over £100k – which means that the car is way beyond my means, but every time I see one, I go weak at the knees. To my eyes, it is one of the best looking cars ever made.

 photo Picture 143_zpst0bujoal.jpg  photo Picture 144_zpsw1sjepfh.jpg  photo Picture 142_zps6i9wkn1h.jpg

The X1/9 followed a 1969 show concept car called the Autobianchi Runabout, with styling by Bertone under chief designer Marcello Gandini. The Runabout was powered by the same engine as the Autobianchi A112. Designed around the all-new 128 SOHC engine and with the gearbox (transmission) from the front wheel drive Fiat 128, the X1/9 relocated the transverse drive train and suspension assembly from the front of the 128 to the rear of the passenger cabin, directly in front of the rear axle, giving a mid-engined layout. The layout also located the fuel tank and spare wheel side by side ahead of the engine, directly behind the seats — optimising the proportion of the car’s weight falling within its wheelbase for more effective handling and also enabling cargo areas front and rear. Unlike Fiat’s marketing nomenclature at the time which used a numerical system (e.g., 127, 128, 124, 131) denoting relative position in the model range, the X1/9 retained its prototype code as its marketing name. Fiat’s prototype coding used X0 for engines, X1 for passenger vehicles and X2 for commercial vehicles. The X1/9 was thus the ninth passenger car developed using the nomenclature. The prototype car featured a distinctive wedge shape and took many styling cues from contemporary power-boat design. Though the more extreme features of the Runabout such as the C pillar mounted headlights and the small wind-deflector windscreen were lost for the production car, many aesthetic features of the Autobianchi Runabout are readily identifiable on the X1/9. The long flat bonnet with central indentation, the large front overhang, the wedge shape with prominent C pillar roll-over hoop and the car-length indented plimsoll-line all made the successful transition to the X1/9, giving it a highly distinctive appearance. Once developed for production, the two-seater featured sharp-edged styling with a wedge shape, pop-up headlights and a removable hard top roof panel (targa top). The removable hardtop stores in the front luggage compartment, below the front hood, only slightly reducing the space available for cargo. An aftermarket company offered a top made of lightweight clear-smoked polycarbonate. The car was developed for release for European sales in 1972 to replace the 850 spider by Bertone. It was not intended as a replacement for the 124 Sport spider and production of the 124 spider and X1/9 continued in parallel for much of the X1/9’s life. The car’s monocoque body was produced at the Bertone factory in Torino and then transported to the Fiat’s Lingotto factory for final assembly. In 1982, shortly after the introduction of the 1500 model, complete production was assumed by Bertone with models subsequently badged as the “Bertone” X1/9. Bertone models featured revised footwells redesigned to enhance legroom and sitting comfort for persons taller than the original design’s target. The first models featured a 75 bhp 1290 cc single overhead cam engine with an aluminium head. In 1978 the more powerful 85bhp 1500cc unit found its way into the engine bay which necessitated a raised engine cover to provide the clearance. Larger bumpers were fitted at this time. Fiat made few other changes for many years, as if they lost interest in the car. The last production models were named the Gran Finale and sold over the 1989/1990 period. They were a dealer modification of the special edition (commonly abbreviated to SE) of 1988/1989, with the addition of a rear spoiler and “gran finale” badges. There were a couple of them here, one the limited production VS car.

 photo Picture 043_zps4zpp6fdu.jpg  photo Picture 045_zpswv36iebh.jpg  photo Picture 044_zps94j2fgyc.jpg  photo Picture 046_zpsbleoautz.jpg photo Picture 047_zpscc2el22i.jpg  photo Picture 375_zpstnpdfnye.jpg

On the Sunday, there was another 1920s Fiat, smaller than the 520, this was a 509A, dating from 1926. The Fiat 509 was produced between 1925 and 1929 as a replacement for the 501. Approximately 90,000 of the model were sold. In 1926 the car was upgraded to the 509A. For 1928, the 509 was offered with standard insurance, also. In addition to the standard car, there were 509S and 509SM sports models, as well as taxi and commercial versions. It was replaced by the 508.

 photo Picture 1043_zpsqsgmmmz3.jpg

LANCIA

There was quite an array of Lancia models here, some better known that others. Oldest of them was a Belna dating from 1933. If you think this looks like an Augusta, then don’t berate yourself for failing to identify a Lancia, as when Lancia started its French operations on 1 October 1931 at its first factory outside of Italy, at Bonneuil-sur-Marne, Lancia did indeed build the Augusta and later Aprilia models, although named them Belna and Ardennes. Approximately 3,000 Augusta/Belna and 1,500 Aprilia/Ardennes were built. Of the approximately 3,000 Belnas built between 1934 and 1938, 2,500 were saloons and 500 bare chassis. Georges Paulin had invented the retractable hardtop and subsequently sold it to French coachbuilder Marcel Pourtout. Carrosserie Pourtout built several models based on the French-built Lancia Belna.

 photo Picture 209_zpsg38exctu.jpg

There were examples of the Aprilia here on both days. On the Saturday it was Ben Courage’s 1937 Aprilia. Far from a heavily over-restored concours queen, this is a working car, and it is really rather splendid, whilst there was a white one present on the Sunday. Launched in 1937, the Aprilia was one of the first cars to be designed using a wind tunnel. This was in collaboration with Battista Farina and Politecnico di Torino and allowed the car to achieve a record low drag coefficient of 0.47. This was the last of Vincenzo Lancia’s designs, with the car entering production in the very month in which he died.  The first series (model. 238)  of which 10,354 units were built between 1937–39 featured a 1,352 cc V4 motor providing 47 bhp. The second series (model. 438) of which 9,728 were made, was first seen in 1939 and production of which continued after the war, had its engine capacity increased to 1,486 cc which provided 48 bhp. A Lusso model of this second series was also offered as well as a lungo (lengthened) version. 706 of these were made between 1946 and 1949, making a grand total of 20,082 cars, with 7,554 additional chassis for coach built bodies, produced in Turin along with about 700 in France. With the Aprilia, Lancia followed their tradition of offering cars with the steering wheel on the right even in markets seen by other manufacturers as left hand drive markets. Outside the UK and Sweden customers increasingly picked the optional left hand drive versions, however.

 photo Picture 200_zpsypihtb3j.jpg  photo Picture 838_zpssytyclmb.jpg  photo Picture 837_zpst9lkvnab.jpg  photo Picture 841_zps8c0uudro.jpg

The Appia was a small car that was made between 1953 and 1963, in three distinct Series. First series Appias were only offered in factory body styles, but this changed with the second and third series Appias, which were also built as a platform chassis intended for coachbuilt bodies. Towards the end of 1955 a first batch of 14 chassis based on the brand new second series Appia were built and handed over to some of the most prominent coachbuilders of the time: Allemano, Boano, Ghia Aigle, Motto, Pininfarina, Vignale and Zagato. Initially all fourteen chassis were coded Tipo 812.00, based on standard saloon mechanicals; five of were upgraded to a more powerful 53 PS engine and floor-mounted gearchange, and given the new type designation 812.01. At the April 1956 Turin Motor Show, a month after the successful introduction of the second series Appia in Geneva, five specially bodied Appias were shown: a coupé and a two-door saloon by Vignale, a coupé each from Pininfarina, Boano and Zagato. Between Spring 1956 and Spring 1957 the coachbuilders presented their one-off interpretations of the Appia at various motor shows. Later more 812.01 chassis were built, bringing the total of unique to thirteen. Of the coachbuilders who had worked on the first fourteen chassis, two were selected by Lancia to produce special Appia body styles: Pininfarina for the coupé, and Vignale for the convertible. Their nearly definitive proposals debuted at the March 1957 Geneva Motor Show, and soon went into limited series production. Built by their respective designers on chassis supplied by Lancia, these were included in Lancia’s own catalogue and regularly sold through Lancia dealerships. In the later years other variants were added to the official portfolio: Vignale’s Lusso, Zagato’s GTE and Sport, and Viotti’s Giardinetta. All of these variants were built on the 812.01 type chassis with the more powerful engine and floor change; when the third series saloon debuted its mechanical upgrades were transferred to the chassis, and the engine gained one horsepower 54 PS. In early 1960 a revised, more powerful engine was adopted  thanks to a new Weber carburettor and an inlet manifold with a duct per each cylinder. In total 5,161 Appia chassis for coachbuilders were made. A small number were delivered as Van versions (Fourgone. Seen here was a Series 1 Berlina and a Coupe.

 photo Picture 066_zpsahh99tvw.jpg  photo Picture 067_zps4pku07um.jpg  photo Picture 208_zpssuhmqhme.jpg  photo Picture 205_zpsftgcdjuu.jpg photo Picture 204_zpswua3bidt.jpg

Replacing the Aurelia was the Flaminia, which although superficially similar to its illustrious predecessor and materially “better” in just about every respect, never managed to capture buyers’ imaginations in the same way when new, and even now, it has to play second fiddle to the older car. The first model in the range was the Berlina, which was launched at the 1957 Geneva Show. It had a Pininfarina styled body which took much inspiration from the Florida concept car that had been shown in the previous year. Much was new under the skin. Its larger 2.5 litre 100 bhp V6 engine was new in detail, and was designed to allow for further increases in capacity, which would come in time. I was smoother than the Aurelia engines and had more torque, and with better cylinder head design and revised cooling, it was more robust, as well. There was synchromesh on all four gears. Lancia’s famous sliding pillar suspension was banished in favour of unequal length wishbones and coil springs which required less maintenance and were more refined. But the car was heavy, and complex, and exceedingly expensive. Lancia thought that their customers would pay a premium for “the best”, but tastes were changing, and the Berlina was never a strong seller, with fewer than 3000 of them being constructed, most of them being the first series cars. Just 549 of the later second series model with 110 bhp and disc brakes were made between 1961 and 1963, hardly surprising when the car cost more than a Rolls Royce Silver Cloud, as it did in the UK. The later cars had a 2.8 litre engine and 125 bhp, and just 599 of these were made between 1963 and 1968. There was more success with the coachbuilt two door variants which joined the range. The most successful of these, the Pininfarina Coupe, was the first to appear. This was made between 1959 and 1967, during which time 5284 of these mostly steel-bodied cars were constructed. In many ways they were very like the Berlina, just a bit smaller, though there was a floor mounted gear lever, and the cars had more power. The first 3200 of them had a 119 bhp single carb engine with a sport camshaft. Later 3Bs had a triple choke Solex from 1962 and the power went up to 136 bhp. It was only a year after the Pininfarina car’s debut when Touring of Milan announced their Flaminia models. These aluminium bodied cars were sold in three distinct variants between 1960 and 1965. The single carburettor GT was followed by a Convertible in 1960, both of them uprated to 140 bhp  triple Weber 3C spec in 1961. The 2.8 litre 3C took over in 1963 and were supplemented by a new 2+2 version called the GTL, with a taller roofline, front-hinged bonnet, longer doors and more substantial seats. It is the rarest of all Flaminia models, with just 300 made. The  styling house to offer a car was Zagato, with their Sports and SuperSports. Only 526 were made and there is a complicated production history which probably shows the sort of chaotic thinking that was going on at Lancia and which would lead to is bankruptcy and take over by Fiat in 1969. The first 99 Sports had faired-in headlights and the 119 bhp engine. From 1960 another 100 cars were built with expose lights until the introduction of the Sport 3C with the 140 bhp triple carb. Zagato made 174 of those in 1962 and 1963, still with the exposed lights. The faired-in lights returned in 1964 on the SuperSport, which also had a Kamm tail, and with DCN Webers this one put out 150 bhp. 150 of these were made between 1964 and 1967. Many of the earlier cars were upgraded early in their life, so if you see one now, you cannot be totally sure of is true origin. Production of the car ceased in 1970, with fewer than 13,000 Flaminia of all types having been built. These days, the cost to restore them properly – and it is a huge job – exceeds the value of most of them, by some margin, as Berlina and Coupe models tend not to sell for more than £30k. The Zagato cars are a different matter, and when they come up for sale, routinely go for over £300k. The Touring cars – considered by most to be the prettiest tend to be around £100k for the GT and another 50 – 80k for a convertible – a long way from the value of an Aston Martin DB4 Volante, which cost roughly the same when new. There’s believed to be only one Berlina on the road in the UK, so that is going to remain a rare sighting, and it was not here. There was a Touring GT car here.

 photo Picture 840_zpsmph2j1qy.jpg

There were a couple of examples of the Flavia here. Named after the Via Flavia, the Roman road leading from Trieste (Tergeste) to Dalmatia, and launched at the 1960 Turin Motor Show, the Flavia was initially available only as a four-door saloon, featuring a 1.5 litre aluminium boxer engine, Dunlop disc brakes on all four wheels, front-wheel drive and front suspension by unequal-length wishbones.  This model was soon joined by a two-door coupé, designed by Pininfarina on a shortened platform. Vignale built 1,601 two-door convertibles, while Zagato designed an outlandish-looking light weight two-door sport version. The sport version has twin carburettors for extra power (just over 100 hp); however, this version of the engine was notoriously difficult to keep in tune. Even the single-carburettor engine suffered from the problem of timing chain stretch. Sprockets with vernier adjusters were fitted to allow for chain wear, and the cam timing was supposed to be checked every 6000 miles. Early cars also suffered from corrosion of the cylinder heads caused by using copper gaskets on aluminium heads; nevertheless, the car was quite lively for its day, considering the cubic capacity. Later development of the engine included an enlargement to 1.8 litres, a mechanical injection version using the Kugelfischer system, and a five-speed manual gearbox. Towards the end of the 1960s, when Fiat took control of the company, the Vignale and Zagato versions were discontinued. The coupé and saloon versions received new bodywork, first presented in March 1969 at the Geneva Motor Show.  The engine increased to 2.0 litres, available with carburettor or injection, and four- or five-speed gearbox. The 2.0 litre models were only made with revised Pininfarina Coupe and revised Berlina bodies. The model was updated further in 1971, with squared off styling, becoming the 2000 in which guise it was produced for a further 4 years.   Seen here were an early Flavia Berlina and the later 2000 Coupe.

 photo Picture 199_zps0inseema.jpg  photo Picture 127_zpsltg3j6xj.jpg  photo Picture 1105_zps4dj47lbb.jpg  photo Picture 129_zpsyt461l4h.jpg  photo Picture 206_zpslktwpey8.jpg  photo Picture 207_zpscdwz4k5t.jpg  photo Picture 203_zpsql1gfv6o.jpg  photo Picture 149_zpsfdlb43b9.jpg  photo Picture 148_zpskbpwezqk.jpg

Lancia replaced the long-running Appia with a new model in 1963, the Fulvia. Like the larger Flavia which had been shown 3 years earlier, it came with front wheel drive, and a host of exquisite engineering which ensure that even though it was expensive, it was actually not profitable for its maker, and was a direct contribution to the marque’s bankruptcy and take over by Fiat in 1969. It was not long before the initial Berlina saloon model was joined by a Coupe. First seen in 1965. the Coupe proved to be the longest lived of all Fulvia variants, surviving until 1976 when it was effectively replaced by the 1300cc version of the Beta Coupe. Before that, it had undergone a steady program of updates, with more powerful engines, including a capacity increase from the initial 1200cc of the narrow angle V4 to 1300 and then later 1600cc, and the car was developed into a successful rally machine for the late 60s. The Sport Zagato version was designed by Ercole Spada at Zagato and was intended to be the more sporting model of the range. It was also considerably more expensive. Early cars had an unusual side hinged bonnet, but this was changed on the Series 2 models which were launched in 1970, and which also switched to all-steel bodies. Seen here were a number of examples of the Coupe in S2 and S3 guise, as well as a Sport Zagato. UK market S3 cars had raised outer headlights, which I think look quite neat, but the European spec cars retained the same layout as had featured on the S2 models.

 photo Picture 124_zpsu80sv5wo.jpg  photo Picture 116_zpsibgnd3rt.jpg  photo Picture 197_zpsqfezmmch.jpg

Considered to be part of the Beta family, though there is an awful lot about the car that is very different from the front wheel drive models was the MonteCarlo, one example of which was displayed. First conceived in 1969, with a a final design completed by 1971 by Paolo Martin at Pininfarina, what was initially known as the Fiat X1/8 Project, was originally designed as Pininfarina’s contender to replace Fiat’s 124 Coupe, but it lost out to Bertone’s cheaper design, which became the Fiat X1/9. Rather than scrap the proposal completely, it was developed further, when Fiat commissioned Pininfarina to build a 3.0 litre V6 mid-engined sports car. An X1/8 chassis was used as the start point, and developed for the first time in-house by Pininfarina and not based on any existing production car. Due to the 1973 Oil Crisis, the project was renamed X1/20 and updated to house a 2.0 litre engine. The first car to be made out of the X1/20 Project was the Abarth SE 030 in 1974. The project was passed to Lancia, and the road car was launched at the 1975 Geneva Motor Show as the Lancia Beta MonteCarlo. It was the first car to be made completely in-house by Pininfarina. Lancia launched the MonteCarlo as a premium alternative to the X1/9, with the 2 litre twin cam engine rather than the X1/9’s single cam 1300. Both used a similar, based on the Fiat 128, MacPherson strut front suspension and disc brakes at both front and rear. Lancia Beta parts were limited to those from the existing Fiat/Lancia standard parts bin, the transverse mount version of the Fiat 124’s twin cam engine and the five speed gearbox and transaxle. MonteCarlos were available as fixed head “Coupés” and also as “Spiders” with solid A and B pillars, but a large flat folding canvas roof between them. Sales were slow to get started, and it soon became apparent that there were a number of problems with a reputation for premature locking of the front brakes causing particular alarm. Lancia suspended production in 1979 whilst seeking a solution, which meant that the car was not produced for nearly two years. The second generation model, known simply as MonteCarlo now, was first seen in late 1980. The braking issue was addressed by removing the servo, as well as few other careful mechanical tweaks. The revised cars also had glass panels in the rear buttresses, improving rear visibility somewhat, and there was a revised grille. In the cabin there was a new three spoke Momo steering wheel in place of the old two spoke one, as well as revamped trim and fabrics. The engine was revised, with a  higher compression ratio, Marelli electronic ignition and new carburettors which produced more torque. It was not enough for sales to take off, and the model ceased production in 1982, although it took quite a while after that to shift all the stock. Just under 2000 of the Phase 2 cars were made, with 7798 MonteCarlos made in total. There was one present here.

 photo Picture 123_zpsucl0zjpp.jpg  photo Picture 117_zpsk0xxnohu.jpg  photo Picture 374_zpstn7rip5c.jpg

Although their sales only amounted to a small fraction of the total number of first generation Delta cars produced, it is the Integrale models which are best known these days, and the ones you most often see. It may be over 20 years since the last one was produced, but everyone, even youngsters, knows what they are, and just about everyone lusts after them, declaring them as a clear candidate for their Dream Garage. I know that I would certainly have one in mine! Seen here were a number of examples. The Integrale evolved over several years, starting off as the HF Turbo 4WD that was launched in April 1986, to homologate a new rally car for Lancia who needed something to fill the void left by the cancellation of Group B from the end of 1986. The Delta HF 4X4 had a four-wheel drive system with an in-built torque-splitting action. Three differentials were used. Drive to the front wheels was linked through a free-floating differential; drive to the rear wheels was transmitted via a 56/44 front/rear torque-splitting Ferguson viscous-coupling-controlled epicyclic central differential. At the rear wheels was a Torsen (torque sensing) rear differential. It divided the torque between the wheels according to the available grip, with a maximum lockup of 70%. The basic suspension layout of the Delta 4WD remained the same as in the rest of the two-wheel drive Delta range: MacPherson strut–type independent suspension with dual-rate dampers and helicoidal springs, with the struts and springs set slightly off-centre. The suspension mounting provided more isolation by incorporating flexible rubber links. Progressive rebound bumpers were adopted, while the damper rates, front and rear toe-in and the relative angle between springs and dampers were all altered. The steering was power-assisted rack and pinion. The car looked little different from the front wheel drive models. In September 1987, Lancia showed a more sophisticated version of the car, the Delta HF Integrale 8V. This version incorporated some of the features of the Delta HF 4WD into a road car. The engine was an 8-valve 2 litre fuel injected 4-cylinder, with balancing shafts. The HF version featured new valves, valve seats and water pump, larger water and oil radiators, more powerful cooling fan and bigger air cleaner. A larger capacity Garrett T3 turbocharger with improved air flow and bigger inter-cooler, revised settings for the electronic injection/ignition control unit and a knock sensor, boosting power output to 185 bhp at 5300 rpm and maximum torque of 224 lb/ft at 3500 rpm. The HF Integrale had permanent 4-wheel drive, a front transversely mounted engine and five-speed gearbox. An epicyclic centre differential normally split the torque 56 per cent to the front axle, 44 per cent to the rear. A Ferguson viscous coupling balanced the torque split between front and rear axles depending on road conditions and tyre grip. The Torsen rear differential further divided the torque delivered to each rear wheel according to grip available. A shorter final drive ratio (3.111 instead of 2.944 on the HF 4WD) matched the larger 6.5×15 wheels to give 24 mph/1000 rpm in fifth gear. Braking and suspension were uprated to 284 mm ventilated front discs, a larger brake master cylinder and servo, as well as revised front springs, dampers, and front struts. Next update was to change the engine from 8 valves to 16. The 16v Integrale was introduced at the 1989 Geneva Motorshow, and made a winning debut on the 1989 San Remo Rally. It featured a raised centre of the bonnet to accommodate the new 16 valve engine, as well as wider wheels and tyres and new identity badges front and rear. The torque split was changed to 47% front and 53% rear. The turbocharged 2-litre Lancia 16v engine now produced 200 bhp at 5500 rpm, for a maximum speed of 137 mph and 0–100 km/h in 5.5  seconds. Changes included larger injectors, a more responsive Garrett T3 turbocharger, a more efficient intercooler, and the ability to run on unleaded fuel without modification. The first Evoluzione cars were built at the end of 1991 and through 1992. These were to be the final homologation cars for the Lancia Rally Team; the Catalytic Evoluzione II was never rallied by the factory. The Evoluzione I had a wider track front and rear than earlier Deltas. The bodyside arches were extended and became more rounded. The wings were now made in a single pressing. The front strut top mounts were also raised, which necessitated a front strut brace. The new Integrale retained the four wheel drive layout. The engine was modified to produce 210 bhp at 5750 rpm. External changes included: new grilles in the front bumper to improve the air intake for engine compartment cooling; a redesigned bonnet with new lateral air slats to further assist underbonnet ventilation; an adjustable roof spoiler above the tailgate; new five-bolt wheels with the same design of the rally cars; and a new single exhaust pipe. Interior trim was now grey Alcantara on the Recaro seats, as fitted to the earlier 16V cars; leather and air conditioning were offered as options, as well as a leather-covered Momo steering wheel. Presented in June 1993, the second Evolution version of the Delta HF Integrale featured an updated version of the 2-litre 16-valve turbo engine to produce more power, as well as a three-way catalyst and Lambda probe. A Marelli integrated engine control system with an 8 MHz clock frequency which incorporates: timed sequential multipoint injection; self-adapting injection times; automatic idling control; engine protection strategies depending on the temperature of intaken air; Mapped ignition with two double outlet coils; Three-way catalyst and pre-catalyst with lambda probe (oxygen sensor) on the turbine outlet link; anti-evaporation system with air line for canister flushing optimised for the turbo engine; new Garrett turbocharger: water-cooled with boost-drive management i.e. boost controlled by feedback from the central control unit on the basis of revs/throttle angle; Knock control by engine block sensor and new signal handling software for spark park advance, fuel quantity injected, and turbocharging. The engine now developed 215 PS as against 210 PS on the earlier uncatalysed version and marginally more torque. The 1993 Integrale received a cosmetic and functional facelift that included. new 16″ light alloy rims with 205/45 ZR 16 tyres;  body colour roof moulding to underline the connection between the roof and the Solar control windows;  aluminium fuel cap and air-intake grilles on the front mudguards; red-painted cylinder head; new leather-covered three-spoke MOMO steering wheel; standard Recaro seats upholstered in beige Alcantara with diagonal stitching. In its latter years the Delta HF gave birth to a number of limited and numbered editions, differing mainly in colour, trim and equipment; some were put on general sale, while others were reserved to specific markets, clubs or selected customers.

 photo Picture 099_zpsyd52h1uh.jpg  photo Picture 098_zpstako2m13.jpg  photo Picture 100_zpsnq0zncde.jpg  photo Picture 128_zpsmt3qs5vi.jpg

Replacing the Gamma was the Thema, Lancia’s luxury car based on the Tipo Quattro platform, one of four cars to do so, the others being the Alfa Romeo 164, Fiat Croma and Saab 9000. The Thema re-established Lancia as a high-quality luxury manufacturer with a galvanised steel chassis and rust protection that equalled or bettered that of its competitors. Build quality was higher than the Fiat Croma’s and on par with the Saab 9000, with which it shared a great deal of body engineering, including its doors. Lancia’s sales organisation, however, was poor in many markets and secondhand values for the car suffered. The first series was built between 1984 and 1988, and was available with 1995 cc 8 valve, twin-cam fuel injected or turbocharged engines or a 2849 cc V6. For most European markets a 2445 cc four-cylinder turbodiesel was also available, though this was not offered to UK buyers. Two of these cars, in 2 litre Turbo ie spec, which was the most popular among UK buyers, were on show here. For a while, the Thema changed little, but in 1986, a station wagon designed by Pininfarina was added to the range, though this was also never sold in the UK. 21,074 Thema station wagons were built.  The second series Thema was presented at the Paris Motor Show in September 1988 with 16v 2.0 litre engines replacing the 2.0 litre 8v units increasing the power output of the injection version to 146 PS and the turbo to 205 PS. The diesel engine size increased marginally, to 2499 cc. The series two was then replaced by the facelifted third and last series, introduced at the Paris Motor Show in September 1992 and produced from 1992-1994. Production of the Thema ceased in 1994 when Lancia presented a replacement. the Kappa, a car that would not be sold in the UK.

 photo Picture 126_zpsxsdeyetg.jpg

The first generation Delta had been given a second lease of life by its rallying successes, but by the 1990s it was over ten years old and due replacement; its four-door saloon sibling, the Prisma, had already been replaced by the Lancia Dedra. By the time the new car was ready, Lancia had all but pulled out of the UK, so the car was never officially sold here. A few have since been brought in, though, and there were two of them here. Both are the three door HPE models, and are familiar sights at Italian car and other gatherings in the area. The “Nuova Delta” (Tipo 836)—always referred to by Lancia as Lancia δ with the lower-case Greek letter – was introduced at the Geneva Show in 1993, alongside the final “Evo 2” HF Integrale. Sales commenced in May 1993. Initially the Nuova Delta was offered with three engines and outputs varying from 76 to 142 PS: an entry level SOHC 1.6-litre, and two DOHC inline fours with Lancia’s twin counter rotating balance shafts, an 8-valve 1.8 and a 16-valve 2.0 litre. Trim levels were three: base and LE for the 1.6 and 1.8, base and richer LS for two-litre models. The sportier 2.0 HF was also unveiled in Geneva, but went on sale in September; it used a version of the 16-valve 2.0 litre equipped with a Garrett T3 turbocharger and an intercooler to produce 186 PS. Mechanical changes from the other Deltas included up-sized 205/50 tyres, stiffer suspension, standard 4-way ABS, a “Viscodrive” viscous coupling limited slip differential and, in the HF LS trim, electronically adjustable dampers with two settings. Visually the HF turbo was set apart by an eggcrate grille with a gunmetal surround and a yellow HF badge, a sportier front bumper complementing 1.1 inch wider front wings, black side skirts, specific 15 inch 7-spoke alloy wheels and a spoiler at the base of the rear window. Larger disk brakes and optional Alcantara Recaro sport seats were shared with the 2.0 LS. About a year after the launch, in June 1994, the 1.9 turbo ds turbodiesel variant was added to the range; it was powered by the usual 1,929 cc SOHC unit, pushing out 90 PS. The turbo ds was given the flared fenders and bumper of the HF, and was available in base and LE trim.  Presented a month later and put on sale in autumn, the Delta 2.0 GT paired the naturally aspirated 2-litre engine with the looks of the HF—flared wings, bumper and spoiler. Although a three-door had been rumoured since 1991, it was not until the 1995 Geneva Motor Show that one became available. It was christened HPE—a denomination that had previously been used for a variant of the Lancia Beta, and standing for “High Performance Executive”.  At first the HPE was only available with the three top engines: 2.0 16v, 1.9 turbodiesel and 2.0 16v turbo in HF guise. The three-door bodyshell had entirely redesigned body sides, but retained the roof and rear section of the five-door model; rear wheelarch flares complemented the HF-derived wide front wings and bumper, sported by all HPE versions. This meant the HPE was around 2.4 inches wider than a standard Delta, while all other exterior dimensions remained unchanged. Styling differences from the five-door included specific side skirts and a body-colour grille, to which the HPE 2.0 HF added all the accoutrements of the five-door HF and additional air intakes under the headlights. At the beginning of 1996 the range was updated. All naturally aspirated engines were replaced; the 1.6 and 1.8 8-valve by 16-valve units, while the 2.0 16v was discontinued in favour of a 1.8 16v equipped with variable valve timing. Trim levels for the 5-door were now three: base LE, richer LX and GT, exclusive to the 1.8 V.V.T. engine. The three-door HF turbo remained the only one offered, as the five-door version was discontinued. In addition to the turbocharged engines, the HPE was available with 1.8 V.V.T. and also the smaller 1.6 engines; the latter, entry level HPE adopted the bumper and narrow front wings of the standard Delta. Minor styling changes were introduced, such as alloy wheels and wheel covers of a new design, chrome vertical bars to the 5-door cars’ grille, and body colour mirror caps. November 1997 brought the last revisions for the Delta. Seven models made up the updated range: 5-door and HPE with a choice of 1.6, 1.8 V.V.T. or 1.9 td engines—the 18 16v having been phased out—and a renewed 2.0 HF, again in HPE form only. The 5-door range was reduced to a single LS trim. More of the plastic exterior details were now painted in body colour, namely bumper, bodyside and C-pillar inserts. All HPEs donned flared front wings. The updated HPE 2.0 HF was shown at the Bologna Motor Show in November. Visually it continued the monochrome theme of the restyled cars, and it was made more distinctive by bumpers, side skirts, and spoiler of a new design, and 16 inch Speedline Montecarlo alloy wheels with 215/50 tyres; inside the seats were upholstered in black leather with contrasting colour Alcantara centres. Mechanically it received a tweaked engine, producing 193 PS, which made for a 5 km/h higher top speed. The Delta was dropped from Lancia’s lineup in 1999, with no immediate successor.

 photo Picture 211_zpsbo4vj6db.jpg  photo Picture 210_zpsjrlvcyp7.jpg

MASERATI

The only Maserati cars in this part of the display were a couple of examples of what was known internally as the Tipo 338 and is better known as the 3200GT, 4200GT and Spider. After producing BiTurbo based cars for 17 years, Maserati replaced their entire range with a new model in July 1998, the 3200 GT. This very elegant 2+2 grand tourer was styled by Italdesign, whose founder and head Giorgetto Giugiaro had previously designed, among others, the Ghibli, Bora and Merak. The interior design was commissioned to Enrico Fumia. Its name honoured the Maserati 3500 GT, the Trident’s first series production grand tourer. Sold mainly in Europe, the 3200 GT was powered by the twin-turbo, 32-valve, dual overhead cam 3.2-litre V8 engine featured in the Quattroporte Evoluzione, set up to develop 370 PS (365 hp). The car was praised for its styling, with the distinctive array of tail-lights, consisting of LEDs, arranged in the shape of boomerang being particularly worthy of comment. The outer layer of the ‘boomerang’ provided the brake light, with the inner layer providing the directional indicator. The car was also reviewed quite well by the press when they got to drive it in early 1999, though it was clear that they expected more power and excitement. That came after  4,795 cars had been produced, in 2001, with the launch of the 4200 models. Officially called the Coupé and joined by an open-topped  Spyder (Tipo M138 in Maserati speak), these models had larger 4.2 litre engines and had been engineered so the cars could be sold in America, marking the return to that market for Maserati after an 11 year gap. There were some detailed styling changes, most notable of which were the replacement of the boomerang rear lights with conventional rectangular units. Few felt that this was an improvement. The cars proved popular, though, selling strongly up until 2007 when they were replaced by the next generation of Maserati. Minor changes were made to the model during its six year production, but more significant was the launch at the 2004 Geneva Show of the GranSport which sported aerodynamic body cladding, a chrome mesh grille, carbon fibre interior trim, and special 19-inch wheels. It used the Skyhook active suspension, with a 0.4 inch lower ride height, and the Cambiocorsa transmission recalibrated for quicker shifts. The exhaust was specially tuned to “growl” on start-up and full throttle. The GranSport was powered by the same 4244 cc, 90° V8 petrol engine used on the Coupé and Spyder, but developing 400 PS (395 hp) at 7000 rpm due primarily to a different exhaust system and improvements on the intake manifolds and valve seats. A six-speed paddle shift transmission came as standard. The GranSport has a claimed top speed of 180 mph (290 km/h) and a 0–62 mph (0–100 km/h) time of 4.8 seconds.

 photo Picture 403_zpsmc5r9edj.jpg  photo Picture 407_zpsohtvackw.jpg  photo Picture 406_zpsdtrwmsdg.jpg  photo Picture 846_zpsxh1nuvyf.jpg  photo Picture 1038_zps1w7qdm5d.jpg

FRENCH CARS

There were relatively few French cars present on the Saturday, but this changed quite noticeably on the Sunday, with far more and more variety evident.

AMILCAR

 photo Picture 1051_zpsvkzxw8s1.jpg

BUGATTI

A couple of classic Bugatti models were parked up outside the Bugatti Trust museum. These were a Type 40, known as the Lydia car, and a Type 35.

 photo Picture 535_zpsiltdsaw7.jpg  photo Picture 536_zpsje9i3rpq.jpg  photo Picture 538_zps8mmx50et.jpg  photo Picture 537_zpssffxyy6w.jpg

CITROEN

There were a decent number of Citroen models present on the Saturday, and their numbers were increased quite significantly for the second day. The highlights included these:

Oldest model in the Club display on the Saturday was this, an 8CV Rosalie. dating from 1932.  At introduction, the larger Rosalies replaced the Citroëns C4 and C6, themselves launched respectively in 1928 and 1929. They also represented a move upmarket for the entire business, since during the early 1930s Citroën appeared for a time to lose interest in the smaller cars which had filled their dealerships during the impoverished 1920s. The Rosalies, especially the larger 15CV versions, were offered with range of different body types, which  was normal practice at the time. Though not radical in terms of subsequent Citroën launches, the look of the Rosalies was significantly more modern than that of the earlier C4 and C6 models. However, the real revolution at Citroën during these years involved production technology. André Citroën had drawn practical inspiration from his 1912 visit to Henry Ford’s then new Highland Park Ford Plant in Michigan, and in 1932 Citroën was still a European leader in the application of assembly line manufacturing. Rosalies were competitively but apparently profitably priced. In 1934 all the Rosalies received a facelift which involved applying a gently raked angle to the front grille. The post facelift versions that appeared were known as the NH versions, or also as the B-series. NH stood for “Nouvel Habillage” (literally “New Clothing”).  The model seen here is the entry level version, the 8CV, which, like the Citroën Type B of the first half of the 1920s, featured a four-cylinder motor of 1,452 cc, driving the rear wheels. The three-speed gear box featured synchromesh on the two higher ranges, and braking was provided by drum brakes on all four wheels. The car was 4.27 metres (168.1 in) long and offered a maximum speed of 90 km/h. Four cylinder 10CV and six cylinder 15CV models were also offered, All told, 88,090 four-cylinder and 7,230 six-cylinder Rosalies were built (38,840 small 7/8’s, and 49,250 bigger 10/11’s). Of the total produced 8,400 were of the short-lived, facelifted B-series (NH) and around 15,000 were of the latter “MI” cars.

 photo Picture 391_zpspstcj3gd.jpg  photo Picture 1109_zpswwbbsip3.jpg  photo Picture 411_zpsye46isy2.jpg  photo Picture 1103_zpshdydwobz.jpg

This rather imposing truck arrived on the Sunday It is a U23 and dates from 1951. The U23, or Type 23, was a light (2-ton) truck introduced by Citroën in 1936. Although the engine cowling and front body was looking similar with the Citroën Traction Avant’s, the U23 had a conventional rear-wheel-drive transmission. The production lasted for a very long time, from the late 1930s to the early 1960s. One major customer was the French military, who ordered large quantities of Type 23s after the declaration of World War II. At the time of the German invasion, more than 12,000 Type 23 had been delivered in less than ten months. About 6000 Citroën U23 were pressed into German service after the French defeat of June 1940. There were two distinct body styles, since the U23 underwent a major restyling in the fifties. The Citroën U23 was replaced by the Citroën 350 to 850, also called Belphegor.

 photo Picture 800_zps2wttdkbi.jpg  photo Picture 799_zps6enadttu.jpg

1934 saw the introduction of the Citroen’s revolutionary and mould-shattering front-wheel-drive semi-monocoque Citroën Traction Avant. The Traction endured a troubled and prolonged birth process, however, and was part of an ambitious investment programme which involved, also in 1934, the bankruptcy of the business, and its acquisition by Citroën’s principal creditor. The patron himself died in 1935. In this troubled situation, availability of the larger Rosalies (although re-engined with a turned-around version of the new Traction’s OHV four-cylinder engines) continued till 1938: it is only through the distorting prism of subsequent events that its reputation has been diminished when set against the technical brilliance of its successor. There were several examples of the Traction Avant here. Produced for over 20 years, many different versions were made during that time, all with the same styling outline, but with power outputs ranging from 7 to 15CV, and different wheelbases, as well as some with Coupe and Convertible body styles. There was even one model with a large opening tailgate, the Commerciale.

 photo Picture 806_zpsnktrzpba.jpg  photo Picture 805_zpsypuvhwie.jpg  photo Picture 1122_zpsq7tmskk4.jpg  photo Picture 807_zpsesygm6v1.jpg  photo Picture 808_zpszz6a5zm6.jpg  photo Picture 803_zps2z2okxro.jpg  photo Picture 804_zpszjsujt0a.jpg  photo Picture 802_zpszyg85ua4.jpg  photo Picture 810_zpstcqtexqj.jpg  photo Picture 809_zps6ukn3irh.jpg  photo Picture 118_zpsdisxeqsj.jpg

It was no surprise to find a number of the legendary DS family here, with several different cars present during the weekend, including a couple of the very elegant Decapotable models.  It is hard to imagine just how revolutionary this car must have seemed when it was unveiled at the Paris Show in 1955.  18 years in secret development as the successor to the Traction Avant, the DS 19 stole the show, and within 15 minutes of opening, 743 orders were taken. By the end of the first day, that number had risen to 12,000. Contemporary journalists said the DS pushed the envelope in the ride vs. handling compromise possible in a motor vehicle. To a France still deep in reconstruction after the devastation of World War II, and also building its identity in the post-colonial world, the DS was a symbol of French ingenuity. It also posited the nation’s relevance in the Space Age, during the global race for technology of the Cold War. Structuralist philosopher Roland Barthes, in an essay about the car, said that it looked as if it had “fallen from the sky”. An American advertisement summarised this selling point: “It takes a special person to drive a special car”. Because they were owned by the technologically aggressive tyre manufacturer Michelin, Citroën had designed their cars around the technically superior radial tyre since 1948, and the DS was no exception. The car featured a novel hydropneumatic suspension including an automatic levelling system and variable ground clearance, developed in-house by Paul Magès. This suspension allowed the DS to travel quickly on the poor road surfaces common in France. In addition, the vehicle had power steering and a semi-automatic transmission (the transmission required no clutch pedal, but gears still had to be shifted by hand  though the shift lever controlled a powered hydraulic shift mechanism in place of a mechanical linkage, and a fibreglass roof which lowered the centre of gravity and so reduced weight transfer. Inboard front brakes (as well as independent suspension) reduced unsprung weight. Different front and rear track widths and tyre sizes reduced the unequal tyre loading, which is well known to promote understeer, typical of front-engined and front-wheel drive cars. As with all French cars, the DS design was affected by the tax horsepower system, which effectively mandated very small engines. Unlike the Traction Avant predecessor, there was no top-of-range model with a powerful six-cylinder engine. Citroën had planned an air-cooled flat-6 engine for the car, but did not have the funds to put the prototype engine into production.  The 1955 DS19 was 65% more expensive than the car it replaced, the Citroën Traction Avant. This did impact potential sales in a country still recovering economically from World War II, so a cheaper submodel, the Citroën ID, was introduced in 1957. The ID shared the DS’s body but was less powerful and luxurious. Although it shared the engine capacity of the DS engine (at this stage 1,911 cc), the ID provided a maximum power output of only 69 hp compared to the 75 hp claimed for the DS19. Power outputs were further differentiated in 1961 when the DS19 acquired a Weber-32 twin bodied carburettor, and the increasing availability of higher octane fuel enabled the manufacturer to increase the compression ratio from 7.5:1 to 8.5:1.  A new DS19 now came with a promised 83 hp of power. The ID19 was also more traditional mechanically: it had no power steering and had conventional transmission and clutch instead of the DS’s hydraulically controlled set-up. Initially the basic ID19 was sold on the French market with a price saving of more than 25% against the DS, although the differential was reduced at the end of 1961 when the manufacturer quietly withdrew the entry level ID19 “Normale” from sale. An estate version was introduced in 1958. It was known by various names in different markets: Break in France, Safari and Estate in the UK, Wagon in the US, and Citroën Australia used the terms Safari and Station-Wagon. It had a steel roof to support the standard roof rack. ‘Familiales’ had a rear seat mounted further back in the cabin, with three folding seats between the front and rear squabs. The standard Break had two side-facing seats in the main load area at the back. During the 20 year production life, improvements were made on an ongoing basis. In September 1962, the DS was restyled with a more aerodynamically efficient nose, better ventilation and other improvements. It retained the open two headlamp appearance, but was available with an optional set of driving lights mounted on the front bumpers. A more luxurious Pallas trim came in for 1965  Named after the Greek goddess Pallas, this included comfort features such as better noise insulation, a more luxurious (and optional leather) upholstery and external trim embellishments. The cars were complex, and not always totally reliable, One of the issues that emerged during long term use was addressed with a change which came in for 1967. The original hydropneumatic system used a vegetable oil liquide hydraulique végétal (LHV), similar to that used in other cars at the time, but later switched to a synthetic fluid liquide hydraulique synthétique (LHS). Both of these had the disadvantage that they are hygroscopic, as is the case with most brake fluids. Disuse allows water to enter the hydraulic components causing deterioration and expensive maintenance work. The difficulty with hygroscopic hydraulic fluid was exacerbated in the DS/ID due to the extreme rise and fall in the fluid level in the reservoir, which went from nearly full to nearly empty when the suspension extended to maximum height and the six accumulators in the system filled with fluid. With every “inhalation” of fresh moisture- (and dust-) laden air, the fluid absorbed more water. For the 1967 model year, Citroën introduced a new mineral oil-based fluid liquide hydraulique minéral (LHM). This fluid was much less harsh on the system. LHM remained in use within Citroën until the Xantia was discontinued in 2001. LHM required completely different materials for the seals. Using either fluid in the incorrect system would completely destroy the hydraulic seals very quickly. To help avoid this problem, Citroën added a bright green dye to the LHM fluid and also painted all hydraulic elements bright green. The former LHS parts were painted black. All models, including the Safari and ID, were upgraded at the same time. The hydraulic fluid changed to the technically superior LHM (Liquide Hydraulique Minéral) in all markets except the US and Canada, where the change did not take place until January 1969, due to local regulations. Rarest and most collectable of all DS variants, a convertible was offered from 1958 until 1973. The Cabriolet d’Usine (factory convertible) were built by French carrossier Henri Chapron, for the Citroën dealer network. It was an expensive car, so only 1,365 were sold. These DS convertibles used a special frame which was reinforced on the sidemembers and rear suspension swingarm bearing box, similar to, but not identical to the Break/Safari frame. The red car seen here is a regular at Prescott.

 photo Picture 798_zpsn8pjo0cz.jpg  photo Picture 796_zpsfc6olruf.jpg  photo Picture 797_zpsf1uvewcp.jpg  photo Picture 225_zpsqlwxcijy.jpg  photo Picture 866_zpslw5yiumi.jpg  photo Picture 227_zpswfbjvywt.jpg  photo Picture 226_zpscxbho4ot.jpg  photo Picture 054_zpslna18tvt.jpg  photo Picture 791_zpsqttrlqx4.jpg

There were plenty of 2CV models here, ranging from a relatively early car up to some of the late model cars, with the popular Charleston edition among them.

 photo Picture 788_zpsq0yad9xn.jpg  photo Picture 789_zpss8hxzp44.jpg  photo Picture 792_zpssw2nc5w6.jpg  photo Picture 865_zpsfuqxe9dc.jpg  photo Picture 801_zpshvwepqvu.jpg
 photo Picture 787_zpsa4plssoo.jpg  photo Picture 668_zpspttooqqa.jpg

You really don’t see the Dyane very often these days, so it was quite a surprise to find two of them here.  Launched on its home market in August 1967, it was, of course, a development of the Citroën 2CV, and was intended as an answer to the increasingly popular Renault 4, which after its introduction in 1961 had affected 2CV sales. The Renault 4 incorporated many ideas copied from the Citroën Traction Avant, but on a smaller scale. Like the Renault 4, the Dyane was designed from the outset as a hatchback with some other styling differences, such as conventional round headlamps set into the front wings with a squared stainless steel trim ring – as opposed to the old-fashioned separate units found on the 2CV – and stainless steel wheel embellishments as standard. It was often asserted that the Dyane was intended to replace the 2CV, and although this had been the original idea, by the time the car was launched it was positioned to fill a small niche between the manufacturer’s 2CV and Ami models. The 2CV had been developed and, in 1948, launched at a time of austerity and low wages. More than twenty years later, with the much more modern Renault 4 selling strongly against the Citroën offerings, it was thought that buyers must be ready for a less aggressively basic approach. During the years since 1948 production technology had become more streamlined, as auto-industry wages grew ahead of the overall growth in the French economy, and production of the 2CV was, by the standard of more recent models, a very labour-intensive process. At the time of the Dyane’s development, the Citroën design department was busy on updates of the key DS and Ami models: design of the Dyane was therefore initially subcontracted to the Panhard design department, Panhard’s non-military business having in 1965 been absorbed into Citroën’s car business. The Panhard team under Louis Bioner (who had designed every Panhard model introduced between the late 1920s and the mid 1960s) produced a proposal that at a detailed level proved controversial with Citroën’s design chief, Robert Opron: the car was significantly reworked ahead of launch. The Dyane’s Panhard associations are also reflected in its name, Panhard having registered a copyright on the name Dyane along with Dyna, Dynavia and Dynamic. At launch the car was offered with two levels of equipment and trim: The Basic “Luxe” and the slightly better equipped “Confort”. The “Confort” version was differentiated from the outside through the inclusion of hub-caps on the wheels.  The spare wheel and jack were mounted in a special cradle under the bonnet rather than both simply being placed loose on the floor of the luggage area at the back. The interior of the “Confort” was slightly less basic, with plastic moulded door panels rather than flat, vinyl covered hardboard. The steering wheel was less “rustic” than that which the less expensive “Luxe” version of the Dyane shared with the Citroën 2CV.  The extra 615 francs in the 1967 domestic market listed price for the Dyane “Confort” represented a supplement of just over 10% when compared to the list price for the more basic “Luxe”. As with the 2CV, the engine was air-cooled, with a hemispherical combustion chamber and flat-topped pistons. and for the first five months only the 2CV’s 425cc engine was fitted. The “Dyane 6” was announced at the Brussels Motor Show in January 1968, fitted with the Ami’s 602cc M4 engine. This came with an advertised maximum output of 28 bhp, supporting a claimed top speed of 71 mph, which was a useful improvement over the 21 bhp of power and the claimed top speed of 100 km/h (62 mph) with which the Dyane had been launched. The 602cc engined Dyane did not replace the original 425cc engined car.  However, two months later, in March 1968, the 425cc unit was replaced, in a car now described as the “Dyane 4”, by an improved 435cc engine providing 26 bhp. The extra power came from changes including not merely the slightly claimed cylinder dimensions, as well as an extra 2 mm of carburettor diameter and a raised compression ratio. Although there was a price to be paid in terms of higher fuel consumption, the listed top speed went up to 105 km/h (66 mph) and acceleration was measurably less anæmic. In September 1968 the M4 was replaced by an improved 602cc engine featuring higher compression pistons and forced induction from the engine fan giving slightly more power. As with the 2CV and Ami, cooling air was ducted straight to the heater, giving excellent demisting and heating. Mechanical contact-breakers were mounted at the front of the camshaft and located behind the cooling fan. The Fan was mounted on a tapered shaft and secured with a bolt at the bottom of a deep tube (the top of which engaged the starter handle). As the location of the points was not obvious to the uninformed, there were often neglected. The Coil fired both cylinders simultaneously (wasting one spark) and the spark plug wear was faster than it ought to have been; 6000 miles was not uncommon for a spark plug. Cylinder heads were held on with three studs and barrels slipped over the pistons. No cylinder-head gasket was used, and since the wings unbolted in a few minutes, it was possible to remove the cylinder heads and barrels, change the pistons or piston-rings and reassemble the top end very quickly, using only a few tools. The Dyane was based on the same platform chassis as the 2CV, sharing its advanced independent front to rear interconnected suspension. This comprised a central springing unit, running fore-and-aft in a tube on each side; each suspension arm on that side was linked to the spring, by a tie-rod and a ‘knife-edge’ pivot-pin. Early cars did not have conventional shock absorbers. The squeak you hear from most 2CVs and Dyanes as they go by over bumps is due to lack of lubrication either inside the spring tubes or to the ‘knife-edges’. The front hubs kingpins need to be greased every 600 miles. Since this is often overlooked, the king-pins can be prone to wear, although some movement is acceptable. During the Dyane’s first full year of production, supported by the interest and marketing activity generated by new-car launch, 98,769 Dyanes were produced which meant that it was indeed produced, even at this stage, in greater volumes than the 2CV with just 57,473 cars produced. In 1969 the Dyane was again produced at a higher rate, this time with 95,434 units as against 72,044 for the older car. However, the 2CV refused to die, and with 121,096 2CVs produced in 1970, the older car was back in front. The Dyane soldiered on, with French production rates remaining more than respectable, for more than another decade. However, the Dyane’s annual volumes would never again beat those of the 2CV and the car was deleted in 1980, several years before its older brother ended production. Few further changes were made, though from 1969, the Dyane 6 did gain a third side window, and a new grille was fitted from 1976. Minor trim updates were made, but the car remained resolutely utilitarian, and even the limited edition models such as the Code D’Azur of 1978 could not get away from the fact, not that enthusiastic owners really wanted anything else. 1,443,583 examples were made, but survival rates are low, and this car is far rarer than the 2CV.

 photo Picture 666_zpscr5rtuux.jpg  photo Picture 786_zpshfmgsxkn.jpg  photo Picture 795_zps6aa7qi9o.jpg  photo Picture 794_zpshvntzj9v.jpg  photo Picture 783_zpsixbpp385.jpg  photo Picture 667_zpszzb5rsy8.jpg  photo Picture 665_zpsfoatkbnf.jpg

Final version of these small air-cooled Citroens was a rather splendid Acadiane Van. This was derived from the Dyane and only available in left-hand drive, produced from 1977 to 1987. Production totalled 253,393 before being replaced by the Visa-based C15. Why Acadiane?  Well, as Citroën had already used the prefix AK for its light commercials, so it was an obvious pun to name the AK Dyane “Acadiane”. There was no connection beyond the pun with the French-speaking region of Louisiana that is home to Cajun (Acadiane) cooking. The Acadiane differed from the Dyane on which it was based in having heavier-duty suspension, a slightly altered chassis and a rear-brake limiter whose action was dependent on the load. The Acadiane was also fitted with wind-down windows in the driver’s and passenger’s doors. The Dyane car had horizontally-sliding windows. The payload was approximately 500 kg (1,100 lb), but handling was impaired when fully loaded. The Acadiane was available in commercial (two-seater) form or as a “Mixte”, with sliding rear windows and a removable rear bench seat. Citroën and many other manufacturers continue to this day (Berlingo et al.) with the option of rear seats in a vehicle clearly designed as a commercial. The Mixte version also had a passenger sun visor, missing in the more basic commercial version. In line with many Citroën light commercials, the roof of the rear bodywork was corrugated to add extra rigidity at little cost. The Acadiane cruised on the flat comfortably and economically at 55 mph. Top gear in the four-speed box was usually referred to as overdrive. This had been so since the earliest days of the 2CV. In most circumstances it was best used as such. Progress could be maintained in top, but further acceleration was unlikely. As the motor thrived on revs, third made a perfectly good gear to get up to 80 km/h.

 photo Picture 785_zpskiilngv7.jpg  photo Picture 784_zpsv6gepueq.jpg  photo Picture 793_zpsr5tcrtdx.jpg

There were a couple of examples of the uber-cool Méhari here. Much like the way the 1959 Mini became the 1964 Mini Moke, this small Citroen was based on an existing model, in this case, the 2CV/Dyane. 144,953 Méharis were built between the car’s French launch in May 1968 and 1988 when production ceased. A méhari is a type of fast-running dromedary camel, which can be used for racing or transport. A méhariste was a French Armée d’Afrique and Army of the Levant cavalryman that used these camels. The Méhari was based on the Citroën Dyane 6, and had a body made of ABS plastic with a soft-top. It also employed the 602 cc flat twin engine shared with the 2CV6 and Citroën Ami and because the standard Méhari weighed just 535 kg (1,179 lb), performance was respectable though very far from brisk. The vehicle also had the interconnected fully independent long-travel 2CV suspension used by all of the Citroën ‘A-Series’ vehicles. The colour was integrated into the ABS plastic material in production, and as a utilitarian vehicle, the options chart was quite limited. Only the Vert Montana remained in the catalogue for all the 18 years of production. Except for Azur blue, the official names of colours all refer to desert regions. Ultraviolet rays from the Sun impact the colourfastness of ABS plastic, so unrestored cars have a faded appearance. New bodies for restorations are only supplied in white colour, and now require painting on top of a specialist primer. A four-wheel drive version of the Méhari was produced from 1980 to 1983 and had excellent off-road qualities, due to the lightness of the vehicle. Unlike the earlier four wheel drive 2CV Sahara, which had two engines, this car only had one. Only 1300 were produced and so these cars are now both rare and highly sought after. The Méhari was sold in the United States in 1969 and 1970, where the vehicle was classified as a truck. As trucks had far more lenient National Highway Traffic Safety Administration safety standards than passenger cars in the US, the Méhari did not have seat belts. The Mehari did have limited sales success. Budget Rent-A-Car bought a number of them and offered them as rentals in Hawaii. Hearst Castle, in San Simeon, California, used them as groundskeeper cars. The cars had some differences from those sold elsewhere, with an altered front panel with larger 7″ sealed-beam headlamps being the most obvious.

 photo Picture 224_zpsezomx5dl.jpg  photo Picture 223_zpsquga0mit.jpg  photo Picture 222_zpsqp9pa2ze.jpg  photo Picture 238_zpswtmyw2em.jpg

There was one further example of a classic Citroen here, a late model CX.  Although it was perhaps not as radical a product as the DS, which it replaced had been, this was still something of a futuristic looking car when it was revealed in 1974. Indeed, it is considered by some enthusiasts as the last “real Citroën” before Peugeot took control of the company in 1976, and as history has now shown, is, it was to be the final successful model of the “big Citroën” era, which began in 1934, as Citroën sold nearly 1.2 million CXs during its 16 years of production.  The CX’s flowing lines and sharp Kamm tail were designed by auto stylist Robert Opron, resembling its precursor the GS. Citroën had been using a Wind tunnel for many years, and the CX was designed to perform well in aerodynamic drag, with a low coefficient of drag (Cd in English; CX in French) of 0.36. Despite its fastback lines, the model was never sold as a hatchback, even though many of its rivals adopted this during the 1970s, and Citroen thus modified their own GS late in its life. Mechanically, the car was one of the most modern of its time, combining Citroën’s unique hydro-pneumatic integral self-levelling suspension, speed-adjustable DIRAVI power steering (first introduced on the Citroën SM), and a uniquely effective interior design that did away with steering column stalks, allowing the driver to reach all controls while both hands remained on the steering wheel. The CX suspension’s ability to soak up large undulations and yet damp out rough surfaces was extraordinary, with a consistent ride quality, empty, or fully laden.  The suspension was attached to sub frames that were fitted to the body through flexible mountings, to improve even more the ride quality and to reduce road noise. “Car” magazine described the sensation of driving a CX as hovering over road irregularities, much like a ship traversing above the ocean floor. This suspension was used under license by Rolls-Royce on the Silver Shadow. The Mercedes-Benz 450SEL 6.9 was not built under license, but copied the Hydropneumatic suspension principles after the less effective Mercedes-Benz 600 Air suspension installation. The CX was conceived to be a rotary-engined car—with several negative consequences. The CX engine bay is small because rotary engines are compact, but the Comotor three-rotor rotary engine was not economical and the entire rotary project was scrapped the year the CX was introduced, and Citroen went bankrupt in 1974, partly due to a series of investments like Comotor that didn’t result in profitable products. Production versions of the CX were always powered by a modest inline 4 cylinder engine, transversely mounted. This saved space and allowed the CX to be 8″ shorter than the DS. At launch in 1974, the CX was rushed to market, with some teething troubles. Some very early models did not have power steering which made the car difficult and heavy to drive – the CX carries 70% of its weight over the front wheels. Initially there was a choice between three differently powered versions. The “Normale” CX car came with a 1985 cc version of the four cylinder engine from the predecessor model with a claimed maximum output of 102 PS, which was slightly more than had been available from the engine when fitted in the DS.  The “Economique” version of the car (reflecting the continuing impact of the 1973 oil price shock) came with the same engine as the “Normale”, but the gear ratios were changed, along with the final drive ratio, giving rise to a 7 km/h (4 mph) reduction in top speed in return for usefully improved fuel economy. More performance came from the “CX 2200”, fitted with a 2175 cc version of the engine and a twin carburettor, resulting in a claimed maximum output of 112 PS. This was rather less than was available in the top spec DS23 EFi which  featured a relatively powerful 141 PS fuel-injected 2.3-litre engine. The later 2200 improved on this, and eventually the same 2347 cc unit as used in the DS) arrived, originally only in the long wheel-base Prestige, but a regular CX 2400 arrived at the 1976 Paris Salon, to replace the CX 2200. By this time, Citroen had added a capacious Estate model to the range, called Safari, and a 2.2 litre Diesel powered model – important even in the mid 1970s in France – was also offered. Despite the challenging finances of Citroën at the time of launch, the CX was entered in numerous rally driving events, like Tour du Senegal and Paris-Dakar, winning 5 events outright. Most notable among these was in the 17,500 mile 1977 London–Sydney Marathon road race in which Paddy Hopkirk, driving a CX 2400 sponsored by Citroën’s Australian concessionaire, staged a come-from-behind sprint to obtain third place. The CX was initially a huge success in Europe, more than 132,000 being produced in 1978. It found customers beyond the loyal Citroën DS customer base and brought the technology of the advanced, but somewhat impractical, Citroën SM to the masses. Evolution of the car after this was gradual. More power came in 1977, with the CX GTi which received a modern Bosch L-Jetronic injection system, generating 128 PS, and there was a standard five speed gearbox, and in early 1978, the diesel engine was enlarged to 2.,5 litres. A five speed gearbox was available. A very mild facelift in 1979 saw the Douvrin 2 litre engines that were used in the rival Renault R20 fitted under the bonnet to create the CX Reflex and Athena. In 1981, factory rustproofing and a fully automatic transmission to replace the former semi-automatic gearbox were added. In 1984, the addition of a turbo to the 2.5 litre diesel engine made the CX Turbo-D 2.5 the fastest diesel sedan in the world, able to reach speeds up to 195 km/h (121 mph). In 1985, the GTi Turbo, with a top speed of over 220 km/h (137 mph), finally gave the CX the powerful engine that finally used the full capabilities of the chassis. A facelift later that year was an attempt to keep the car in the public eye, but its sales had peaked long ago, back in 1978, and better trim, a revised interior and new plastic bumpers were not going to help a 10 year old design in the face of stiff market competition.  Just 35,000 units were produced in 1986 and 1987.  There were few further changes for the rest of the CX’s life, with its successor, the XM appearing in early 1989. Production of the Estate models continued until 1991, by which time 1,170,645 CXs had been  sold. There are far fewer survivors than there are of the DS family.

 photo Picture 055_zpslas6ybip.jpg  photo Picture 056_zpsbxqraf16.jpg  photo Picture 864_zpswuscvlqf.jpg  photo Picture 867_zpsicr7b6hg.jpg

Not quite a classic yet, but surely destined to become so is the car which came two generations after that CX, the ill-fated C6.

 photo Picture 198_zpskfrb87ou.jpg  photo Picture 556_zpsiedlxav9.jpg  photo Picture 1104_zpsercezoru.jpg  photo Picture 1121_zpspalmfs3t.jpg  photo Picture 1118_zpsjjw77a9z.jpg

Much more recent than all of these was this DS3 Racing.

 photo Picture 669_zpse29kmmre.jpg

DARRACQ

 photo Picture 603_zpsm5qztjtr.jpg

DELAGE

Automobiles Delage was founded in Paris in 1905 by Louis Delage, an ambitious young engineer who had been working for the Peugeot car company. The cars he built quickly established themselves as beautifully made sportscars for discerning motorists, the reputation of the road cars being boosted by the notable success of Delage race cars on the track, one of which famously won the Indianapolis 500 in 1914 with another Delage finishing third. As time went on they became ever more sophisticated, leading the way in racing design and engineering. Throughout the 1920s they dominated the racing scene, winning the first ever British Grand Prix in 1926, among a host of other victories. Englishman Dick Seaman shunned his ERA in the mid 1930s in favour of a 10 year old GP Delage, breaking his own records set by the more modern machine and running for a whole season without any mechanical work whatsoever. The Great Depression of the 1930s took its toll and by 1935 the company had been forced into voluntary liquidation. It was finally absorbed into the famous French marque, Delahaye. The racing pedigree showed through into their road going models, perhaps the most famous of which was the iconic DI range. The tough but lightweight 2 ¼ litre 4 cylinder delivered refinement and smoothness unknown to all but the very best thoroughbreds and could be ordered in more sporting DIS and DISS forms. These were replaced by the updated DR and lower chassis DM models, the former using a reliable 2.5 litre side valve six, whilst the more sporting DMs had a lusty 3.2 litre overhead valve unit. Most sporting of all was the DMS, which added a hotter cam and double valves springs. In all some 2,500 DMs and 5,000 DRs were to leave the Levallois-Perret plant located just outside Paris. This 1926 car is a DR/DMS and was purchased in kit form from the late Paul Foulkes Halbard and was assembled by Tom Bowhill about 15 years ago for a customer using a DR chassis and a DMS engine and gearbox. The coachwork, which is a replica Bentley 3-litre VdP body was modified to fit – the end result, not surprisingly making for a most attractive sports tourer. Once completed it was delivered to the customer in Ireland where it has remained ever since.

 photo Picture 398_zpsidviuxj2.jpg

This is a DR70 dating from 1928.  Chassis number ‘26290’, with engine number ‘922’, was imported by J Smith & Co, Delage’s main UK agents, who added the six-light Weymann saloon body. This reduced import duty and the DR70 retailed at around £600. The car was purchased new by R S (Reg) Dixon, of Brandon, Suffolk, managing director of Fox Umbrellas. It was first licensed on 27th April 1928 and taxed up to 1955. The amazing grille mascot is not actually an original (which would be extremely valuable in its own right), but a high quality replica.

 photo Picture 394_zpse8gb21tb.jpg  photo Picture 392_zpsifqihefj.jpg  photo Picture 1044_zpsiijh2h5y.jpg

DONNET

I’ve seen this car, a Donnet G2 at Prescott before, but did not really know anything about it. Writing this article prompted me to do a little more research on this long extinct marque. In 1919, five years after founding the successful flying boat manufacturer Donnet-Denhaut at Neuilly-sur-Seine,  designer François Denhaut parted ways with co founder Jérôme Donnet who then switched from aircraft manufacturing to become an automobile manufacturer with the acquisition of Automobiles Zedel of Pontarlier in the Doubs area of France from whence he marketed the Donnet-Zedel CI-6 a Zedel design originating from 1912. In August 1924 the production of a chassis for the all new four cylinder 1098 cc Donnet Zedel Type G commenced in a new factory at Gennevilliers, Seine with final assembly of the new model taking place at the former and Donnet flying boat factory on the Ile de la Jatte. The 16 hp side valve engine featured magneto ignition and a two bearing crankshaft and it drove the rear wheels through a four speed gearbox. A foot brake operated on the drive shaft and the hand brake operated the drums on the rear axle. The Donnet G2; with a revised chassis, standard 2 blade engine cooling fan, four wheel drum brakes, relocated hand brake lever, and more substantial rear axle, was launched in May 1926 when Zedel was dropped from the brand name. The car seen here is believed to have originally been resident near Avignion. It came to the UK in 1981, and was rescued from a field in 1989 and then underwent a restoration which resulted in it being first registered in the UK in October 1992. A total of 13,400 Donnet G2s are believed to have been built between May 1926 and October 1928 and this example is one of only two G2s and three Donnets known to exist in the UK.

 photo Picture 069_zpsd66f1jdf.jpg

HOTCHKISS

Hotchkiss cars were made between 1903 and 1955 by the French company Hotchkiss et Cie in Saint-Denis, Paris. The badge for the marque showed a pair of crossed cannons, evoking the company’s history as an arms manufacturer. The company’s first entry into car making came from orders for engine components such as crankshafts which were supplied to Panhard et Levassor, De Dion-Bouton and other pioneering companies and in 1903 they went on to make complete engines. Encouraged by two major car distributors, Mann & Overton of London and Fournier of Paris, Hotchkiss decided to start making their own range of cars and purchased a Mercedes Simplex for inspiration and Georges Terasse, previously of Mors, was taken on as designer. The first Hotchkiss car, a 17 CV four-cylinder model, appeared in 1903. The engine of the 20 CV type C was heavily based on the Mercedes Simplex except that wherever possible it used ball bearings rather than plain ones (including the crankshaft) and except the Hotchkiss drive. Six-cylinder models, the types L and O followed in 1907. The ball bearing engines lasted until the 30CV type X of 1910. In that same year Hotchkiss moved into a smaller car market with the 2212cc type Z. With the outbreak of World War I, the factory turned to war production and a subsidiary plant was opened in Coventry, England. Car production resumed in France 1919 with the pre war types AD, AD6, AF and AG. During World War I, they produced machine guns and tested them from the factory roof. After an attempt to enter the luxury market with the AK, which did not get beyond the prototype stage, the company decided on a one model policy and introduced the Coventry designed AM in 1923. Later that year the Coventry plant was sold to Morris. Henry Mann Ainsworth (1884–1971) and Alfred Herbert Wilde (1889 – 1930) who had run it, moved to Paris to become general manager and chief engineer of the car division respectively. In 1926 construction of the new factory in the Boulevard Ornano was completed and in 1929 Hotchkiss got hold of a steel press allowing in-house manufacture of steel bodies. The one model policy lasted until 1929 when the six-cylinder AM73 and AM80 models were announced. “73” and “80” stood for the bore of the engines used, a naming theme picked up again later in 1936 after a brief hiatus.

 photo Picture 636_zpspka3wict.jpg

MATRA

There was just one example of the very pretty Murena here this time.  Launched in late 1980, this three seater coupe, offered in 1.6 and 2.2 litre guises, had a short production life as Matra needed the space to built the Espace when that came on stream in 1984. Just over 22,000 Murena were made, and the car was never officially sold in the UK, though I do recall learning from one of the owners whom I spoke with at a previous event, that there are around 40 of them now living in the UK. Parked up behind it was the car’s predecessor, the Bagheera.

 photo Picture 530_zpsex5ddwlg.jpg

There was just one example of the now highly-thought of Rancho. Thought of as a leisure activity vehicle, the Rancho was created by the French engineering group Matra, in cooperation with the automaker Simca, to capitalise on the off-road trend started by the Range Rover, with an “off-road look” offered at a much lower price than the British car. The Rancho was launched in 1977. Designed by Antonis Volanis, the Rancho was based on the pick-up version of Simca’s popular 1100, using its front structure and a stretched chassis. The rest of the body was made by Matra from fibreglass and polyester, including the mouldings adorning the body, which made it look more “sturdy”. This technology would later be used on the Renault Espace,  as well. The ground clearance was also increased. Unlike most off-roaders, it was not fitted with all-wheel drive, retaining the 1100s front-wheel drive layout. Other elements retained from the 1100 included the dashboard and front seats which were identical with the ones found in the Simca 1100 GLS. The Rancho was powered by the 1442 cc, 80 bhp version of the “Poissy engine” straight-4 engine. The Rancho’s optional third row of seats (making it an early MPV) shared head restraints with the normal rear seats. Sales of the model were quite respectable, but they could do nothing to alleviate the larger problems at Chrysler Europe (Simca’s parent company). Chrysler finally sold its European arm to PSA in 1978, which was then rebranded as Talbot in 1979. The Matra-Simca Rancho became the Talbot Matra Rancho. Production continued until 1984, and 57,792 were made. During its life, the Rancho was offered in several versions. Apart from the basic Rancho, there was the Grand Raid, around 2000 of which were built, fitted with such “off-road” extras as an electric winch on the front bumper and the spare wheel mounted on the roof – as well as a limited-slip differential. The Rancho X was the upscale model, with additional standard items such as alloy wheels and metallic paint. The Découvrable model’s rear cabin consisted of an open frame with roll-down fabric covers, which could serve as an “open” car during good weather. Finally, the Rancho AS was the commercial version, with no rear seat, making it exempt from the French tax on passenger cars. Rarest of the lot was the Midnight, only 100 of which were made. Although the bodies do not rust, the mechanicals are less durable, so there are not that many survivors, down to just single figures in the UK, sadly.

 photo Picture 779_zpsbecpl3up.jpg  photo Picture 780_zpsd1e3aqn0.jpg  photo Picture 778_zpsgbefbrkm.jpg  photo Picture 777_zpskjkex47f.jpg  photo Picture 775_zpsovobjmru.jpg  photo Picture 776_zpsprzmmyid.jpg

MORS

This is a 1904 Mors 32hp with Roi de Belges tourer bodywork.

 photo Picture 638_zpsnrzp5fez.jpg  photo Picture 637_zpshc54p6rg.jpg

PANHARD

This is the second Dyna PL17 of the day, belonging to Sam Glover, well known for his columns in the classic car press and for his enthusiasm for odd and obscure cars.

 photo Picture 554_zpsolg86sxy.jpg  photo Picture 555_zpsbdlbznlf.jpg  photo Picture 1112_zpsuvcfkdxd.jpg  photo Picture 813_zpscud8wo3b.jpg  photo Picture 885_zpshyv5ihjh.jpg photo Picture 884_zpsx5bqljcs.jpg

This rather attractive car, a Panhard 24CT, would turn out to be the last model from this French marque before Citroen, who had bought the company in 1955, would decide to kill the brand off. The Panhard 24 was launched in 1964 and was produced for three years. It was powered by a front-mounted air-cooled two-cylinder boxer motor: the basic design of this unconventional engine dated back to the 1940s. In 1965 a lengthened Panhard 24 was launched and promoted as a two-door four- or five-seat saloon. Plans for a four-door version which might have enabled the car more effectively to replace the commercially successful Panhard PL 17 saloon were never implemented, however. The car received a memorable press launch on 23 June 1963. A two tone Panhard 24 CT coloured in plum and grey was presented (although two tone paint work would not be a regular feature of the production versions). Journalists were shown the car in a large garden near Montlhéry, with a back drop of antique statues and rose bushes, complemented by imaginative lighting effects. Two versions were offered from 1964, the 24 C and the 24 CT. They were promoted respectively as a four-seater and as a 2+2, but they shared a wheelbase of 2,290 mm (90.2 in) and the same interior dimensions. The C had a relatively basic interior and an advertised engine output of 42 bhp (DIN) equating to 50 bhp (SAE): relatively few were sold and this version was dropped after a year. The CT was more luxuriously equipped and boasted an engine output of 50 bhp (DIN) equating to 60 bhp (SAE). The CT would prove more popular: but overall sales volumes were from the start lower than Panhard had anticipated for the car, which may have contributed to arguments against progressing development of the four-door version that had been envisaged. In 1965, the 2,550 mm (100.4 in) wheelbase versions became available, offering space for four or five, but still only with two doors. These were designated the Panhard 24 B and the Panhard 24 BT. Equipment levels and engine options were as for the shorter C and CT versions. In 1966, possibly in a belated bid for the mass market, a stripped down basic version, the Panhard 24 BA was offered. In contrast to the 24s offered for sale thus far, this one had a very basic interior. Even the lidded glove box was replaced by an open shelf. Only 161 24 BAs were produced, although enthusiasts have suggested that they nevertheless compromised the upmarket image of the more expensive versions. Although the Panhard 24 had a new modern body, the engine was an old friend. The two-cylinder air-cooled boxer motor of 848 cc, harked back to the 850 cc engine that had first appeared in the Panhard Dyna X in 1952 (itself an enlarged version of Panhard’s 610 cc boxer motor first seen in 1947). By 1954 when they appeared in the then newly announced Dyna Z these engines had been developed to the point where they produced a claimed output of 42 bhp or 50 bhp, according to version, and it was with these two output levels that the engine soldiered on in both the PL 17 and, subsequently, in the 24. The engines were compact and efficient, but they had originally been developed for aluminium bodied cars: by the 1960s it was no longer economically practical to construct cars in this price bracket out of aluminium, and while the Panhard 24 was not a heavy car, it was heavier than earlier Panhard saloons. At the same time, the competition had not been standing still. The claimed maximum speed ranged from 135 km/h (84 mph) for the long-wheelbase 42 bhp Panhard 24 to 150 for the short-wheelbase 50 bhp version. A slightly faster Tiger 10 S-engined version was reportedly capable of 160 km/h (100 mph). The 24’s performance was adequate, but probably fell short of the expectations triggered by the car’s sporty profile. And power delivery from an air-cooled flat two-cylinder engine did not sound as effortless as from the four-cylinder water-cooled power units on which the European auto industry by this time was increasingly standardising for the middle market. It has also been suggested that engine reliability suffered because many of the younger generation of car mechanics were not fully familiar with all the eccentricities of the Panhard power plants. Also familiar from a succession of post war Panhard saloons was the four-speed all-synchromesh gear box and the front-wheel-drive configuration. The wheels were independently suspended with telescopic shock absorbers and a torsion bar for the rear axle. The drum brakes with which the early 24s were delivered drew criticism for inadequate stopping power and excessive vibration: after 1965 the 24BT and 24CT received front disc brakes which addressed the problem. The interior was very well-appointed for this size of car, reflecting a determination not to let the car compete on price in the volume end of the small car market (already by now contested by the Citroën Ami). The Panhard 24 was one of the first cars to offer optional seat belts. The front seat backs were adjustable for rake and the seats were also – unusually at this time – adjustable for height. The passenger’s sun visor included a vanity mirror with its own light and the steering wheel was adjustable. The car also boasted an unusually elaborate heater. During 1964 and 1965 Panhard produced approximately 10,000 24s per year: 1966 saw that rate approximately halved. Still desperately short of production capacity, Citroën faced a choice between developing the Panhard 24 and perpetuating the Panhard brand, or using the capacity of the Ivry plant to increase further the output of the popular 2 CV vans. The vans won, and production of the Panhard 24 officially ended on 20 July 1967 after 28,651 had been built.

 photo Picture 1033_zps3a1zlsc1.jpg  photo Picture 851_zpsbbswkk6i.jpg  photo Picture 850_zpsyuy2msqh.jpg

PEUGEOT

There were no Peugeot models present at all on the first day, but a number did arrive for the Sunday, with some rare cars that you just don’t see very often any more.

Best known of them, and indeed the ones you see most often, were examples of the 205 GTi. Peugeot launched their new “supermini”, the 205 in January 1983, just one day after Fiat had presented the Uno, one of the car’s principal rivals. It was an immediate hit, with smart styling and a range of engines which combined with sharp handling made it good to drive. Mindful of the success of the Golf GTi, in the class above, and how a small car with good handling could take more power, as the Mini Cooper had proved, Peugeot came up with the GTi in early 1984. The first models had a 1.6 litre  XU5J engine, producing 105 PS, which was uprated in 1987 with a cylinder head with larger valves thus becoming XU5JA, which took the power output up to 115 bhp. Visually the car retained the good looks of the 3 door version of the regular models, but it featured plastic wheel arch extensions and trim, beefier front and rear bumper valances and judicious use of red badging and trim. The shell also underwent some minor changes, including larger wheel arches (to suit the larger wheels , and the suspension was redesigned and sat lower on the GTI with stiffer springs, different wishbones and a drop-linked anti-roll bar. Red was a dominant colour inside. The car was an instant hit. At the end of 1986, Peugeot followed up with a more potent model, the 1.9 GTi, whose XU9JA engine produced 128 PS.  Internally the engine of this car and the 1.6 model are very similar, the main differences on 1.9 litre versions being the longer stroke, oil cooler, and some parts of the fuel injection system. The shorter stroke 1.6 litre engine is famed for being revvy and eager, while the 1.9 litre feels lazier and torquier. Outside the engine bay the main differences between the 1.6 GTi and the 1.9 GTi are half-leather seats  on the 1.9 GTi  vs. cloth seats  and disc brakes all-round (1.9 GTi) vs. discs at the front and drum brakes at the back; as well as the 14-inch Speedline SL201 wheels on the 1.6 GTi  vs. 15 inch Speedline SL299 alloys on the 1.9 GTi. The 205 is still often treated as a benchmark in group car tests of the newest GTI models or equivalent. Peugeot itself has never truly recreated this success in future GTI models, although they came very close with the highly regarded GTI-6 variant of the Peugeot 306. A cabriolet version of the 205, known as the CJ (or CT in France), was designed and partially assembled by Pininfarina of Italy. A CTi version, with the same plastic arches and wheels as the 1.6 GTI was also available. Only minor changes were made to the car in the next few years, with the most obvious visual change being the switch to grey bumpers and trim from black ones in 1990, along with revised lights. A new dashboard had been incorporated across the entire 205 range a couple of years before this. Sales of the GTI in the UK in the early 1990s were badly hit by soaring insurance premiums, brought about by high theft and ‘joyriding’ of cars of this sort. Increasingly stringent emissions regulations meant the 1.6 GTi went out of production in 1992, while the 1.9 litre was sold for a couple more years thanks to re-engineering of the engine to enable it to work properly with a catalytic converter, which dropped power to 122 bhp. Many of them had a hard life, but there are some nice original cars out there and people are starting to spend serious money in restoring them.

 photo Picture 770_zpso9rqavk3.jpg  photo Picture 771_zpsespmighu.jpg  photo Picture 763_zpswkvkwy70.jpg  photo Picture 587_zpsdwpk9xle.jpg  photo Picture 1066_zpsuckfaoph.jpg  photo Picture 1065_zpsypvkiftc.jpg

I’ve seen this 504 pickup here before. It is a rare survivor of a model that was quite popular when new. The model was introduced in September 1979. The considerable work involved in converting the 504’s monocoque body into a load-carrying version had taken a full decade. The pickup used the longer wheelbase and live rear axle of the 504 Break. On introduction, it was available with very basic spec and single round headlights, fitted in plastic frames shaped like the 504’s “cat’s eyes.” The engine options were the 404’s 1618 cc petrol (U01) and 1948 cc diesel (U20); outputs are 62 and 49 PS  respectively. This was the only 504 sold with the 1.6-litre XC5 engine. As with most of Peugeot’s commercial vehicles, the 504 Pickup was assembled by Chausson. Cargo capacity was 1,100 kg (2,400 lb) for both versions; models exported to Africa were rated at 1,250 kg (2,760 lb) (V01/V20). A chassis cab model was also offered, and manufacturers such as Heuliez offered a number of different applications for the 504 chassis. Germany’s Bimobil even offered a demountable camper for the 504, weighing about 450 kg (990 lb). Around 300 of these were built, following an initial order of twenty made by Peugeot themselves. As with the regular 504, the pickup has rear-wheel-drive and a floor-shifted four-speed manual transmission. A locking differential was also standard. Late-model pickups were also available with a five-speed transmission. In July 1981, Dangel added a four-wheel-drive version of the Pickup. These were mainly purchased by French governmental agencies, as their procurement rules required them to purchase French when possible. About 5500 Dangel 4×4 Pickups were built until the model’s discontinuation in 1994. For 1982 the better equipped 504 Pickup GR was added, these received some chrome touches and luxuries such as a clock and door-mounted armrests. Externally, the GR was set apart by black rubber bumper overriders, different hubcaps and a modicum of chrome ornamentation (the standard version received a grille and bumpers painted light grey). By 1984, the chrome parts were dropped in favour of a cleaner, more modern appearance. The GR was renamed “Confort” in 1987, at least in the French domestic market. This is also when the 1.6 petrol option was discontinued. The GR received an 80 PS version of the 504’s 1.8-litre petrol engine, while the GRD had the 70 PS 2.3-litre diesel. The French models were then renamed “Entrepreneur” in 1988 (by now with a 2.1 Diesel) and was upgraded to the 2.3-litre diesel for 1990. Trim levels received differing names in various markets; in England, most later 504 Pickups received “GL” badging. For 1995 and 1996, subsequent to the end of pickup production in France, Argentinian 504 Pickups were exported to France. These can be recognised by the large modernised front bumper and redesigned dashboard.

 photo Picture 774_zpslh9z9wy5.jpg  photo Picture 656_zpsmhcfzq2u.jpg  photo Picture 1023_zpsiw4mffoy.jpg

A car I’d not seen here, or indeed anywhere else, before was this 305 Estate Automatic. During the mid 1970s, the motoring press speculated that a new Peugeot would soon arrive, in order to update the company’s model lineup, in an attempt to make the Peugeot more internationally appealing. Since Peugeot had only recently discontinued their long-running 404 model, many people thought that the purpose of the new car would to fill the gap, previously occupied by the 404, between the 304 and 504 models, to compete against cars like the Ford Cortina/Taunus and Renault 12. It therefore would have been natural for the new car to be called the 405, commencing a new “05” generation of Peugeot models. The car was to be developed from and use the running gear from the smaller 304, but in terms of size and price, it was to succeed the already-defunct 404, especially considering that the top model in the new range would cost more than the entry-level 504, and that the 304 would remain in production some time after the new car was introduced. Instead of being called the 405, the new car was called the 305. When it made its press début in November 1977, the motoring press were initially confused as to why it was called a 305 rather than a 405, but it sold well anyway. It was similar in size to its French competitor the Renault 18, which was launched around the same time. Across Europe it competed with cars like the Ford Cortina/Taunus, Vauxhall Cavalier/Opel Ascona and Simca 1307/Chrysler Alpine. The Peugeot 305 was unveiled in November 1977, and was initially available as a four-door saloon with a choice of two petrol engines: a 1,290 cc, 65 PS (64 hp) unit for the GL and GR models or a 1,472 cc, 74 PS (73 hp) for the top-specification SR model. Four months later Peugeot announced the 305 GRD, discreetly identified from the outside by the letters “GRD” on the left side of the boot lid, and powered by a 1,548 cc diesel unit incorporating an aluminium engine block with an overhead camshaft along with a Bosch injector pump, and offering up to 50 PS (49 hp). At Paris 1980, the sportier 305 S with twin carburettors and 89 PS (88 hp) was introduced. After the 1982 facelift, the top model became the GTX, with 105 PS). The 305 was the first of the “05” generation of Peugeots, a generation which survived until the end of 605 production in 1999. Despite the performance limitations of the smaller engine, the gearbox in all 305s was excellent, with extremely precise and light gear changes.[citation needed] The 305 combined a front-wheel-drive car with an excellent and durable gearbox. On the downside, there was no fifth gear provided but, especially at motorway speeds, the four gears gave the 305 the maximum power it needed in fourth. Peugeot was reported to have said that the car had no difficulty reaching 95 mph (153 km/h) if pushed to the limit. Its key competitors were the Ford Escort, Volkswagen Golf & Opel Kadett/Vauxhall Astra, but it was actually considerably larger than most other cars in its class. In fact, it was almost as large as the Ford Cortina, Opel Ascona/Vauxhall Cavalier & Fiat 132. Power came from 1.3 litre or 1.5 litre petrol and 1.55 litre diesel engines and later, after the facelift, the 1.5 litre was replaced by a 1.6 litre and a Peugeot 1.9 petrol and XUD diesel engine were added. These were the same as used in the Talbot Horizon, a model acquired in 1979 when Peugeot took over Chrysler’s European division and rebranded it as Talbot. The facelifted ‘series 2’ models arrived at the Paris Salon in late 1982, to keep the 305 competitive with newer designs like the Ford Sierra and the new version of the Vauxhall Cavalier/Opel Ascona. They had revised frontal styling, new improved front suspension and steering, a new dashboard and a modified under bonnet and subframe layout to allow the new generation of XU series engines with 5-speed gearbox to be fitted. Thus switching from the Mini type in-sump gearbox arrangement used also in the 204 and 304 to the now-universal end-on gearbox configuration (pioneered by Fiat in the 1960s Autobianchi Primula), of front-wheel drive with a transverse engine and a gearbox on the end of the engine and unequal-length drive shafts. However, the GL / GR and van models continued to use the earlier XL/XR series engines with four-speed gearbox for a few more years. Sales of the 305 were strong in France and most other countries where the car was sold, In Britain, its original competitors were the Ford Cortina MK4, Vauxhall Cavalier MK1 and Morris Marina. It was launched around the same time as its key French rival, the Renault 18. Later in its production life, it was competing with newer rivals including the Ford Sierra, MK2 Vauxhall Cavalier, Austin Montego, Renault 21 and the British-built Nissan Bluebird. In 1979, the 305 won 1979 the What Car? Car of the Year in the United Kingdom, although it was largely overlooked by the motoring press for that year’s European Car of the Year award, who voted the Chrysler/Simca Horizon as the winner, the Fiat Ritmo/Strada in second place and the Audi 80 in third place. The body was done by Italian stylist Pininfarina and was completely new. It was all-steel monocoque which strongly resembled the BMW 3 Series of the time. The design is based on Peugeot’s ‘VSS’ prototype safety vehicle, which Peugeot created to improve car safety. This meant that the car had front and rear crumple zones, side impact protection, a protected fuel tank and bolt-on front wings. Three bodystyles were available, consisting of a conventional three-box four-door sedan, a five-door station wagon, and a three-door panel van. A series of aerodynamic research studies called VERA (Véhicule Économe de Recherche Appliquée, “applied research in economical vehicles”) was also begun in 1981. The diesel VERA was significantly lightened (from 925 to 750 kg or 2,040 to 1,650 lb) and made more aerodynamic. A large rear wing, skirts covering parts of the rear wheels, and deeply scalloped sections behind the front wheels were all noticeable. The Cx was reduced from 0.44 to 0.319, helping lower fuel consumption between 33 and 38 percent. At the 1982 Geneva Salon the VERA 02, with a 1,362 cc turbodiesel, was shown, and the more radical VERA Plus followed later in 1982 – this was no more than a thinly veiled Peugeot 309 prototype. The 305 estate marked the debut of the now standard PSA Peugeot Citroën rear suspension layout. This is fully independent using trailing arms. It is very compact and was designed to minimise suspension intrusion into the wide flat loadspace, while providing excellent ride and handling. This was later developed (in other Peugeots) to use torsion bars instead of the 305’s horizontal coil springs, and it was a key ingredient of the success of the Peugeot 205. The torsion bars system was very similar to those used by Renault and Simca for many years previously. Production of saloons ceased in 1988, following the launch of the slightly larger and more powerful Peugeot 405, which was a much stronger seller in the United Kingdom. Production of 305 estates and vans ceased in 1989. The diesel engine fitted to the phase 2 305 was capable of over 50 mpg (Imp). The engine at the time was regarded as the best diesel around where most other engines notably those from Volkswagen and British Leyland sounded agricultural in comparison. Although it was a reasonably common sight on Britain’s roads throughout the 1980s and until well into the 1990s, just 76 examples of the 305 were reported to be on Britain’s roads by February 2016.

 photo Picture 658_zpssadcbifz.jpg  photo Picture 657_zpsnngbwwvj.jpg  photo Picture 659_zps1z0zyqu9.jpg  photo Picture 660_zpsddbf08s7.jpg  photo Picture 1025_zps0ttv6yri.jpg  photo Picture 1024_zpsaesewy8g.jpg

There were not one, but two of the 304 Cabriolet here (and a further one in the car park on the Sunday). This had only 2 seats, unlike the coupe, and is the only version of the 304 that exists in any significant numbers in the UK today, as most saloons imported were destroyed by corrosion. Just under 19,000 cabriolets were produced from 1970-1975, of which 836 were produced in right hand drive and imported into the UK.

 photo Picture 769_zpsgavsicrx.jpg  photo Picture 768_zpsrakhxpc8.jpg  photo Picture 765_zps1iv4cdtm.jpg  photo Picture 764_zpsrj3tjtoa.jpg  photo Picture 767_zpsguohjt74.jpg photo Picture 766_zpsechy98j5.jpg

Final Peugeot here was a 204 Estate, perhaps even rarer than those 304s. The Peugeot 204 was launched in Paris, France on 23 April 1965 and was Peugeot’s first venture into the world of front wheel drive. The car came with a single overhead cam aluminium alloy transversely-mounted 1130 cc petrol engine (the maximum allowed for the 6CV ‘car tax’ class in France at the time), a format which would become the sine qua non of small cars over the next few years, but which was relatively unusual  in the mid 60s. The gearbox and differential were located directly below the engine block, and the 204 was also the first Peugeot to be equipped with disc brakes, albeit only on the front wheels. It was praised for its excellent handling, decent performance and good fuel economy. The compact engine and the transverse engine combined with a body wider than the class average to provide a level of interior space comparable to larger cars such as Peugeot’s own 404: both cars were Pininfarina designs. The 204 featured neither the fins of the 404 nor the sharp corners characteristic of the other major French launch of 1965. The resulting less aggressive look has been seen as a ‘more European’ moving away from a tendency to follow US styling trends that had been apparent in new car launches during the preceding two decades. The Peugeot 204’s frontal styling owed much to the 1961 Cadillac Jacqueline by Pininfarina, whilst its rear and that of the prototype Pininfarina styled Mini-based MG ADO 34 of 1964 are strikingly similar. The rear end of the 1970 Lancia Flavia Pininfarina Coupe of 1969–74 also displays the same influence. The options list was not extensive but, as with the larger Peugeot sedans, it was possible to specify a sliding steel panel sunroof. At launch only the four-door saloon version was offered, but the five-door ‘break’ estate came along less than six months later in the Autumn of 1965. 1966 saw the arrival of a two-door cabriolet and a three-door hatchback, marketed as a coupé. Both employed a shortened chassis and were priced only 20% above the level of the (admittedly not particularly aggressively priced) saloon. The range was completed in 1966 with the arrival of the ‘fourgonette’ van version which in most respects followed the design of the estate, but with only one door on each side and a steel panel in place of the side windows behind the B pillar. Towards the end of 1968, a 1255 cc diesel engine option became available for the 204 Estate and Fourgonette (van) versions. At the time, this is thought to have been the smallest diesel engine fitted in a commercially available car anywhere in the world. In April 1973 the diesel unit was increased in size to 1357 cc, and in September 1975 this diesel unit finally became an option on the 204 saloon. Fuel economy on the 204 Diesel was startlingly good, with overall fuel consumption at 5.7 litres per 100 km, but performance was correspondingly underwhelming with a claimed top speed of 130 km/h (81 mph). Out of the approximately 150,000 diesel 204s produced, fewer than 30,000 were saloons. When the Peugeot 204 was launched in 1965, obvious domestic market competitors were the Renault 10 and the Simca 1300. Both were rear-wheel-drive, and the Renault was rear-engined. Of the traditionally more avant garde competitors, Citroën produced, till 1970, only cars that were substantially smaller or substantially larger while Panhard, starved of product investment, had retreated into a low volume niche, offering a model which would soon be withdrawn in order to free up production capacity for small Citroën vans. For Peugeot, a traditional manufacturer of conventional bourgeois sedans, to launch a transverse-engined front-wheel-drive saloon, was startling: no secret was made of the extent to which the 204 had been inspired by British developments from BMC. The Peugeot was the same length as the Renault 10 and over 20 cm shorter than the Simca 1300, but its configuration conferred a clear space advantage, as subsequent model introductions from Simca in 1967 and Renault in 1970 appeared to acknowledge. Sales of the 204 got off to a cautious start, with no need to compete solely on price: the car was heavily trailed by press leaks so that by the time of its formal announcement over 5,000 had already been ordered unseen. By 1969 the 204 had nonetheless climbed to the top of the French sales charts and, together with the newly introduced 204 based 304, redefined the domestic market for small sedans in the process. The sales success of the 204 also moved Peugeot from fourth to second place in the French sales charts, overtaking Simca and Citroen in the process. In this case market share seems to have been increased without excessively compromising corporate profitability: the commercial rivals would each suffer a financial collapse, the businesses both coming under the control of Peugeot, within the next ten years. In the 1960s Europe was still for most purposes divided into national markets and 72% of the 204s produced were sold in France. Principal export markets within Europe were West Germany and Benelux. However, most western European markets took some 204s. In Africa the 204 never achieved the popularity of its larger siblings. Nevertheless, the 204 was not entirely unknown outside Europe. In the UK, the car was expensive. Launch cars listed at £903 when you could buy a much more plush Triumph 1300 for £835, so whilst the car was praised by the press for its dynamic attributes, its meagre levels of equipment were also an impediment to sales. 1969 had seen the launch of the Peugeot 304 which was essentially a 204 with a slightly larger engine, a restyled front end and, in the case of the saloon version, a substantially increased rear overhang giving rise to more luggage space. The 204 range was correspondingly pruned: the 204 coupé and cabriolet received the dashboard of the new 304 in 1969 only to be withdrawn in 1970, replaced by similarly bodied 304 equivalents. The estate and fourgonette continued to be offered, along with the saloon, until the 204 range was withdrawn in 1976. Although the model run lasted more than a decade, the Peugeot 204 changed very little during that time: very early saloons/berlines had a split rear bumper with numberplate set between the two halves, a flat rear panel and small oval tail lights. For 1975, the stainless steel front grill was replaced by a black plastic grill of the same overall shape. The gearshift for RHD UK cars was moved from the steering column to the floor and then in September 1975, less than a year before production ceased, it received a more modern petrol engine, now of 1127 cc. Claimed maximum output, which at launch had been 53 bhp, increased to 59 bhp, though there was a marginal reduction in maximum torque. Following the demise of the 204 the new 1127 cc engine found its way into a version of the Peugeot 304 estate: the smaller engine enjoyed in France tax benefits when compared to the 1290 cc engines fitted to most 304s. In 1976, when the 204 was withdrawn, it had been joined in the Peugeot range by the ‘supermini’ class Peugeot 104. Like the 203 before it, the 204 had no immediate replacement. Ultimately the hatchback Peugeot 205 introduced late in 1982 occupied a market position comparable to that occupied till 1976 by the 204. In the meantime the Peugeot 304 soldiered on until 1980, complemented since late 1977 by its 305 replacement. Once the 304 was being produced in tandem with its successor it could be priced more aggressively, so that customers who till 1976 would have chosen a 204 were able to afford what was virtually the same car with a larger engine and a larger boot.

 photo Picture 773_zps2ereo3ml.jpg  photo Picture 772_zpseihrofqa.jpg

RENAULT

There was a rather smaller collection of historic Renault models than has been at this event in previous years. Oldest of the display cars was a very early R4 from the first months of production.

 photo Picture 229_zpstdksdfsm.jpg  photo Picture 228_zpsye6kgbuy.jpg

The R12 Gordini was never officially sold in the UK. Launched in 1970, a year after the regular saloon model, the Gordini was equipped with the all-aluminium 1565 cc block from the R16 TS fitted with two double-barrel Weber carburettors producing 123 hp, a reinforced crankshaft, a five speed gearbox, ventilated disc brakes on the front wheels and normal disc brakes on the rear wheels, as well as a tuned suspension. The Gordini was able to reach 115 mph and was sold with paint schemes comprising a solid pastel colour (there were several to choose from) with double white stripes added on, the most famous combination being French Blue with stripes, as seen here. 2225 Renault 12 Gordinis were sold in 1971 but after that sales began a free fall. Renault stopped production of the Gordini in 1974 after 5188 had been sold.

 photo Picture 062_zpswbj8ceem.jpg  photo Picture 063_zpsucloo53l.jpg

The first “hot” Renault that achieved notable sales success in the UK was the one based on the first version of the R5. These cars were branded Alpine in their native France, but as that name was registered to Chrysler UK who had attached it to the family hatchback that was sold as the Simca 1307/1308 in Europe, Renault had to come up with an alternative. It was not hard. They chose Gordini and the model was launched in the UK in early 1979. As the market for hot hatches started to take off, and everyone seemed to be adding a Turbo to their cars, Renault followed suit and in 1982 created a more powerful pocket rocket with a R5 Gordini Turbo, or R5 Alpine Turbo for left hand drive markets, as is the case with the car seen here.

 photo Picture 231_zpsi0aujbxd.jpg  photo Picture 216_zpsnxegoihv.jpg  photo Picture 583_zps8aweg5kz.jpg  photo Picture 582_zpsodat6zc0.jpg

Eighteen months after the debut of the second generation R5, the “supercinq” as it is sometimes known, Renault produced their response to Peugeot’s 205 GTi, the R5 GT Turbo. Many were convinced that this was a better car, though it did have a reputation for unreliability and hot starting was quite an issue with fuel vaporising in the carburettor as the engine cooled. It used a modified four cylinder, eight-valve Cléon 1,397 cc engine, a pushrod unit dating back to the 1962 original (in 1,108 cc form). It was turbocharged with an air-cooled Garrett T2 turbocharger. Weighing a mere 850 kg (1,874 lb), and producing 113 hp, the GT Turbo had an excellent power-to-weight ratio, permitting it to accelerate from a standstill to 60 mph in 7.5 seconds. To differentiate it from the standard 5, it came with blocky plastic side skirts. Unfortunately, turbo lag was an issue, along with poor hot starting, and it was considered rather difficult to control. The same engine was used, with similar issues, in the Renault 9 and 11 Turbos. In 1987, the facelifted Phase II was launched. Major changes in the Phase II version included installing watercooling to the turbocharger, aiding the Phase I’s oil-cooled setup, which extended the life of the turbo. It also received a new ignition system which permitted it to rev 500 rpm higher. These changes boosted engine output up to over 118 hp. Externally, the car was revamped, with changes (including new bumpers and arches) that reduced the car’s drag coefficient from 0.36 to 0.35. Giving the Phase II a 0–100 km/h time of 7.5 secs. In 1989 the GT Turbo received a new interior, and in 1990 the special edition Raider model (available only in metallic blue, with different interior and wheels) was launched. In late 1991 the Renault 5 GT Turbo was discontinued, superseded by the Clio 16v and the Clio Williams. Survival rate of the R5 GT Turbo is low and few cars are particularly original, so this was nice one to behold.

 photo Picture 663_zpsjeyrm7pg.jpg  photo Picture 664_zpsarrdyc2f.jpg  photo Picture 058_zps3durgihl.jpg  photo Picture 057_zpskgpzcqnk.jpg

Rarer still now is the R21 Turbo. Produced when just about every manufacturer rushed to strap a turbo onto their regular cars, to create versions with higher performance (and often some challenging dynamics), the R21 Turbo was launched in 1989, around the time of the facelift of the model which had originally been seen in late 1985. There was a Quadra four wheel drive version as well as the standard front wheel drive car.

 photo Picture 065_zpsv0qfmst6.jpg  photo Picture 064_zpsod1mym3m.jpg

There were two examples of cars which were really created for motorsport purposes. Earlier of these was an R5 Turbo 2. Launched at the Brussels Motor Show in January 1980, the car was primarily designed for rallying, as a response to Lancia’s rallying success with the mid-engined Stratos, Renault’s Jean Terramorsi, vice-president of production, asked Bertone’s Marc Deschamps to design a new sports version of the Renault 5 Alpine supermini. The distinctive new rear bodywork was styled by Marcello Gandini at Bertone. Although the standard Renault 5 has a front-mounted engine, the 5 Turbo featured a mid-mounted 1397 cc Cléon-Fonte turbocharged engine placed behind the driver in mid-body in a modified Renault 5 chassis. In standard form, the engine developed 160 PS. At the time of its launch it was the most powerful production French car. The first 400 production 5 Turbos were made to comply with Group 4 homologation to allow the car to compete in international rallies, and were manufactured at the Alpine factory in Dieppe. Once the homologation models were produced, a second version named Turbo 2 was introduced using more stock Renault 5 parts replacing many of light alloy components in the original 5 Turbo version. The Turbo 2 was less expensive, but had nearly the same levels of performance, top speed of 200 km/h (120 mph) and 0–100 km/h in 6.9 seconds. A total of 3576 R5 Turbos were manufactured during a four-year production run.

 photo Picture 670_zpsjaiblvu9.jpg  photo Picture 1026_zpsxmgpdy25.jpg

Renault decided to have another go at something not dissimilar, with the Renault Clio V6 Renault Sport, to give the car its full and rather cumbersome name. This was a rear mid-engine, rear-wheel-drive layout hot hatch based on the Renault Clio launched in 2001, very much in the same style as the earlier mid-engined R5 Turbo models of the 1980s.  Designed by Renault,  the Phase 1 models were built by Tom Walkinshaw Racing and Phase 2 were designed and helped by Porsche and built by Renault Sport in Dieppe. The Clio V6 was based on the Clio Mk II, though it shared very few parts with that car. The 3.0 litre 60° V6 engine, sourced from the PSA group. It was the ES9J unit as used in the Peugeot 406, 407 and  607, and the Citroen C 5 and not the one that Renault used in the 3 litre Laguna engine, which had an PRV (Peugeot, Renault & Volvo) an earlier development 90° V based on a V8 that never was. For this car it was upgraded to around 227 bhp and placed in the middle of the vehicle where the more ordinary Clios have rear seats – making this car a two-seater hot hatch. In order to accommodate the radical change from front-engine, front-wheel drive hatchback to mid-engine, rear-wheel drive two-seater quasi-coupé, the car had to be extensively reworked structurally, leading to the Phase 1 version being some 300 kg (660 lb) heavier than the sportiest “regular” Clio, the 172 Cup. Due to this, even though the V6 model had significantly more power, it was not remarkably faster in a straight line accelerating to legal road speeds than the 172 Cup – accelerating to 60 mph in 6.2 seconds compared to the Cup’s 6.7 seconds – though its maximum speed was significantly higher at 146 mph compared to 138 mph. Opinions varied on the handling, but many found it very twitchy and the car soon a gained a reputation for breaking away with little warning. That was largely addressed by the Phase 2 cars which were launched in 2003. The front end took on the same sort of new design as had been applied to the regular models. The engine was upgraded, to make the Phase 2 Clio V6 the most powerful serial produced hot hatch in the world with 255 bhp exceeding the 247 bhp of the Alfa Romeo 147 GTA and the 222 bhp SEAT León Cupra R. Based on the Phase 1 engine, its extra performance was helped with assistance from Porsche  and although the Phase 2 gained even more weight, the result was a a reduced 0–60 mph run at 5.9 seconds and a top speed of 153 mph. Though based on a utilitarian hatchback, the Clio V6 was not a practical family car. With an average fuel consumption of 24 mpg, this resulted in an empty fuel tank in just over 300 miles. The loss of the back seats and most of the boot space, due to the engine placement, resulted in a severe restriction in luggage space – there was only a small space in the front where the engine used to be, suitable for a holdall or week-end groceries, a small netted area behind the seats plus a small stash area under the tailgate. The enhanced steering made tight manoeuvring a little challenging, the turning circle being a rather awkward 13 m (42.7 ft) – around three car lengths – turning what might normally be a three-point turn into a five-point turn.  Standard equipment in the car was good, this was not a stripped-out special, and it included rain sensing windscreen wipers, automatic headlights, air conditioning, and six speakers and CD changer. The Phase 2 Clio V6 retailed for £27,125 in the United Kingdom, until it was withdrawn from sale in 2005 coinciding with a facelift for the Clio range. The Phase 2 was received far more enthusiastically by the ever-critical UK press. These days there is no doubting the fact that this is a a modern classic.

 photo Picture 581_zpsaiv8ujo9.jpg  photo Picture 675_zps4wasquhr.jpg  photo Picture 1111_zpsnjvnssn5.jpg  photo Picture 672_zpsyhbapsn6.jpg  photo Picture 854_zpsms7ncu4d.jpg  photo Picture 855_zpstiukvl9o.jpg  photo Picture 853_zps6knubpbd.jpg  photo Picture 856_zps8i0csese.jpg  photo Picture 857_zpsv5dapgtf.jpg  photo Picture 852_zpsxcexfna7.jpg  photo Picture 671_zpsrd99jnyl.jpg  photo Picture 1110_zpspqdrrau0.jpg  photo Picture 674_zpsucygke57.jpg  photo Picture 1036_zps7pees4ty.jpg  photo Picture 1035_zpsjlvqeapm.jpg  photo Picture 1034_zpscgwuzds7.jpg  photo Picture 673_zpsa5xqy0b9.jpg  photo Picture 647_zpskyfsdb7a.jpg

You don’t see one of these very often, the Renault Sport Spider that was made in small quantities between 1996 and 1999. The idea for the Renault Spider was formulated in the early 1990s: in the midst of a revival after a difficult second half of the 1980s, Renault wanted a car to promote it as a sporting brand in much the way the Renault 5 Turbo had done a decade earlier. The Spider was intended to both serve as a racing car, in a one-make series organised by Renault, and as a road car. The first prototypes for Project W94, as it was known at the time, were completed in mid-1994 and a concept version was presented to the public at the Geneva Motor Show a year later. The concept featured several differences to the version that ultimately became the road car, most notably butterfly doors and the absence of a windshield. The car went on sale in early 1996, assembled at the Alpine factory in Dieppe. Designed from the outset as a driver’s car, the chassis was made of aluminium for its combination of low weight and substantial strength, while the actual bodywork is a plastic composite. Unusually, the Spider did not have a roof, either folding or hard-top. The gearbox and the engine were one unit transversally fixed in an oscillating hinge (an arrangement inspired by aeronautical design), which all but eradicated the interference of engine vibration with the chassis, and the pedals of the Spider were adjustable as well as the seat so the driver could achieve a better driving position. Power for the Spider came from a version of the 2-litre F7R engine from the Renault Megane Coupe, producing 148 hp. Either a windscreen or a small wind deflector was fitted, with the driver wearing a helmet in vehicles without a windscreen. Despite the promise of the design, the initial reviews were not particularly effusive and the car was expensive, so it struggled for sales. Around 1800 were made over a three year period.

 photo Picture 061_zpsdbdk1nik.jpg  photo Picture 060_zpsp3bfctpq.jpg  photo Picture 859_zpszqcdrl1m.jpg  photo Picture 858_zpsqqtudgce.jpg

Viewed as a modern classic these days, there were a couple of Avantime models present on the Sunday. Designed and manufactured by Matra, between 2001 and 2003, this one-box design without B-pillars was styled by Patrick Le Quément and was supposed to combine the space of an estate with the style of a 2+2 coupé. It was conceived by Philippe Guédon, head of the automotive division at Matra, who “believed that the children of Espace owners remained loyal to the car even after they had grown up and left home. As a result, the renowned estate was gaining a generation of new drivers.” It used the Espace as a base, which imposed some constraints, such as the central instrument display, but the marketeers turned that into something they called a part of the innovative character of the whole vehicle. The one-box design eliminated B-pillars and featured an aluminium structure, aluminium panels for the greenhouse and a full sunroof of strengthened heat-reflecting glass. The interior featured four seats each with built-in seatbelts and Bridge of Weir leather. To facilitate access to the rear seats, two long doors featured a double parallel-opening hinge system (marketed as “double-kinematic”) that maximized access with minimal outswing of the doors. Front side windows lowered automatically when either of the front seats folded forward to further facilitate entry to the rear two seats. Windows featured power-deployable sunshades, and the H-points of the rear two seats were higher than the forward two seats, giving the Avantime “theatre seating.” The luggage compartment featured a retaining system using retractable straps, and all Avantimes featured a two-tone look created by the exposed aluminium of the greenhouse. The windows and panoramic sunroof could open automatically via a single, headliner mounted control, to give the Avantime an ‘open air’ mode. The Avantime was first shown in February 1999 in concept form at a press launch in the Louvre, and one month later to the public at the Geneva Auto Show — where it was referred to as a “Coupéspace” — and went into production two years later, after the subsequent engineering of the pillarless roof to meet safety standards. The Avantime’s sales were poor. The car’s fortunes were not helped by the introduction of the Renault Vel Satis (another large, upmarket Renault) around the same time. When Matra decided to pull out of the automotive production business in 2003 (partly as a result of the financial loss incurred by the poor sales of the Avantime), Renault chose to discontinue the Avantime rather than move its production elsewhere. 8,557 were built from 2001 to 2003.

 photo Picture 580_zpslczo2lrq.jpg  photo Picture 579_zpsx4lbulju.jpg  photo Picture 782_zps5jbc8ayj.jpg  photo Picture 662_zpsykcamsvr.jpg  photo Picture 661_zpsda7dt7np.jpg  photo Picture 860_zpskyh8aq5x.jpg

More recent Renaults were from the sporting part of the range, with the Megane RS 230 R26 and the second generation Clio both represented.

 photo Picture 862_zpsehixk07i.jpg  photo Picture 863_zpsx53ckkpz.jpg  photo Picture 861_zpsfvgzs9ew.jpg  photo Picture 1027_zpsqau1kjds.jpg

RENAULT-ALPINE

Launched in 1961 the A110, like previous road-going Alpines, used many Renault parts, including engines. While its predecessor the A108 was designed around Dauphine components, the A110 was updated to use R8 parts. Unlike the A108, which was available first as a cabriolet and only later as a coupé, the A110 was available first as a Berlinette and then as a cabriolet. The most obvious external difference with the A108 coupé was restyled rear bodywork. Done to accommodate the A110’s larger engine, this change gave the car a more aggressive look. Like the A108, the A110 featured a steel backbone chassis and a fiberglass body. The A110 was originally offered with 1.1 litre R8 Major or R8 Gordini engines. The Gordini engine delivered 95 hp. The A110 achieved most of its fame in the early 1970s as a successful rally car. After winning several rallies in France in the late 1960s with cast-iron R8 Gordini Cléon-Fonte engines the car was fitted with the aluminium-block Cléon-Alu from the Renault 16 TS. With two two-venturi Weber 45 carburettors, the TS engine delivered 125 hp. This allowed the production 1600S to reach a top speed of 210 km/h (130 mph). The long-wheelbase Alpine A108 2+2 Coupé ended its run and was replaced with a new, restyled 2+2 based on A110 engines and mechanicals called the A110 GT4. The car achieved international fame during the 1970–1972 seasons competing in the newly created International Championship for Manufacturers, winning several events around Europe, earning a reputation as one of the strongest rally cars of its time. Notable performances from the car included a victory in the 1971 Monte Carlo Rally with Swedish driver Ove Andersson. With the buy-out of Alpine by Renault complete, the International Championship was replaced by the World Rally Championship for 1973, at which time Renault elected to compete with the A110. With a team featuring Bernard Darniche, Jean-Pierre Nicolas and Jean-Luc Thérier as permanent drivers and “guest stars” like Jean-Claude Andruet (who won the 1973 Monte Carlo Rally) the A110 won most races where the works team was entered, making Alpine the first World Rally Champion. Later competition-spec A110s received engines of up to 1.8 litres. As well as being built at Alpine’s own Dieppe factory, versions of the A110 were built under license by various other vehicle manufacturers around the world. From 1965 to 1974 the car was produced in Mexico under the name “Dinalpin” by Diesel Nacional (DINA), who also produced Renault vehicles. From 1967 to 1969 the A110 was also produced in Bulgaria under the name “Bulgaralpine” by a partnership formed between SPC Metalhim and ETO Bulet, whose collaboration also resulted in the production of the Bulgarrenault. In 1974 the mid-engined Lancia Stratos, the first car designed specifically for rally racing, was operational and homologated. At the same time it was obvious that the rear-engined A110 was nearing the limits of its development potential. The adoption of fuel injection brought no performance increase. On some cars, a DOHC 16-valve head was fitted to the engine, but it proved unreliable. Chassis modification, like the use of an A310 double wishbone rear suspension, homologated with the A110 1600SC, also failed to increase performance. On the international stage the Stratos proved to be the “ultimate weapon”, making the A110, as well as many other rally cars, soon obsolete. The A110 is still seen in events such as Rallye Monte-Carlo Historique.

 photo Picture 215_zpsabjo6qhu.jpg  photo Picture 214_zpsv4xuzq6a.jpg  photo Picture 230_zpso6qcbcgq.jpg

Also here was the more recent GTA, the first car launched by Alpine under Renault ownership (though Alpine had been affiliated with Renault for many years, with its earlier models using many Renault parts). It effectively updated the design of its predecessor, the Alpine A310, updating that car’s silhouette with modern design features like body-integrated bumpers and a triangular C pillar with large rear windshield. It used the PRV V6 engine in a rear-engined layout, with extensive use of Polyester plastics and fibreglass for the body panels making it considerably lighter and quicker than rivals such as the Porsche 944. It was one of the most aerodynamic cars of its time, the naturally aspirated version achieved a world record 0.28 drag coefficient in its class. The GTA name, used to denote the entire range of this generation, stood for “Grand Tourisme Alpine” but in most markets the car was marketed as the Renault Alpine V6 GT or as the Renault Alpine V6 Turbo. In Great Britain it was sold simply as the Renault GTA, Rather than being cast in a single piece as for the preceding A310, the new Alpine’s body was cast in a large number of small separate panels. This required a major overhaul of the Alpine plant, leaving only the sandblasting machinery intact. The car was also considerably more efficient to manufacture, with the time necessary to build a finished car dropping from 130 to 77 hours – still a long time, but acceptable for a small-scale specialty car. The PRV engine in the naturally aspirated model was identical to the version used in the Renault 25, a 2849 cc unit producing 160 hp. Also available was the smaller (2.5 litres) turbocharged model. The central backbone chassis (with outriggers for side impact protection) was built by Heuliez and then transferred to Dieppe – aside from the body, most of the car was subcontracted to various suppliers. At the time of introduction, daily production was ten cars. This soon dropped considerably, as the somewhat less than prestigious Renault had a hard time in the sports car marketplace. The average production for the six full years of production was just above 1000 per annum, or just above three per day. The first model introduced was the naturally aspirated V6 GT, which entered production in November 1984, although press photos had been released in September 1984. The car was first shown at the 1985 Amsterdam Rai, immediately after which it also went on sale. In July 1985 the Europa Cup model appeared; this limited edition model was intended for a single-make racing championship and 69 cars were built (54 in 1985 and 15 more in 1987). In September 1985 the turbo model followed, which increased the power of the PRV unit to 200 PS. At the 1986 Birmingham Show the right-hand-drive version was presented and UK sales, as the Renault GTA, commenced. In early 1987 a catalysed version appeared, with fifteen less horsepower. This meant that the Turbo could finally be sold in Switzerland, and later in other European countries such as Germany and the Netherlands when they adopted stricter legislation. The catalysed model had lower gearing in fourth and fifth gears, in order to somewhat mask its power deficit. In 1988 anti-lock brakes became available. For the 1989 model year the Mille Miles version appeared. With the non-catalysed engine, this model heralded a re-focus on the Alpine name. The Renault logo was gone from the car, with an alpine logo up front and a large “Alpine” print appearing between the taillights. However, as the name ‘Alpine’ could not be used in the UK the name Alpine was removed from cars destined for the UK; there was no large print at the back of these cars and a UK specific logo was fitted to the front of the car. The Mille Miles, a limited edition of 100 cars, also featured a special dark red metallic paintjob, polished aluminium wheels, and a large silver grey triangular stripe with the Alpine “A” across the left side of the front. In February 1990 the limited edition Le Mans arrived, this car had a more aggressive body kit with polyester wheel arch extensions and a one piece front with smaller headlights. Wheels were 3 piece BBS style produced by ACT, 8×16″ front & 10×17″ rear. Many of these changes were adopted for the succeeding A610. The regular V6 GT and V6 Turbo ended production during 1990, while the Le Mans version continued to be produced until February 1991. 325 of these were built in total. Also in 1990, Renault was forced to install the less powerful catalysed engine in cars destined for the home market, leading to grumbling amongst Alpine enthusiasts about the loss of power (down to 185 PS) while the 25 Turbo saloon actually gained power when it became catalysed. In response Danielson SA, a famous French tuner, created an upgraded version of the Le Mans with 210 PS.

 photo Picture 059_zps9w5jspq7.jpg

SALMSON

Salmson was a French engineering company, established by Émile Salmson as Emile Salmson, Ing. in a workshop in Paris in 1890, initially making steam-powered compressors and centrifugal pumps for railway and military purposes. Subsequently joined by engineers George Canton and Georg Unné, the company was renamed Emile Salmson & Cie, and they started building petrol-powered lifts and motors in 1896.  The company became one of the first to make purpose-built aircraft engines, starting before World War I and continuing into World War II. As part of expansion plans, the company decided to start car production, deciding to use their Billancourt factory for the purpose, as directed by Emile Petit. With no direct car design expertise, they started by building the British GN cyclecar under licence, displaying six cars at the 1919 Paris Salon. In 1922 the car part of the business became a separate company, named Société des Moteurs Salmson. The first Salmson car proper used a four-cylinder engine designed by Petit with unusual valve gear: a single pushrod actuated both inlet and exhaust valves pushing to open the exhaust and pulling to open the inlet. This was used in the AL models from 1921. Later the same year the company built its first twin-overhead-cam engine, which was fitted to the 1922 D-type, although most production at first used the pushrod engine. Salmson won 550 automobile races and set ten world records between 1921-28 before closing the racing department in 1929. The S-series cars took over from the D-type, starting in 1929 and this became a long lived series. A series of models followed in the 1930s. Production resumed after the Second World War with a car that was largely the same as the pre-war model. A new design was launched in 1950, but the company was bankrupt by 1953. Renault purchased what remained in 1957. A number of different pre-war Salmson models were on show at this event.

 photo Picture 068_zpsifyt9uhi.jpg  photo Picture 976_zpsjcvdv1tt.jpg

VENTURI

There only seemed to be one example of the Venturi here this year. Venturi Automobiles was a French-founded Monegasque-based automotive manufacturer, founded in 1984 by two engineers from Heuliez,  Claude Poiraud and Gérard Godfroy as MVS (Manufacture de Voitures de Sport). The company’s sole purpose was to compete in the “Grand Tourisme” market. However, this plan was immediately faced with many challenges, among them was Venturi’s almost unknown existence outside of France, another was Venturi’s under-capitalized and under-staffed state. The first Venturi came out in 1984, and it was presented as the only “Grand Tourisme” French car capable of competing with the English Aston Martin, the Italian Ferrari, and the German Porsche. From the mid-1980s to the mid-1990s, they built around 750 examples of these very elegant mid-engined coupés and roadsters with turbocharged PRV engines and Renault gearboxes. Engine power ranged from 213 to 264 PS for the Venturi Atlantique series. A limited-edition 400 GTR was built for racing homologation requirements and later used in the 24 Hours of Le Mans. Venturi was also briefly involved with the Larrousse Formula One team. The team’s 1992 car, which bore the Venturi name, was designed and built by Venturi Larousse UK, a British company formerly known as Fomet 1, which had previously designed the 1991 Fondmetal Formula One cars. High-level competition has also brought fame to the brand. Stéphane Ratel, who would later found the FIA GT Championship, was at the origin of the Venturi Gentlemen Drivers Trophy, which gathered an impressive array of 75 drivers. Venturi has also won fame through its brilliant performances in the 24 Hours of Le Mans, particularly in 1993 with Christophe Dechavanne and Jacques Laffite on Venturi Jaccadi team, and in 1995 with Paul Belmondo racing on the 600 SLM. However, it is in the BPR Global GT Series races that Venturi established its pedigree defeating Porsche and Ferrari on several occasions. In 1994 in Dijon-Prenois, with Ferté and Neugarten on the 600 LM Jaccadi, at the 1000 km of Paris with Henri Pescarolo and Jean-Claude Basso on the 600 LM, and finally at the 4 Hours Spa race, once again with Michel Ferté and Michel Neugarten. The 400 GT remains one of the best performing French cars ever produced, and it is in fact the very first car in the world to have standard carbon brakes. True to that claim, the Atlantique 400 GT with a 408 hp V6 3.0 24v DOHC twin-turbo delivered excellent performance to put it on par with Ferraris of the early 90s. The 400 GT could hit 100 km/h in 4.7 seconds and a 291 km/h (181 mph) top speed, while the 300GT with a 314 PS V6 did 4.9 seconds to 100 km/h and went all the way to 171 mph (275 km/h). But the company always struggled for capital, and in 200, was declared bankrupt. That was not quite the end of the story, as in 2001, Monegasque Gildo Pallanca Pastor purchased Venturi, and decided to focus on electric-powered engines. This change of direction led to the limited-production Fétish. In December 2009, Venturi announced its acquisition of French motorcycle manufacturer Voxan. The acquisition would effectively allow Venturi to enter the motorcycle market. In August 2011, Venturi announced the creation of Venturi North America, based in Columbus, Ohio. Venturi North America was primarily created as a research and development centre, and as such, maintains a close working relationship with the Centre for Automotive Research.

 photo Picture 217_zpscwpfv5ax.jpg  photo Picture 218_zpsk7lhs12e.jpg

PORSCHE of TEWKESBURY

Also in the Orchard this time were the local dealer who are now a sponsor of the site, Porsche of Tewkesbury. It really does not seem right to me that an event that has a French and an Italian them should have such a large presence of a German brand being almost the first thing you see as you arrive in the Orchard, but the reality is that venues and events like this need a lot of money just to continue and if a firm like Porsche of Tewkesbury is happy to provide some of that funding, then it keeps the venue alive and makes the ticket prices more affordable. And it’s not as if the cars that they brought along were not well worth a look, anyway. Centre of attention was the new 718 version of the Boxster, a mildly facelifted and updated version of Porsche’s entry level car, with the most controversial change being the switch to a 4 cylinder engine.

 photo Picture 033_zpsiigc2jdt.jpg  photo Picture 020_zpsntte6tke.jpg

There were examples of the rest of the range here, available for close-up inspection: Panamera S, a 911 Cabrio, and the popular Cayenne and Macan SUVs.

 photo Picture 034_zpsyqqx1anz.jpg  photo Picture 035_zpsmgww5sfa.jpg  photo Picture 1113_zpsccfpqbx9.jpg  photo Picture 036_zpshaqzxwsu.jpg  photo Picture 039_zpsl9ct2lsx.jpg  photo Picture 038_zps4azbk9uw.jpg

Of more interest to enthusiasts, perhaps, was this rather nice 997 generation GT3 RS 4.0

 photo Picture 027_zps3rqvqfpt.jpg  photo Picture 026_zpsyex05qfj.jpg  photo Picture 032_zps9ep0nfvx.jpg  photo Picture 031_zpsx5263ofl.jpg  photo Picture 488_zpswdo5jovx.jpg

All the Porsche dealers have been challenged to restore a classic model, with their efforts being judged in a competition, and Tewkesbury have chosen a 968. The completed car.looking better than new was on display and there was a further 968 Sport parked nearby.
 photo Picture 029_zps8pmk5hez.jpg  photo Picture 030_zpsmvdgilcf.jpg  photo Picture 028_zpsyyb359g9.jpg  photo Picture 074_zpswk0auulz.jpg  photo Picture 073_zpsxolbyvnr.jpg

A number of other Porsche models were parked up behind, with an array of 911 models – from a 964 Carrera 4 through 993, 997 and 991 generation cars, as well as a 944 Turbo, and 968 as well as a Cayman R.

 photo Picture 596_zps14sywjx6.jpg  photo Picture 145_zpsipmljde5.jpg  photo Picture 081_zpswiwkwwyy.jpg  photo Picture 075_zpsnne2nnzz.jpg  photo Picture 599_zpsid1tudlw.jpg  photo Picture 598_zpsrmpti5eh.jpg  photo Picture 597_zpsoogpy2bn.jpg  photo Picture 075_zpsnne2nnzz.jpg  photo Picture 821_zpsyspz1wek.jpg  photo Picture 825_zpsyczxmp4f.jpg  photo Picture 826_zpsvxyuctgz.jpg  photo Picture 827_zpsz1lzhffr.jpg  photo Picture 829_zpsrn8s7gee.jpg  photo Picture 823_zps4dngsr7l.jpg  photo Picture 820_zpsydetnufi.jpg  photo Picture 822_zpsucfne6o1.jpg photo Picture 830_zpsg0cdpi7r.jpg  photo Picture 824_zpsiub53rbb.jpg  photo Picture 828_zpspjaquu5g.jpg

OTHER ORCHARD CAR CLUBS

Plenty of other Car Clubs had requested space in the Orchard. As in previous years, this all seemed a bit hit and miss, with some of them having roped off areas, and others arriving and seemingly being unexpected by the marshalls, even though their members had the requisite parking pass to show it was all pre-planned.

COTSWOLD CLASSIC CAR CLUB

Returning for another year, this local club had only a small presence on the Saturday, and both the cars that I photographed had featured in their display in previous years, These were a Bentley Continental Type R and a rather nice BMW 318i 4 door Saloon of the E30 generation.

 photo Picture 120_zpsvx5nji6e.jpg  photo Picture 121_zpsleagzyww.jpg

THE MOTOR.NET

This is still the most popular in the calendar for TheMotor.net, an online community born out of the early Autocar forum, and to which I still belong. Had the theme not grown to encompass Italian cars, then I would have been parked with my friends in their reserved parking area, but as AOC event organiser, I had, really to park with the other Abarths. Between this group of friends, there are plenty of interesting cars, and there is always something new that has not been seen when the group has gathered together previously. Probably the biggest draw for most people who could seen trying to figure out what the commonality was in the group as they saw them all parked up, as Dan Duke’s Cayman GT4, a car which he ordered as soon as the dealer – Porsche of Tewkesbury, as it happens – opened the order books. He had a long wait, finally taking delivery in January this year, nearly 12 months after paying his deposit. It does look splendid.

 photo Picture 101_zpsbezytmru.jpg  photo Picture 102_zpsvhktkciq.jpg  photo Picture 110_zpsmuyckljg.jpg  photo Picture 109_zpsuup6qy5v.jpg  photo Picture 221_zpspoftfzmj.jpg  photo Picture 652_zpswaq5fyi2.jpg  photo Picture 651_zpsshpn1hwz.jpg  photo Picture 370_zps5fvm76qq.jpg  photo Picture 369_zpstzemtvhb.jpg  photo Picture 868_zpsebysh8n8.jpg  photo Picture 1028_zpsb0fghysu.jpg

In complete contrast is the Standard Big Nine belonging to vintage car enthusiast, James Swan. He’s had this for a few years now, and when the weather is good, and time allows – as progress in this machine from his Chipping Norton home is best described as “stately” – be does bring it along to Prescott, where it always attracts plenty of interest.

 photo Picture 107_zpshu0iht12.jpg  photo Picture 364_zpseppg45un.jpg  photo Picture 532_zps3zgjakzv.jpg  photo Picture 649_zpsymp0vmxm.jpg

Other cars that had not been brought to this event before included Mark Lee’s Land-Rover Defender, here as his TVR was not fit for the journey down from the North East, Bryan Macefield’s Lotus Elan which joins his growing fleet of cars, and Simon Plummer’s Audi A3.

 photo Picture 104_zpskgxe1sog.jpg  photo Picture 106_zps6rce5cyc.jpg  photo Picture 366_zpseniv6qsp.jpg  photo Picture 363_zpsi4ye6mf6.jpg  photo Picture 365_zpsdw8wo4yt.jpg  photo Picture 113_zpst74csi09.jpg  photo Picture 112_zpssi6mcqjk.jpg  photo Picture 655_zpsrlzb1eku.jpg

Making reappearances were Andy Convery’s characterful Ford Focus ST, complete with subtle Mountune extra oomph, Piers Roache’s BMW 135i which he acquired just over a year ago, replacing a much-loved previous generation 130i that he had kept for many years an awful  lot of miles, Dan Grazier’s Mercedes C350 CDi, Ed Barnes’ Porsche 993 and Peter Geddes’ Jaguar XF-R which almost certainly wins the prize for the best sound, with its V8 engine and non-standard exhaust.

 photo Picture 362_zpsdtvfdf0z.jpg  photo Picture 361_zpsruhs108j.jpg  photo Picture 533_zpscng8ivg2.jpg  photo Picture 531_zpsclm0jy1f.jpg  photo Picture 111_zpse6fdgued.jpg  photo Picture 108_zpscadlgqic.jpg  photo Picture 119_zpsh5mgfxaz.jpg  photo Picture 368_zpsx7ddj8ff.jpg  photo Picture 653_zps4tgmssuz.jpg  photo Picture 103_zpsbdk2to4y.jpg  photo Picture 105_zpsdyr25m0x.jpg  photo Picture 367_zpseyctoabq.jpg  photo Picture 220_zpsv9xc7asn.jpg  photo Picture 219_zpsqj3ejvpv.jpg  photo Picture 654_zpsghnfq3mr.jpg

At the end of the first day, we adjourned a few miles up the road to the Teddington Hands Inn, for a much needed beer and a meal. That it happened to be a birthday for one of the group made it an even more special evening, of course. Some of the group went on a slightly circuitous route to get there. Well, if you have a Cayman GT4 and the Seven Bends roads is near by, you just would, wouldn’t you?

 photo Picture 557_zpsndlmmts4.jpg  photo Picture 560_zpskejyh3st.jpg  photo Picture 561_zpshicmderz.jpg  photo Picture 558_zpsipspdhzu.jpg  photo Picture 559_zpss0fmotvg.jpg  photo Picture 562_zpshri0lka2.jpg  photo Picture 563_zps3hnzymho.jpg  photo Picture 568_zpsotczewnu.jpg  photo Picture 567_zpsb66dlyui.jpg  photo Picture 566_zps4870dzze.jpg  photo Picture 565_zps0duwsofm.jpg  photo Picture 564_zpsdncyf3zw.jpg  photo Picture 1141_zpskvayohtw.jpg  photo Picture 1140_zpsjkl1njmn.jpg

On the second day, these were joined by Alex Roache’s MINI Cooper and Stu Clough’s Volvo V50.

 photo Picture 648_zps6vgexnpt.jpg  photo Picture 650_zpsectidyna.jpg

MORGAN

On the Sunday there was a splendid collection of Morgan models, assembled by the Car Club.

 photo Picture 586_zpsfrbhwsrx.jpg  photo Picture 585_zpsdfm8epka.jpg  photo Picture 584_zpseo43grgp.jpg  photo Picture 1045_zpsebarywud.jpg

TEAL

Present on both days were a number of cars from the Teal Car Club. The story of the Teal is quite involved story, and it probably takes longer to tell than it does to list the number of products that got made. The first Teal, then called a Worsley, was designed by Ian Foster on the back of several fag packets in the bar of The Pack Horse Inn at Affetside, Bury in 1983. Ian had been a chassis designer for Daimler (including the Daimler Dart) before setting up his own business, Trafford Brake Services, in Patricroft, Eccles, near Manchester. The story goes that at the Pack Horse one night in 1983,  Alan Hunter  told his friends Ian Foster  and Tony Rogers, a part time motor-sport driver, that he had just flown back from America, where he was on business for Mitchell Shackleton Ltd, a large engineering company making marine crankshafts, and that at Los Angeles airport, he  had seen what he thought was a Bugatti Type 35, but in fact the brochure which Alan had picked up revealed this to be a rear-engined VW-based fibreglass kit car replica. The glorious Bugatti-style bonnet was,of course, empty. Ian then described on the ‘fag packets’ how an effective, strong chassis for a front-engined Bugatti replica could be designed to make use of the good GRP bodywork available. Alan listened in silence, then asked quietly: ‘would that work?’ When Ian and Tony both chorused ‘yes!’, Alan told them he would collect £330 off each of them the following week, and he would bring a body kit back from America! Within six weeks the kit of excellent GRP bodywork had arrived from the USA. Ian took accurate dimensions, the trio persuaded a Heywood fibreglass boat-builder to produce a mould and commence production, and Alan Hunter had the first 12 chassis welded up at Mitchell Shackleton Ltd to Ian Foster’s measurements. They were delighted with the result. Publicity was required to sell the new car, and Tony Rogers felt that the original Tudor courthouse in Worsley, Manchester, would make a suitable backdrop for photos. Brochures giving the Worsley’s spec were produced. In mid 1983, Granada TV’s Look North ran a piece, and the Worsley was launched. From mid-1983 Worsley cars were built at Trafford Brake, Patricroft, Eccles on a very strong twin-ladder box steel chassis with extensive triangulation to enhance rigidity. The GRP bodywork was well moulded in five sections, Morris 1.3 or 1.8 litre engines were fitted, and Morris Marina running gear/brakes were used with the smaller 8-spoke wheels. The first 8 cars were called Worsleys; but Ian remembered from his days with Daimler that in Brummie slang a ‘worsley’ meant a Friday car – a duff one, so a search started for a new name. At this time Ian was running his main business Trafford Brake, and he had also linked up after the February 1984 Target Motor Trade Show in Birmingham with Mike Alderson from Hampshire, who with Bob Buckley of Thistledown Engineering became his southern sales agents. After a bit of midnight oil burning, and some long distance phone calls, it was decided that the new car would be called TEAL, which has been variously described as standing for Trafford Engineering Automotive Limited; Trafford Engineering Automobiles Limited; Thistledown Engineering Automotive Limited; Trafford Engineering Associates Limited. Whichever it really is, the cars became TEALS; Mike Alderson had the new Teal badge rapidly designed and manufactured in Andover. He fitted the badge to the Teal which he had picked up from Ian in Birmingham, and had driven in leathers, flying helmet and goggles with Bob Buckley through a frozen March 1984 day first to Cirencester to thaw out in front of a hotel log fire, then on to Hampshire to appear on Southern TV at Southampton with the Teal in the studio , the first recorded long-distance drive of a Teal. The summer of 1984 was hectic at Teal. The car had appeared in  Autocar magazine of March 1984, formed the front cover of Kit Car magazine July 1984, with a comprehensive report by Ian Hyne, had been on television twice, displayed at the Birmingham NEC (July 1984) and queries were coming in from all over the world. By July 84 eight Teals had been built, some at Eccles and some as kits, and Mike Alderson in Hampshire put in orders for eight more completed cars for clients in the South. The question now was could Teal cars cope with the rapid throughput of orders? The Teal kit price in the summer of 1984 for chassis and body was £3000 with 3 weeks delivery; the completed, drive-away car was £5700 and 12 weeks delivery quoted. Meanwhile Ian Foster was trying to run his own business at Trafford Brake, and was being pressed in 1984/85 to carry out a range of modifications to increase the sophistication and the appeal of the original Teal. He was also trying to arrange a move of Trafford Brake to Burscough. Something had to give, and in 1985 after about 30 GRP Teals had been manufactured in all, several going to the Continent, Ian Foster decided to sell Teal Cars – he discussed it with Mike Alderson in Hampshire, but in the end Teal Cars was purchased by Bob Jones in March 1986. Bob,  redesigned the chassis, replacing the GRP body with an all- aluminium skin, developing the design through the late 1980s and 1990s using a steel box chassis of great strength and rigidity, hand-wheeled aluminium boat-tail and louvred aluminium bodywork, refining the styling of the Teal to look very much like an original Bugatti T35A, but larger. A real Type 35 is quite small, with only a 2.40 metre wheelbase and 1.20 metre track; in the Teal T35 the wheelbase has been increased by 40cm, and the track by 20 cm, providing a footprint nearly 40% bigger on the ground – a much more comfortable size to drive on contemporary roads. The large 18 inch wire wheels from MWS (Motor Wheels Services) were now used, and Bob lowered the centre section of the chassis to provide improved handling, and a much more purposeful stance which is particularly evident in the Type 35B. The cars were built at Harrowby Mill near Bolton and near Altrincham in Cheshire, and could be purchased complete and ready to drive from the ‘works’, or in the kit form of chassis, suspension, wheels, bodywork and trim for assembly at home, thereby avoiding tax. Nearly all 2-seater Teals have no hood, but most owners do have a tonneau and a wind-blown complexion. The standard engine options were BMC 1700 or 1800cc/MGB 4-cylinder motors, but later there cars also came with 2.0 or 2.5 litre Triumph straight six options. Fiat-Lancia 2.0 twin cam engines have been used in the Teal T35, as well as Rover 2.6 litre straight sixes, Nissan motors and, in the strengthened Teal T35B, even the Jaguar 3.4 or 4.2 litre straight 6 engines. The Teal is also seen in a four-seater Tourer version, with ‘proper’ windscreen and hood, ideal for the sporting family motorist – or those who need to carry lots of baggage. In 1996 Bob Jones sold the Teal Type 35 designs to Norman Durban of Bisley, Surrey, but they agreed that Bob should complete all existing orders, which resulted in Bob building Teals and Teal kits until early 1998. Norman Durban, with his son, has competed in his interesting Teal T35 ‘April’ (from the registration number RPA1L) in the Liege-Roma-Liege Rally on the Continent. It is hoped by many Teal enthusiasts that production of the further-developed Teal Type 35 might restart, but that does not appear likely. In December 2010 The Teal Owners’ Club purchased the rights to the name Teal, and the right to manufacture all Teal cars except the Type 59 (Ted Riley). It also purchased the bucks for the Teal Type 35 mudguards, radiator, bonnet and boat tail. These days you can buy one for a few thousand £, though the very best cars have sold for around £35,000, an astonishing figure, though of course this is a fraction of the price of a genuine Bugatti Type 35.

 photo Picture 234_zpsqjuqfwpq.jpg  photo Picture 237_zpspcjk4vjy.jpg  photo Picture 233_zps59knixcb.jpg  photo Picture 236_zpslrezuwve.jpg  photo Picture 235_zpsl3tmmw2h.jpg  photo Picture 232_zpsq8efaxxz.jpg  photo Picture 1029_zpsoybwuk8r.jpg

SUBARU

Up in the area which is either occupied by auction content (there was none here, this time), or Porsche Tewkesbury, were the Subaru Owners Club who had an extensive display of models, almost all of them from the performance end of the range. Most of them were Impreza models with examples from the first three generations of this car all here.

 photo Picture 258_zpse9zpzggf.jpg  photo Picture 257_zpsvx8itbke.jpg  photo Picture 253_zpsysfkqiud.jpg  photo Picture 261_zpsptypuawi.jpg photo Picture 252_zpshtftwpby.jpg  photo Picture 248_zpspfmzhrhv.jpg  photo Picture 256_zpsaqcpcjxu.jpg  photo Picture 255_zpsyu0vzhny.jpg  photo Picture 260_zps7ubu3dyr.jpg  photo Picture 250_zpskujjaoh4.jpg  photo Picture 254_zpsjl0hnbni.jpg photo Picture 259_zpsonxltn5e.jpg  photo Picture 249_zpspyyikyon.jpg  photo Picture 247_zps0fjzcduj.jpg  photo Picture 246_zpsrnjoem8q.jpg

There was one example of the Legacy to catch my eye, in Japanese market only Spec C guise.

 photo Picture 251_zpsev4bd2to.jpg

TVR

The TVR Car Club had sizeable displays here on both days. They were dominated, of course by the cars from the last 10 years or so of production, as is almost always the case, but it was nice to see some older and more unusual models here as well.

Oldest of the TVRs here was a Vixen. First introduced in 1967 as an evolution of the discontinued 1800S, the new Vixen  used the same chassis as the outgoing car, but a significant change was the use of the 1599 cc Ford Kent engine (as found in the Ford Cortina GT), developing 88 bhp, a change necessitated by the problems TVR were having with receiving MG engine deliveries, and also in an effort to lower the price of the car. To use up remaining supplies, the first twelve Vixens built still received the MGB engine. The bodywork was also slightly revised, with the bonnet having a broad flat air intake scoop. The rear of the car with fitted with the round Cortina Mark I tail lamps. 117 of these were built before the S2 model arrived in 1968. This version was built with the longer (90 inch) wheelbase chassis, introduced on the Tuscan V8 but which TVR had now standardised to address complaints about difficulty of ingress. The bonnet was restyled again, with some early cars having a prominent central bulge, and later cars having twin intake ducts at the front corners of the bonnet. The tail lamps were updated from the round Cortina Mark I style to the newer wraparound Mark II style. Also very significant was the fact that the body was bolted (rather than bonded) to the chassis, meaning that it could be easily removed for repairs. The interior was improved, with a leather-skinned steering wheel mounted much lower than before. In a further attempt to improve the quality feel, the body was thicker and panel fit was improved. Sales were strong, with 438 of these made before the arrival of the S3, which continued to improve the car with a number of detail changes. The heat extraction vents on the bonnet were decorated with “Aeroflow” grilles borrowed from the Ford Zodiac Mark IV, and the Ford four-cylinder engine was now in the same tune as in the Ford Capri, producing 92 bhp. Instead of wire wheels, cast alloy wheels were fitted as standard. 165 of these were made before the final iteration, the S4 was launched. This was an interim model that used the TVR M Series chassis with the Vixen body shell. Apart from the chassis, there were no significant mechanical or cosmetic changes between the S3 and S4. Twenty-two were built in 1972 and one in 1973. TVR added a 1300 model to the range in late 1971. This was built in an attempt to fill an “economy” market segment for sports cars. It was powered by a 1296 cc Triumph Spitfire engine making 63 bhp, but its lacklustre performance limited its sales success. Top speed was barely 90 mph. Only fifteen were built, all in 1972. The final six of these cars were built on a M Series chassis, and the very last 1300 was also built with M Series bodywork, although it never received a “1300M” designation. Not to be confused with the later 2500M, the 2500 (marketed as the Vixen 2500 in the United States) was built between 1971 and 1972, and was designed to take advantage of the fact that the Triumph 2.5 litre inline-six engine had already been certified for US emissions standards (although only in 105 bhp form.) The final production run of the 2500 (comprising 96 cars) used the M Series chassis with Vixen-style bodywork. 385 of these cars were made.

 photo Picture 136_zpscqijecs3.jpg

TVR replaced their long-running shape with something really quite radical looking in early 1980. with the Tasmin, and there was a relatively early version of these “wedge” era TVRs here. During the 1970s, when Martin Lilley started to look where to take the Blackpool based company next, he noted that  Lotus appeared to have reinvented itself with the Elite, Eclat and Esprit, losing much of the kit-car image in the process, and he thought he needed to do something similar. He needed a new design language, so he contacted Oliver Winterbottom who had done the Elite/Eclat for the Norfolk firm, hoping for something new. The wedge-shaped design that Winterbottom created was produced in 1977, and a prototype was created the following year, before the new car’s launch very early in 1980. Based on the Taimar, but with very different wedge styling, the car was not exactly received with massive enthusiasm. The styling looked a bit like yesterday’s car, as the wedge era was on the wane, and the car’s price pitched it against cars like the Porsche 924 Turbo. Development of the new car had drained TVR’s finances, which led to Lilley ceding control of the company in 1981 to Peter Wheeler. The convertible that followed helped matters a bit, whereas the 2 litre 200 and the 2+2 model did not, but in 1983, TVR announced a revised version with the potent Rover 3.5 litre V8 under the bonnet, in lieu of the 2.8 litre Ford Essex unit, and it transformed the car. It was just what was needed, and over the next few years, a series of ever more potent models, with ever wilder styling came into the range. By 1986, the 450SEAC boasted 340 bhp, making this something of a supercar.

 photo Picture 139_zpscxswl9xr.jpg  photo Picture 404_zpslqutngil.jpg  photo Picture 096_zpsak5cyg9n.jpg  photo Picture 093_zpsphof478z.jpg  photo Picture 130_zps2usnqjtp.jpg

The Griffith was the first of the modern generation TVRs. First seen as a concept at the 1990 British Motor Show, it wowed the crowds sufficiently that unlike the Show Cars of precediing years, may of which were never seen again, Peter Wheeler and his small team in Blackpool immediately set about preparing it for production. It took until mid 1992 before they were ready. Like its forerunner namesakes, the Griffith 200 and Griffith 400, the modern Griffith was a lightweight (1048 kg) fibreglass-bodied, 2-door, 2-seat sports car with a V8 engine. Originally, it used a 4.0 litre 240 hp Rover V8 engine, but that could be optionally increased to a 4.3 litre 280 hp unit, with a further option of big-valve cylinder heads. In 1993, a TVR-developed 5.0 litre 340 hp version of the Rover V8 became available. All versions of the Griffith used the Lucas 14CUX engine management system and had a five-speed manual transmission. The car spawned a cheaper, and bigger-selling relative, the Chimaera, which was launched in 1993. 602 were sold in the first year and then around 250 cars a year were bought throughout the 90s, but demand started to wane, so iIn 2000, TVR announced that the Griffith production was going to end. A limited edition run of 100 Special Edition (SE) cars were built to mark the end of production. Although still very similar to the previous Griffith 500 model, the SE had a hybrid interior using the Chimaera dashboard and Cerbera seats. Noticeably, the rear lights were different along with different door mirrors, higher powered headlights and clear indicator lenses. Some also came with 16-inch wheels. Each car came with a numbered plaque in the glove box including the build number and a Special Edition Badge on its boot. All cars also had a unique signature in the boot under the carpet. The SEs were built between 2000 and 2002, with the last registered in 2003. A register of the last 100 SEs can be found at TVR Griffith 500 SE Register. These days, the Griffith remains a much loved classic and to celebrate the car, the owners have a meet called “The Griff Growl.” Among the cars here was a late model, with the altered front end styling which was not – in my opinion – an improvement.

 photo Picture 095_zpsww3gikjy.jpg  photo Picture 141_zpsomw35jyt.jpg  photo Picture 147_zpsz4vtxxcg.jpg  photo Picture 135_zpshpgcddh1.jpg  photo Picture 092_zpshctdubli.jpg  photo Picture 212_zpsodswptcp.jpg  photo Picture 818_zpsk0vkmcao.jpg  photo Picture 816_zpslny0xcgu.jpg  photo Picture 815_zpscokgezmh.jpg

There were even more examples of the Chimaera, reflecting the fact that this car sold in greater quantities, and is that bit more affordable to buy and run than the Griffith on which it is based. Launched in late 1992, this car was sold with 4.0, 4,3, 4,5 and 5 litre V8 Rover-based engines over a 10 year life. The styling changed little during that time.

 photo Picture 088_zpsbhyio2j0.jpg  photo Picture 089_zpssk9vwajc.jpg  photo Picture 090_zpsyfyoiplp.jpg  photo Picture 138_zps66vv3nlp.jpg  photo Picture 122_zpspr1rzbn1.jpg  photo Picture 140_zpswkwamcac.jpg  photo Picture 134_zpsao0jyyvg.jpg  photo Picture 091_zpsn2f5he8p.jpg  photo Picture 213_zpstaizxmje.jpg  photo Picture 819_zpssbxwh2b2.jpg  photo Picture 817_zpsjbxfdbes.jpg

The next car that TVR added to the range was the Cerbera, which was first shown as a prototype at the 1994 Birmingham Show, entering production in 1996. The name derives from Cerberus the three-headed beast of Greek legend that guarded the entrance of Hades. This was the third car manufactured by TVR under the leadership of Peter Wheeler, and it represented three firsts for the Wheeler-led company: the first hard-top—the Griffith and the Chimaera were both convertibles; the first 2+2—TVRs were traditionally two-seaters; the first to be driven by TVR’s own engines—historically, TVR had purchased engines from mainstream manufacturers like Rover, Ford and Triumph. Prior to the Cerbera, TVR had purchased V8 engines from Rover and then tuned them for their own use. When Rover was purchased by BMW, Peter Wheeler did not want to risk problems should the Germans decide to stop manufacturing the engine. In response, he engaged the services of race engineer Al Melling to design a V8 engine that TVR could manufacture in-house and even potentially offer for sale to other car-makers. In an interview for the television programme Top Gear, Wheeler explained “Basically, we designed the engine as a race engine. It was my idea at the time that if we wanted to expand, we ought to make something that we could sell to other people. We’ve ended up with a 75-degree V8 with a flat-plane crank. The bottom-half of the engine to the heads is exactly as you would see in current Formula One engines.” Wheeler was quoted at the time of the car’s launch as saying that the combination of light weight and high power was too much for a road car, a quote which ensured much free publicity in the press. Enthusiasts still argue about whether this was a typical example of Wheeler’s legendary frankness, or an equally typical example of his PR chief Ben Samuelson’s knack for saving on advertising costs by creating a story. The result was dubbed the “Speed Eight” (official designation ‘AJP8’) after Al Melling, John Ravenscroft and Peter Wheeler, a 4.2 litre V8 producing 360 hp and gave the Cerbera a top speed of 185 mph (297 km/h). A 4.5 litre version of the engine was later offered with 420 hp. The AJP8 has one of the highest specific outputs of any naturally aspirated V8 in the automotive world at 83.3 hp/litre for the 4.2 and 93.3 hp/litre for the 4.5. Later models of the 4.5 litre engine had the ‘Red Rose’ option, which increased output to 440 bhp (97.7 hp/litre) when fuelled with super-unleaded (high octane) and the driver pushed the unmarked button on the dashboard which altered the engine mapping to suit. In some cases, real-world outputs for production V8s (4.5 in particular) were down from TVRs quoted output. Some of these have seen some form of modification (ECU, induction, exhaust etc.) to bring the power back up to the factory quoted output. One of the attractions of the V8 Cerberas for many owners was the loud backfire produced on overrun, particularly at low speeds. In fact this was the result of an argument at the factory between one of TVR’s executives and the engineers mapping the engine. The engineers wanted to map out this “irregularity” to improve fuel efficiency and CO2 emissions, whilst the executive insisted it was exactly the kind of thing owners would like. In the end a compromise was reached in which the popping and banging remained on the 4.5 litre cars. With the success of the Speed Eight program, Wheeler also undertook the design of a “Speed Six” engine to complement it. This engine also made its debut in the Cerbera but was a 4.0 litre inline slant six design with four valves per cylinder to the Speed Eight’s two. In service however it gained a reputation for unreliability and many engines had to be rebuilt. The car itself was designed from the start as a four-seater. The rear seats are smaller than the front, a design commonly referred to as a “2+2”. However, the interior is designed so that the passenger seat can slide farther forward than the driver’s seat. This allows more room for the person sitting behind the front passenger. TVR have referred to this as a “3+1” design. TVR maintained its tradition of building cars that were not only exceptionally powerful but also very light for their size and power output. The Cerbera’s weight was quoted by TVR at 1100 kilograms, although customers claimed the weight varied between 1,060 kg (2,337 lb) and 1,200 kg (2,646 lb). The dashboard was designed especially for the Cerbera and uses a two-spar steering wheel as opposed to the typical three-spar previously found in most TVRs. The reason for this is that minor instruments are located on a small panel below the steering wheel and a third spar in the wheel would have made them difficult to read. Like all TVRs of the Peter Wheeler era, the Cerbera had a long-travel throttle to compensate for the lack of electronic traction-control and very sharp steering. The V8 powered cars were two turns from lock to lock and the Speed Six car was 2.4 turns. This made it easier for experienced drivers to maintain or regain control of the car in the event of a loss of traction but some less experienced drivers complained that it made the cars feel “twitchy” and more responsive than they would otherwise have preferred. In 2000, TVR changed the styling of the car slightly by modifying the headlights to more closely resemble those seen in the TVR Tuscan. The “facelift” features were available with all three engine configurations. In addition, the cars equipped with the 4.5 litre engine were offered with the “lightweight” option, reducing the overall weight through the use of lighter body panels and a slightly reworked interior. The final car was made in 2006.

 photo Picture 133_zpslyrfnmdf.jpg

The Tuscan was launched in 2000, by which time there had been a series of what we think of as the modern era TVRs produced for nearly a decade, the Cerbera, Griffith and Cerbera. The Tuscan did not replace any of them, but was intended to help with the company’s ambitious push further up market to become a sort of Blackpool-built alternative to Ferrari. It did not lack the styling for the task, and unlike the preceding models with their Rover V8 engines, the new car came with TVR’s own engine, a straight six unit of 3.6 litre capacity putting out 360 bhp. The Tuscan was intended to be the grand tourer of the range, perfectly practical for everyday use, though with only two seats, no ABS, no airbags and no traction control, it was a tough sell on wet days in a more safety conscious world, but at least there was a removable targa top roof panel for those days when the sun came out. The car may have lacked the rumble of a V8, but when pushed hard, the sound track from the engine was still pretty special, and the car was faster than the Cerbera, but sadly, the car proved less than reliable, which really started to harm TVR’s reputation, something which would ultimately prove to be its undoing.

 photo Picture 132_zpskwte4bsk.jpg  photo Picture 137_zpsqqvfhm4k.jpg

The Tamora was announced in 2002 to fill the gap left by the company’s Chimaera and Griffith models. Designed by Lee Hodgetts and Darren Hobbs, it was the entry-level model in the TVR’s range of models priced at £43,460. The Tamora is fitted with a TVR’s in-house ‘Speed Six’, a DOHC 3605 cc six-cylinder engine rated at 350 hp at 7200 rpm and 290 lb⋅ft (390 N⋅m) of torque at 5500 rpm, mated to a five-speed manual. Brake rotors are 12.0 inches (300 mm) up front, and 11.1 inches (280 mm) in the back, both clamped by AP Racing calipers. The suspension is a double wishbone setup at all four corners. Standard wheels are 16×7 inch aluminium, with 225/50ZR-16 Avon ZZ3 tyres. The Tamora is built on a 93-inch (2,400 mm) wheelbase, and the car’s overall profile is 154.5 inches (3,920 mm) long, 67.5 inches (1,710 mm) inches wide and 47.4 inches (1,200 mm) high. It weighs 2,337 pounds (1,060 kg) with 58/42 weight distribution. Keeping with the TVR tradition, the Tamora lacks driving aids such as traction control and ABS as well as air bags. The Tamora also provided the base for the T350 coupe. It was still a current model when TVR ceased production in 2006.

 photo Picture 094_zpsucvg0trq.jpg  photo Picture 097_zpsix7clfsi.jpg  photo Picture 131_zpsmoyjtmof.jpg

MISC

There were also quite a few interesting cars that were parked with no evident association to any Club. Some were doubtless those belonging to marshalls  and officials and indeed I have seen a number of them here on other occasions.

Aston Martin DB2

 photo Picture 831_zpsmu92gkom.jpg

Austin Seven

 photo Picture 360_zpskpkz6amt.jpg  photo Picture 396_zpsgj00gd9p.jpg  photo Picture 713_zpsszdwep9c.jpg  photo Picture 1050_zpsvfeliqhq.jpg

This BMW 319 is a Prescott regular, belonging to a gent who is both an official of the Classic BMW Car Club and who also helps out here.

 photo Picture 641_zpswfah00jh.jpg

Lea Francis

 photo Picture 1100_zpsowzwcwys.jpg

I rather liked this original Lotus Elan.

 photo Picture 410_zpsqasqeho6.jpg

MG TF 1500

 photo Picture 152_zpsqclrsjdm.jpg

This is a Polaris Slingshot. A three-wheeled motor vehicle, the Slingshot .was introduced in 2014 as a 2015 model, and it is now selling well. I’ve certainly seen a number on US roads during recent visits. The Slingshot is manufactured by Polaris Industries, which claims “It’s a three-wheeled motorcycle!” It has a tilt-adjustable steering wheel, side-by-side bucket seats, and does not lean. Three-point seat belts are fitted, however it has no airbags or crumple zone, and driver and passenger must wear motorcycle helmets in certain jurisdictions. It has no roof, doors, or side windows. A small windscreen is an optional extra on the base model, and fitted as standard on the SL model. The steering wheel, gear stick, and brake, clutch, and throttle pedals have a conventional automobile layout. The Slingshot weighs 1,743 pounds (791 kg) and is powered by a 2.4 litre inline four engine derived from the GM Ecotec, formerly used by GM in the Pontiac Solstice and Saturn Sky sports cars, coupled to a 5 speed manual gearbox. The standard Slingshot has two 17″ front wheels and a singular 18″ wheel in the rear.

 photo Picture 263_zpsekgjxf46.jpg  photo Picture 262_zpsemxreqan.jpg  photo Picture 514_zpss2emjgyn.jpg

This American sports-coupé was loosely based on the AC’s chassis and drive-train. It was built for racing, specifically to take on Ferrari and its 250 GTO in the GT class. Just six Shelby Daytona Coupes were built between 1964 and 1965, before Shelby was reassigned to the Ford GT40 project to compete at the 24 hours of Le Mans, again to beat Ferrari in the highest level prototype class. With the Shelby Daytona, Shelby became the first American constructor to win a title on the international scene at the FIA World Sportscar Championship in 1965 and has recently been chosen for historic preservation as a significant vehicle in the history of auto racing. Those six cars are immensely valuable, and you only see them occasionally – most notably when 5 of them were gathered together at the Goodwood Festival of Speed a few years ago. In July 2015, Shelby American announced that they would produce a limited run of 50 continuation Daytonas to honour the 50th anniversary of the Daytona’s win at the 1965 FIA Sports Car Championship. Some of the 50 are aluminium-bodied, while others have cheaper fibreglass bodies. The car seen here is not one of these, either. Instead, it is one of a series of reproductions which have been made over the years by a number of different companies, including: the Superformance Shelby Cobra Daytona Coupe who made the “SPF Coupe”; Shelby Licensed Replica; All Pro Cars; Borland Racing Development’s Daytona Sportscar reproduction; Factory Five Racing’s Type 65 Coupe, reproduction; Shell Valley Companies’ 1964 Daytona Coupe Series II, reproduction; Lesher Motor Sports; and Kirkham Motor Sports 289 Coupe.

 photo Picture 399_zpsndq9hshw.jpg  photo Picture 524_zpsj1jct8pg.jpg

Studebaker Champion Coupe

 photo Picture 402_zpsrlebi7wk.jpg

Tatra 613

 photo Picture 1120_zpszye1z3kf.jpg  photo Picture 1119_zpsw1mfbf6z.jpg  photo Picture 812_zpsyq4wcqtc.jpg  photo Picture 814_zpsavrak9cd.jpg  photo Picture 811_zps2ajqlul2.jpg  photo Picture 790_zpsjedyqnjt.jpg

A not uncommon sight at Prescott, this is an Ultima, the sports car manufactured by Ultima Sports Ltd of Hinckley, Leicestershire, England, and described by commentators as a supercar. It  is available both in kit form and as a “turnkey” (i.e. assembled by the factory) vehicle. The design is a mid engined, rear wheel drive layout, with a tubular steel space frame chassis and GRP bodywork. Both close coupe and convertible versions have been made. The latter is called the Ultima Can-Am.  Kit builders are free to source and fit a variety of engines and transmissions but the Chevrolet small block V8 supplied by American Speed mated to either a Porsche or Getrag transaxle is the factory recommended standard, and this configuration is fitted to all turnkey cars.

 photo Picture 146_zps7vyv5lw2.jpg  photo Picture 400_zps8xqvnx6x.jpg

On the Sunday, there was a rather splendid 30/98 Vauxhall here.

 photo Picture 847_zps3brihlmz.jpg

VW Bus Type 2

 photo Picture 781_zpsdcpg8kpd.jpg

Perhaps the most unusual of the cars in this section was this Warwick, dating from 1902. US built, it has a version of a de Dion Bouton engine in it.

 photo Picture 395_zpsrff0k0mc.jpg  photo Picture 397_zpsyfq1kpcc.jpg

IN THE MAIN CAR PARK

It is always worthwhile, at an event like this, to take a wander around the main car park. Enthusiasts who like the event are prone to bringing an interesting car, and then just parking it there, and there are also plenty of people with cars which should really have been in the main event itself, but for whatever reason are not, and are simply parked along with everyone else, which in Prescott’s case, means in the rather lumpy bumpy field adjoining the site. I made a couple of tours around the hundreds of cars so parked, each day, and came across a fair number of others doing exactly the same as me, and was glad I did, as there was plenty of interest to be found here, as this section of the report evidences.

ABARTH

There were a number more 595 models here, in addition to the AOC cars parked up in the Orchard. I did not actually recognise the plates of any of them, so am not sure whether any belonged to members who had simply not responded in time to the offer of an Orchard parking space or not.

 photo Picture 188_zps09ceja8z.jpg  photo Picture 187_zpsstkbrfuu.jpg  photo Picture 186_zpsaosoke0z.jpg  photo Picture 288_zpsm9cjgpbr.jpg  photo Picture 194_zpsfwzsqruo.jpg  photo Picture 878_zpslybp6cyu.jpg  photo Picture 987_zpsipj4j8sz.jpg

AC

With a curved grille that is not unlike that of the better known Bullnose Morris, the AC 12hp of 1920 – 1927 was offered with 1.5 litre and 2 litre engines. Around 1800 were made.

 photo Picture 989_zpszz27dkva.jpg

Older of the 2 post war AC models I came across was this Ace. AC had come back to the market after the Second World War with the staid 2-Litre range of cars in 1947, but it was with the Ace sports car of 1953 that the company really made its reputation in the post war years. Casting around for a replacement for the ageing 2-Litre, AC took up a design by John Tojeiro that used a light ladder type tubular frame, all independent transverse leaf spring suspension, and an open two seater alloy body made using English wheeling machines, possibly inspired by the Ferrari Barchetta of the day. Early cars used AC’s elderly 100 bhp two-litre overhead cam straight-six engine (first seen soon after the end of the First World War), which, according to a 1954 road test by Motor magazine, gave a top speed of 103 mph, a 0–60 mph in 11.4 seconds and a fuel consumption of 25.2 mpg. It was hardly a sporting engine, however, and it was felt that something more modern and powerful was required to put the modern chassis to good use. Joining the Ace in 1954 was the Aceca hard top coupé, which had an early form of hatchback rear door but used the same basic timber framed alloy body. From 1956, there was the option of Bristol Cars’ two-litre 120 bhp straight-six with 3 downdraught carburettors and slick four-speed gearbox. Top speed leapt to 116 mph with 0–60 mph in the nine second bracket. Overdrive was available from 1956 and front disc brakes were an option from 1957, although they were later standardised. In 1961 a new 2.6-litre straight-six ‘Ruddspeed’ option was available, adapted by Ken Rudd from the unit used in the Ford Zephyr. It used three Weber or SU carburettors and either a ‘Mays’ or an iron cast head. This setup boosted the car’s performance further, with some versions tuned to 170 bhp, providing a top speed of 130 mph and 0–60 mph in 8.1 seconds. However, it was not long before Carroll Shelby drew AC’s attention to the Cobra, so only 37 of the 2.6 models were made. These Ford engined models had a smaller grille which was carried over to the Cobra.

 photo Picture 1012_zpsfxj59rrf.jpg  photo Picture 1011_zps917ffw26.jpg

Also present was a Cobra, or rather a Cobra replica, as this is not one of the now rare and valuable original cars, but rather one of the many recreations built more or less continuously since the 1970s. I rather liked it.

 photo Picture 320_zpsrekephat.jpg

ALFA ROMEO

There were quite a lot of Alfa models to be found here, many of which really would have been welcome in the Orchard. As well as another example of the Giulia Spider, its close relative, the Giulietta Sprint was also here and there were a number of examples of the follow-on range, the 105 Series, with GTV and the later and less powerful and cheaper GT Junior models scattered around the car park.

 photo Picture 676_zps5ie5tebi.jpg  photo Picture 273_zps1dggyzjg.jpg  photo Picture 272_zpsdwjvjpgc.jpg  photo Picture 275_zpsvcxahyou.jpg  photo Picture 736_zpsydxepomi.jpg  photo Picture 740_zpszzgnmyb4.jpg  photo Picture 953_zpsgeswhw79.jpg  photo Picture 940_zpsbdj36jr2.jpg  photo Picture 952_zpsceuuvcpw.jpg  photo Picture 996_zpselza7ay1.jpg  photo Picture 1016_zpstx3jwd65.jpg

This rather splendid Montreal really should have been down in the Paddock, rather than hiding away in general parking! During the 1950s, Alfa had undergone a fairly fundamental transformation from producing cars designed for racing or very high-end sports touring road machines, in small quantities, to being a manufacturer of more affordable cars, albeit with a sporting bias to their dynamics. But the desire to produce something exclusive and expensive was not completely lost, and indeed it was re-manifest in the next Alfa to be seen here, the very lovely Montreal.  First seen as a concept car in 1967 at Expo 67, the car was initially displayed without any model name, but the public took to calling it the Montreal. It was a 2+2 coupe using the 1.6-litre engine of the Alfa Romeo Giulia TI and the short wheelbase chassis of the Alfa Romeo Giulia Sprint GT, with a body designed by Marcello Gandini at Bertone. One of the two concept cars built for Expo 67 is displayed in the Alfa Romeo Historical Museum in Arese, Italy, while the other is in museum storage. Reaction to the concept was sufficiently encouraging that Alfa decided to put the car into production. The result, the Tipo 105.64, was shown at the 1970 Geneva Motor Show and was quite different from the original, using a 2593 cc 90° dry-sump lubricated V8 engine with SPICA (Società Pompe Iniezione Cassani & Affini) fuel injection that produced around 200 PS (197 hp), coupled to a five-speed ZF manual gearbox and a limited-slip differential. This engine was derived from the 2-litre V8 used in the 33 Stradale and in the Tipo 33 sports prototype racer; its redline was set at 7,000 rpm, unheard of for a V8 at that time. The chassis and running gear of the production Montreal were taken from the Giulia GTV coupé and comprised double wishbone suspension with coil springs and dampers at the front and a live axle with limited slip differential at the rear. Since the concept car was already unofficially known as The Montreal, Alfa Romeo kept the model name in production. Stylistically, the most eye catching feature was the car’s front end with four headlamps partly covered by unusual “grilles”, that retract when the lights are switched on. Another stylistic element is the NACA duct on the bonnet. The duct is actually blocked off since its purpose is not to draw air into the engine, but to optically hide the power bulge. The slats behind the doors contain the cabin vents, but apart from that only serve cosmetic purposes. Paolo Martin is credited for the prototype instrument cluster. The Montreal was more expensive to buy than the Jaguar E-Type or the Porsche 911. When launched in the UK it was priced at £5,077, rising to £5,549 in August 1972 and to £6,999 by mid-1976. Production was split between the Alfa Romeo plant in Arese and Carrozzeria Bertone’s plants in Caselle and Grugliasco outside Turin. Alfa Romeo produced the chassis and engine and mechanicals and sent the chassis to Caselle where Bertone fitted the body. After body fitment, the car was sent to Grugliasco to be degreased, partly zinc coated, manually spray painted and have the interior fitted. Finally, the car was returned to Arese to have the engine and mechanicals installed. It is worth noting that because of this production method, there is not necessarily any correspondence between chassis number, engine number and production date. The Montreal remained generally unchanged until it was discontinued in 1977. By then, production had long ceased already as Alfa were struggling to sell their remaining stock. The total number built was around 3900. None of them were sold in Montreal, Quebec since Alfa did not develop a North American version to meet the emission control requirements in the United States & Canada. The car was both complex and unreliable which meant that many cars deteriorated to a point where they were uneconomic to restore. That position has changed in the last couple of years, thankfully, with the market deciding that the car deserves better, and prices have risen to you whereas a good one would have been yours for £20,000 only a couple of years ago, you would now likely have to pay more than double that.

 photo Picture 348_zps6rys3yji.jpg  photo Picture 349_zpsfn8ihs67.jpg  photo Picture 350_zpsyeayargj.jpg  photo Picture 351_zps6o2w2pob.jpg

It was nice to come across a 116 Series Alfetta Berlina here, as you don’t see these cars very often in the UK, though this was another that deserved more prominence at the event. The model was launched in 1972, equipped with a 1.8-litre four-cylinder. It was a three-box, four-door saloon (Berlina in Italian) with seating for five designed in-house by Centro Stile Alfa Romeo; the front end was characterised by twin equally sized headlamps connected to a central narrow Alfa Romeo shield by three chrome bars, while the tail lights were formed by three square elements. At the 1975 Brussels Motor Show Alfa Romeo introduced the 1,594 cc 108 PS Alfetta 1.6 base model, easily recognizable by its single, larger round front headlights. Meanwhile, the 1.8-litre Alfetta was rebadged Alfetta 1.8 and a few months later mildly restyled, further set apart from the 1.6 by a new grille with a wider central shield and horizontal chrome bars. Engines in both models were Alfa Romeo Twin Cams, with two overhead camshafts, 8-valves and two double-barrel carburettors. Two years later the 1.6 was upgraded to the exterior and interior features of the 1.8. In 1977 a 2.0-litre model was added. Launched at the March Geneva Motor Show, the Alfetta 2000 replaced the long running 115 Series Alfa Romeo 2000. This range-topping Alfetta was 10.5 cm (4.1 in) longer than the others, owing to a redesigned front end with square headlights and larger bumpers with polyurethane inserts; the rectangular tail light clusters and C-pillar vents were also different. Inside there were a new dashboard, steering wheel and upholstery materials. Just a year later, in July 1978, the two-litre model was updated becoming the Alfetta 2000 L. Engine output rose from 122 PS to 130 PS; inside, the upholstery was changed again and dashboard trim went from brushed aluminium to simulated wood. The 2000 received fuel injection in 1979. A turbodiesel version was introduced in late 1979, the Alfetta Turbo D, whose engine was supplied by VM Motori. Apart from a boot lid badge, the Turbo D was equipped and finished like the top-of-the-line 2000 L both outside and inside. Therefore, it received a tachometer—very unusual in diesels of this era, but no standard power steering, in spite of the additional 100 kg (220 lb) burden over the front axle. The turbodiesel, a first on an Alfa Romeo’s passenger car, was of 2.0 litres and produced 82 PS. The Alfetta Turbo D was sold mostly in Italy and in France, as well as a few other continental European markets where the tax structure suited this model. It was never offered in the UK. In 1981 Alfa Romeo developed in collaboration with the University of Genoa a semi-experimental Alfetta version, fitted with a modular variable displacement engine and an electronic engine control unit. Called Alfetta CEM (Controllo Elettronico del Motore, or Electronic Engine Management), it was shown at the Frankfurt Motor Show. The 130 PS 2.0-litre modular engine featured fuel injection and ignition systems governed by an engine control unit, which could shut off two of four cylinders as needed in order to reduce fuel consumption. An initial batch of ten examples were assigned to taxi drivers in Milan, to verify operation and performance in real-world situations.  According to Alfa Romeo during these tests cylinder deactivation was found to reduce fuel consumption by 12% in comparison to a CEM fuel-injected engine without variable displacement, and almost by 25% in comparison to the regular production carburetted 2.0-litre. After the first trial, in 1983 a small series of 1000 examples was put on sale, offered to selected clients; 991 examples were produced. Despite this second experimental phase, the project had no further developments. In November 1981 the updated “Alfetta ’82” range was launched, comprising 1.6, 1.8, 2.0 and 2.0 Turbo Diesel models. All variants adopted the bodyshell and interior of the 2.0-litre models; standard equipment became richer. All Alfettas had black plastic rubbing strips, side sill mouldings, tail light surround and hubcaps; the 2000 sported a satin silver grille and a simulated mahogany steering wheel rim. July 1982 saw the introduction of the range topping Alfetta Quadrifoglio Oro (meaning Gold Cloverleaf, a trim designation already used on the Alfasud), which took the place of the discontinued 2000 L. The Quadrifoglio Oro was powered by a 128 PS version of the usual 1962 cc engine, equipped with the SPICA mechanical fuel injection used on US-spec Alfettas; standard equipment included several digital and power-assisted accessories like a trip computer, check control panel and electrically adjustable seats. Visually the Quadrifoglio Oro was distinguished by twin round headlights, concave alloy wheels, and was only available in metallic grey or brown with brown interior plastics and specific beige velour upholstery. In March 1983 the Alfetta received its last facelift; the exterior was modernised with newly designed bumpers (integrating a front spoiler and extending to the wheel openings), a new grille, lower body plastic cladding, silver hubcaps and, at the rear, a full width grey plastic fascia supporting rectangular tail lights with ribbed lenses and the number plate. The C-pillar ventilation outlets were moved to each side of the rear screen. Inside there were a redesigned dashboard and instrumentation, new door panels and the check control panel from the Quadrifoglio Oro on all models. Top of the range models adopted an overhead console, which extended for the full length of the roof and housed three reading spot lamps, a central ceiling light, and controls for the electric windows. Alongside the facelift two models were introduced: the 2.4 Turbo Diesel, replacing the previous 2.0-litre, and a renewed Quadrifoglio Oro, equipped with electronic fuel injection. Thanks to the Bosch Motronic integrated electronic fuel injection and ignition the QO had the same 130 PS output of the carburettor 2.0, while developing more torque and being more fuel efficient. In April 1984 the successor of the Alfetta debuted, the larger Alfa Romeo 90. At the end of the year the Alfetta Berlina went out of production, after nearly 450,000 had been made over a 12-year production period.

 photo Picture 1001_zpslogcee2f.jpg  photo Picture 1000_zpsrnjflefk.jpg  photo Picture 999_zpsfzbkpd97.jpg  photo Picture 998_zpsuq7mac7j.jpg  photo Picture 997_zpswxrwllbn.jpg

Completing the Alfa Romeo models that I found were further examples of the 916 Series GTV, in Cup guise.

 photo Picture 327_zpse5frzsyd.jpg

ALPINA

This is a Roadster S. Based on the BMW Z4 (E85), the Roadster S was unveiled at the 2003 Frankfurt Motor Show. Unlike the V8 Roadster, the Roadster S was available outside North America. The Roadster S was the third open top sports car presented by Alpina after the Alpina Z1 RLE (Roadster Limited Edition) and V8 Roadster which was unveiled in 2001. The Roadster S was based on the Z4 3.0i and was available in two trims, those being standard and Luxury. The Luxury model had Bluetooth phone connectivity, DVD satellite navigation and Xenon headlamps. The optional Sport pack added a thicker anti-rollbar and increased the front negative camber by 1 degree. The engine is a handbuilt 3.4-litre E5/2 inline-6 unit, also shared with the B3 S (E46), an enlarged version of the S52B32 engine first installed in the North American M3 (E36). The engine generated a maximum power output of 300 PS (296 hp) at 6,300 rpm and 360 N⋅m (266 lb⋅ft) of torque at 4,800 rpm. The engine has a red-line of 7,300 rpm. Modifications to the engine include an Alpina specific cylinder head, crankshaft and high strength MAHLE pistons. The exhaust system is a stainless steel unit from Eisenmann with dual polished exhaust tips. Interestingly for a modern Alpina automobile, the Roadster S did away with the Switch Tronic automatic transmission and has a close ratio 6-speed manual transmission built by ZF Friedrichshafen. The decision to replace the automatic transmission was primarily made to make the car more engaging to drive. This move was lauded by the purists and resulted in a positive response. The interior was available in three colour combinations, those being black leather with blue and green stitching on the dashboard and steering wheel (or alternatively red stitching), red leather with red stitching on the dashboard and steering wheel and beige with maroon piping and maroon stitching on the dashboard and steering wheel. Noticeable changes to the interior include an Alpina blue instrument cluster, Alpina logos and badges, Alpina door sills, an overhead plaque signifying the production number of the car and heated sports seats. The creature comforts offered by BMW as an option were included as standard on the interior. The company made over 2,000 modifications to the redesigned interior in total. The exterior changes include a front chin spoiler with Alpina lettering, a three piece rear lip spoiler, 18-inch Alpina Dynamic alloy wheels (4 set of spokes in a 5 spoke design; 19-inch wheels in the Luxury trim) wrapped in Michelin Pilot Sport tyres measuring 235/35 R19 on the front and 265/30 R19 on the rear and “Roadster S” badging at the rear and “3.4 S” badging on the front quarter-panels. The car was available in Alpina Blue (available at a premium), Sterling Grey, Japan Red (the launch colour of the car), Black Sapphire, Titanium Silver, Royal Red and Maldives Blue exterior colours. The Roadster S was also available with an optional hard top. The suspension system consisted of Alpina specific dampers and Eibach springs with no other major changes. The Roadster S can accelerate from 0–60 mph in 5.1 seconds, 0–100 mph in 13 seconds and can attain a claimed top speed of 169 mph. The Roadster S’ body-in-white was prepared at the BMW factory in Spartanburg, Greer, South Carolina and were sent to the Alpina factory in Buchloe for final assembly. In addition, the Roadster S was also produced by modifying a Z4 3.0i by stripping off the standard interior and installing an Alpina specific interior, modifying its engine and installing Alpina specific components. Europe production for the Roadster S was carried out for only two years (in 2004 and 2005) with 167 cars built in total. The reason behind the short production span was that the M54 engine was not compliant with the new Euro 4 emission regulations coming into effect from January 2006 due to which BMW stopped supplying engines to Alpina.

 photo Picture 189_zpsmdohcvpf.jpg  photo Picture 969_zpsha7dktnt.jpg

ALVIS

Made between 1953 and 1955, the TC21 was an update of the 3 Litre. The car was available in four-door saloon and drophead versions essentially the same as the TA 21. The saloon bodies were made for Alvis by Mulliners of Birmingham) and the dropheads by Tickford. A sunshine roof remained standard as did “separately adjustable front seats; heater and air-conditioning unit; Trico windscreen washers” drawing the comment from Autocar “In detail fittings . . . this car leaves little to be desired. The 2,993 cc engine was upgraded to produce 100 bhp by modifying the cylinder head and fitting twin SU carburettors. Suspension was the same as the TA 21, independent at the front using coil springs with leaf springs at the rear. The 11 in drum brakes using a Lockheed system were also retained. However this update found few buyers during a very difficult year for the British Motor Industry and though it remained in the catalogue and continued to be advertised it was in practice replaced by the Grey Lady. The TC.21/100 or Grey Lady was announced on 20 October 1953 came with a guarantee of a speed of 100 mph resulting from an improved exhaust system and an engine compression ratio raised from 7:1 to 8:1 to take advantage of the availability of better petrol. The final drive ratio was raised from 4.09:1 to 3.77:1. A paired front fog lamp and matching driving lamp became a standard fitting. The bonnet gained air scoops and wire wheels were fitted to try to enliven the car’s image. A heater was fitted as standard but a radio remained an expensive option. A saloon version tested by The Motor magazine in 1954 had a top speed of 100.1 mph and could accelerate from 0-60 mph in 15.4 seconds. A fuel consumption of 20.6 mpg was recorded. The test car cost £1,821 including taxes. Nevertheless just 18 months later the Times’ Motoring Correspondent tested and reported on the Grey Lady under the headline “Few Concessions to Fashion Trends”. His opening gambit was that this Alvis was now one of the few British cars that did not look American and, he said, there was little concession to the cult of streamlining beyond the two air scoops in the bonnet. He wrote that spacious internal headroom and wire wheels completed that picture. It was noted the instruments were not in front of the driver but in the centre of the dashboard (instrument panel) and so the speedometer was apt to be masked by the driver’s left hand. However the front seats were comfortable and rear seat passengers received padding on the wheel arches surmounted by armrests. Leather upholstery, pile carpets and walnut facings for the dashboard and lower parts of the window frames completed the traditional picture. He did however say that “the driver who is sensitive to the “feel” of his car will enjoy every moment of his motoring irrespective of the traffic” and reported the car’s behaviour on corners was extremely stable though potholes like those caused by recessed manhole covers proved very heavy going for the springing. Nonetheless, 7576 examples of the model were produced.

 photo Picture 742_zpsovjdkb96.jpg  photo Picture 741_zpstzev6y1t.jpg

ASTON MARTIN

 photo Picture 751_zpsf100vkuj.jpg

The two Aston Martin models to catch my eye were both current models, a DB9 and the latest Vanquish as well as that car’s predecessor the DBS.

 photo Picture 988_zpsov4xdwgl.jpg  photo Picture 242_zpsm79g5nvm.jpg  photo Picture 883_zpscu5vtxoo.jpg

AUDI

Still well-regarded over 35 years since its launch is the Quattro, a legend which transformed rallying and brought the idea of four wheel drive as a performance benefit to the market. The idea for a high-performance four-wheel-drive car was proposed by Audi’s chassis engineer, Jörg Bensinger, in 1977, when he found that the Volkswagen Iltis could outperform any other vehicle in snow, no matter how powerful. Bensinger’s idea was to start developing an Audi 80 variant in co-operation with Walter Treser, Director of Pre-Development.. Following an unveiling on 1st March 1980, Audi released the original Quattro to European customers in late 1980, with the car featuring Audi’s quattro permanent four-wheel drive system (hence its name), and the first to mate four-wheel drive with a turbocharged engine. The original engine was the 2,144 cc  in-line-5-cylinder 10 valve SOHC, with a turbocharger and intercooler. It produced 197 bhp propelling the Quattro from 0 to 100 km/h in 7.1 seconds, and reaching a top speed of over 220 km/h (137 mph). The engine was eventually modified to a 2,226 cc  inline-5 10 valve, still producing 197 bhp, but with peak torque lower in the rev-range. In 1989, it was then changed to a 2,226 cc inline-5 20v DOHC setup producing 217 bhp, now with a top speed of 230 km/h (143 mph) Audi Quattros are referred to among owners and enthusiasts by their engine codes, to differentiate between the earlier and later versions: the earliest  2144 cc 10v being the “WR” engine, the 2226 cc 10v being the “MB” engine, and the later 20v being the “RR” engine. Hence, Quattro models may be referred to as either the WR Quattro, MB Quattro, and RR or “20v” Quattro, respectively. Quattro car production was 11,452 vehicles over the period 1980–1991, and through this 11 year production span, despite some touch-ups, there were no major changes in the visual design of the vehicle. For the 1983 model year, the dash was switched from an analogue instrument cluster, to a green digital LCD electronic instrument cluster. This was later changed in 1988 to an orange LCD electronic instrument cluster. The interior was redesigned in 1984, and featured a whole new dash layout, new steering wheel design, and new centre console design, the switches around the instrument panel were also redesigned at this time. In 1985 the dash changed slightly with harder foam and lost a diagonal stripe, the dash switches were varied slightly and the diff lock pull knob gave way to a two-position turning knob with volt and oil temp digital readouts. External styling received very little modification during its production run. Originally, the car had a flat fronted grille featuring four separate headlamp lenses, one for each of the low and high beam units. This was altered for the 1983 model year, and replaced with combined units featuring a single lens, but housing twin reflectors. This was changed again, for the 1985 model year, in what has become known as the ‘facelift model’ and included such alterations as a new sloping front grille, headlights, and trim and badging changes. Max speed was 124 mph. The RR 20v Quattro also featured a new three spoke steering wheel design, leather covering for door arm rests, gloveboxes, centre console and door pockets. There was also a full length leather-wrapped centre console running all the way to the rear seats. The 20v was also the first Ur-Q to have “quattro” script interior with partial leather seats. The floor on the drivers side had a bulge due to dual catalytic exhaust setup. The different models may be distinguished by the emblems on their boot lids: the WR had a vinyl ‘quattro’ decal or a brushed aluminium effect plastic emblem, the MB had chrome plated ‘audi’, ‘audi rings’ and ‘quattro’ emblems, whilst the RR had only chrome plated ‘audi rings’. The rear suspension was altered early on with geometry changes and removal of the rear anti-roll bar to reduce a tendency for lift-off oversteer. For the 1984 facelift, the wheel size went from 6×15-inch with 205/60-15 tyres to 8×15-inch wheels with 215/50-15 tyres. At the same time the suspension was lowered 20 mm with slightly stiffer springs for improved handling. For 1987, the Torsen centre differential was used for the first time, replacing the manual centre differential lock. The last original Audi Quattro was produced on 17 May 1991, more than two years after the first models of the new Audi Coupe range (based on the 1986 Audi 80) had been produced.

 photo Picture 949_zpsz7clnpfx.jpg  photo Picture 948_zpspz3mijwi.jpg

Three RS models caught my eye. There were RS4 Avant cars in the B5 and B7 generations and the very latest RS3 Sportback, a car I was fortunate enough to be able to sample a few weeks before this event.

 photo Picture 1017_zpsfs3irdum.jpg  photo Picture 300_zpsvvvd72i3.jpg  photo Picture 964_zpscpqsw0zw.jpg  photo Picture 965_zpssjcs2nob.jpg

AUSTIN

This is a Seven, Herbert Austin’s masterpiece which did much to put Britain on wheels in the 1920s. The first Sevens were built in 1922, and were four seat open tourers. Nicknamed Chummy, the first 100 featured a 696cc four cylinder engine, which was quickly upgraded to the 747cc unit that remained until the end of production some 17 years later. The first cars had an upright edge to the doors and a sloping windscreen, but from 1924, the screen became upright and there was a sloping edge to the doors, as well as a slightly longer body. Stronger brakes came along in 1926, along with a slightly taller nickel-plated radiator grille, conventional coil ignition, a more spacious body and wider doors. An even longer and wider body arrived in 1930, as well as a stronger crankshaft and improvements to the brakes which coupled front and rear systems together so they both worked by the footbrake. In 1931 the body was restyled , with a thin ribbon-style radiator and by 1932 there was a four speed gearbox to replace the earlier three-speeder. 1933 saw the introduction of the Ruby, a car that looked more modern with its cowled radiator. There were also Pearl and Opal versions. Development continued, so in 1937 there was a move to crankshaft shell bearings in place of the white metal previously used, and the Big Seven appeared. The last Seven was made in 1939, by which time 290,000 had been produced. Aside from saloons and tourers, there had been vans and sports derivatives like the Le Mans, the supercharged Ulster and the rather cheaper Nippy. Around 11,000 Sevens survive today.

 photo Picture 264_zps4u2vt2sc.jpg

AUSTIN HEALEY

There were several examples of the “Big Healey” here, one of Britain’s most popular classics, in both the earlier 100 and later 3000 guises. Donald Healey had been producing a range of expensive sports cars from the 1940s, cars such as the Silverstone, the Abbott and the Farnham. For the 1952 London Motor Show, he produced a new design, which was called the Healey Hundred, based on Austin A90 mechanicals, which he intended to produce in-house at his small car company in Warwick. It was one of the stars of the 1952 Show, and it so impressed Leonard Lord, the Managing Director of Austin, who was looking for a replacement to the unsuccessful A90. that Lord struck a deal with Healey on the spot, to build it in quantity. Bodies made by Jensen Motors would be given Austin mechanical components at Austin’s Longbridge factory. The car was renamed the Austin-Healey 100, in reference to the fact that the car had a top speed of 100 mph. Production got under way in 1953, with Austin-Healey 100s being finished at Austin’s Longbridge plant alongside the A90 and based on fully trimmed and painted body/chassis units produced by Jensen in West Bromwich—in an arrangement the two companies previously had explored with the Austin A40 Sports. By early 1956, production was running at 200 cars a month, 150 of which were being sold in California. Between 1953 and 1956, 14,634 Austin-Healey 100s were produced, the vast majority of them, as was the case for most cars in this post war era, going for export. The car was replaced by an updated model in 1956, called the 100-6. It had a longer wheelbase,  redesigned bodywork with an oval shaped grille, a fixed windscreen and two occasional seats added (which in 1958 became an option with the introduction of the two-seat BN6 produced in parallel with the 2+2 BN4), and the engine was replaced by one based on the six-cylinder BMC C-Series engine. In 1959, the engine capacity was increased from 2.6 to 2.9 litres and the car renamed the Austin-Healey 3000. Both 2-seat and 2+2 variants were offered. It continued in this form until production ceased in late 1967. The Big Healey, as the car became known after the 1958 launch of the much smaller Austin-Healey Sprite, is a popular classic now. You come across the 3000 models more frequently than the 100s, as they accounted for more than 60% of all Big Healey production.

 photo Picture 284_zpswwtd4dwe.jpg  photo Picture 869_zpsvo0bimuz.jpg

There was also a nice example of the smaller stablemate, the “Frog Eye”. Known officially as the Sprite, it was announced to the press in Monte Carlo by the British Motor Corporation on 20 May 1958, just before that year’s Monaco Grand Prix. It was intended to be a low-cost model that “a chap could keep in his bike shed”, yet be the successor to the sporting versions of the pre-war Austin Seven. The Sprite was designed by the Donald Healey Motor Company, with production being undertaken at the MG factory at Abingdon. It first went on sale at a price of £669, using a tuned version of the Austin A-Series engine and as many other components from existing cars as possible to keep costs down. It was produced for a little over 3 years before being replaced by a Mark 2 version, which was then joined by a badge-engineered MG version, the Midget, reviving a model name used by MG from the late 1920s through to the mid 1950s. Enthusiasts often refer to Sprites and the later Midgets collectively as “Spridgets.” The first Sprite quickly became affectionately known as the “frogeye” in the UK and the “bugeye” in the US, because its headlights were prominently mounted on top of the bonnet, inboard of the front wings. The car’s designers had intended that the headlights could be retracted, with the lenses facing skyward when not in use; a similar arrangement was used many years later on the Porsche 928. But cost cutting by BMC led to the flip-up mechanism being deleted, therefore the headlights were simply fixed in a permanently upright position, giving the car its most distinctive feature. The body was styled by Gerry Coker, with subsequent alterations by Les Ireland following Coker’s emigration to the US in 1957. The car’s distinctive frontal styling bore a strong resemblance to the defunct American 1951 Crosley Super Sport.  The problem of providing a rigid structure to an open-topped sports car was resolved by Barry Bilbie, Healey’s chassis designer, who adapted the idea provided by the Jaguar D-type, with rear suspension forces routed through the bodyshell’s floor pan. The Sprite’s chassis design was the world’s first volume-production sports car to use unitary construction, where the sheet metal body panels (apart from the bonnet) take many of the structural stresses. The original metal gauge (thickness of steel) of the rear structure specified by Bilbie was reduced by the Austin Design Office during prototype build, however during testing at MIRA (Motor Industry Research Association) distortion and deformation of the rear structure occurred and the original specification was reinstated. The two front chassis legs projecting forward from the passenger compartment mean the shell is not a full monocoque. The front sheet-metal assembly, including the bonnet (hood) and wings, was a one-piece unit, hinged from the back, that swung up to allow access to the engine compartment. The 43 bhp, 948 cc OHV engine (coded 9CC) was derived from the Austin A35 and Morris Minor 1000 models, also BMC products, but upgraded with twin 11⁄8 inch SU carburettors which gave it 43 hp at 5200 rpm and 52 lb/ft at 3300 rpm. When tested by “The Motor” magazine  in 1958. It had a top speed of 82.9 mph and could accelerate from 0-60 mph in 20.5 seconds. Fuel consumption of 43 mpg was recorded. The rack and pinion steering was derived from the Morris Minor 1000 and the front suspension from the Austin A35. The front suspension was a coil spring and wishbone arrangement, with the arm of the Armstrong lever shock absorber serving as the top suspension link. The rear axle was both located and sprung by quarter-elliptic leaf springs, again with lever-arm shock absorbers and top links. There were no exterior door handles; the driver and passenger were required to reach inside to open the door. There was also no boot lid, owing to the need to retain as much structural integrity as possible, and access to the spare wheel and luggage compartment was achieved by tilting the seat-backs forward and reaching under the rear deck, a process likened to potholing by many owners, but which resulted in a large space available to store soft baggage. The BMC Competition Department entered Austin Healey Sprites in major international races and rallies, their first major success coming when John Sprinzel and Willy Cave won their class on the 1958 Alpine Rally. Private competitors also competed with much success in Sprites. Because of its affordability and practicality, the Austin Healey Sprite was developed into a formidable competition car, assuming many variants by John Sprinzel, Speedwell and WSM. The Sebring Sprite became the most iconic of the racing breed of Austin Healey Sprites. Many owners use their Austin Healey Sprites in competition today, fifty years after its introduction. 48,987 “frogeye” Sprites were made and the car remains popular to this day.

 photo Picture 757_zpsbaczlaid.jpg  photo Picture 891_zpsulzazewg.jpg

BENTLEY

This is a Syd Lawrence Special, not actually a replica but a one-off built by Syd Lawrence from 1949 to 1951 on a 3 litre original chassis with a 4.5 litre original engine. It was sold recently, by Stanley Mann, renowned Bentley dealer, so there was quite a bit of research and dialogue about the car. The chassis is stamped No.102 and additional with 50 ML. This extra marking was added by Southgate Motors (London) Ltd in 1950. The owner of this company was Syd Lawrence who built this Car. 50 ML is standing for 1950 Modified Lawrence. It was confirmed that chassis number no. 102 is from 1922.  It was modified in 1950, adding “Tiebars” in order to give extra strength to the chassis to suit the 4 1/2 litre engine which was fitted. The car was raced by Syd in national events at Silverstone and Goodwood in 1951, 1952, 1953, 1954 and 1956 with good results.

 photo Picture 318_zpswjtgdagl.jpg

This imperious looking coachbuilt S Type, a car I have seen at Prescott a number of times before.

 photo Picture 903_zpsxevkwpwk.jpg

BMW

The first car to bear the 6 Series nomenclature was the E24, which was launched in 1976, as a replacement for the E9 model 3.0 CS and CSL coupés first produced in 1965. The 3.0 CS was almost changed by adding a few centimeters in height to make it easier for customers to get into the car. However, Bob Lutz rebelled against the decision and rough drafted an alternative version that soon became the 6 series. Production started in March 1976 with two models: the 630 CS and 633 CSi. Originally the bodies were manufactured by Karmann, but production was later taken in-house to BMW. In July 1978 a more powerful variant, the 635 CSi, was introduced that featured as standard a special close-ratio 5-speed gearbox and a single piece black rear spoiler. The bigger bore and shorter stroke facilitated max 218 hp at 5200rpm and a better torque curve. For the first year, the 635 CSi was offered in three colours (Polaris, Henna Red, Graphite), and could also be spotted by the front air dam that did not have attached fog lights. These simple cosmetic changes reportedly worked to reduce uplift on the car at high speeds by almost 15% over the non-spoiler body shape. This early model shared suspension components with the inaugural BMW 5-series, the E12. In 1979 the carburettor 630 CS was replaced with the 628 CSi with its fuel injected 2.8 litre engine taken from the BMW 528i. In 1980 the 635 CSi gained the central locking system that is also controlled from the boot. Also, the E24 body style converted from L-jetronic injection to a Bosch Motronic DME. In 1982 (Europe) and 1983 (US), the E24 changed slightly in appearance, with an improved interior and slightly modified exterior. At the same time, the 635 CSi received a new engine, a slightly smaller-bored and longer-stroked 3430 cc six to replace the former 3453 cc engine and became available with a wide-ratio 5-speed manual or an automatic. This slight change was in fact a major change as pre-1982 cars were based on the E12 5-series chassis; after mid-1982, E24s shared the improved E28 5-series chassis. The only parts that remained the same were some of the exterior body panels. E24s produced after June 1987 came with new, ellipsoid headlamps which projects beam more directly onto road surface (newly introduced E32 7-series also sporting them). The sleeker European bumpers were also discontinued. Previous cars had either a European-standard bumper or a larger, reinforced bumper to meet the US standard requiring bumpers to withstand impact at 5 mph without damage to safety-related components. 1989 was the last year for the E24 with production stopping in April. The E24 was supplanted by the considerably heavier, more complex, and more exclusive 8 Series. BMW Motorsport introduced the M 635 CSi in Europe at the Frankfurt Motor Show in 1983. It is essentially an E24 powered by the powerplant of the BMW M1 – the M88 with 286 PS). Most of the cars were equipped with special metric 415 mm diameter wheels requiring Michelin TRX tyres. A catalysed, lower compression ratio version of the car with the S38 engine (260 PS ) was introduced in the U.S. in 1987. All M6 cars came standard with a 25% rear limited slip differential. U.S. models included additional comforts that were usually optional on models sold in Europe such as Nappa leather power seats and a dedicated rear A/C unit with a centre beverage chiller.  4,088 M635CSi cars were built between 1983 and 1988 with 1,767 U.S. M6 built. Seen here was a rather nice M635 CSi.

 photo Picture 280_zpskywaxtwf.jpg

Representing the E31 8 Series, a car which found less favour than everyone expected when it was new, as this 840Ci. While it did supplant the original E24 based 6 Series in 1991, a common misconception is that the 8 Series was developed as a successor. It was actually an entirely new class aimed at a different market, however, with a substantially higher price and better performance than the 6 series. Design of the 8 Series began in 1984, with the final design phase and production development starting in 1986. The 8 Series debuted at the Frankfurt Motor Show (IAA) in early September 1989. The 8 Series was designed to move beyond the market of the original 6 Series. The 8 Series had substantially improved performance, however, as well as a far higher purchase price. Over 1.5 billion Deutsche Mark was spent on total development. BMW used CAD tools, still unusual at the time, to design the car’s all-new body. Combined with wind tunnel testing, the resulting car had a drag coefficient of 0.29, a major improvement from the previous BMW M6/635CSi’s 0.39. The 8 Series supercar offered the first V-12 engine mated to a 6-speed manual gearbox on a road car. It was the first car to feature CAN bus—a form of multiplex wiring for cars that is now an industry standard. It was also one of the first vehicles to be fitted with an electronic drive-by-wire throttle. The 8 Series was one of BMW’s first cars, together with the Z1, to use a multi-link rear axle. While CAD modelling allowed the car’s unibody to be 8 lb (3 kg) lighter than that of its predecessor, the car was significantly heavier when completed due to the large engine and added luxury items—a source of criticism from those who wanted BMW to concentrate on the driving experience. Some of the car’s weight may have been due to its pillarless “hardtop” body style, which lacked a “B” post. Sales of the 8 Series were affected by the global recession of the early 1990s, the Persian Gulf War, and energy price spikes. As a result, plans for the M8 supercar were dropped in 1991. A cheaper 8 cylinder 840CI joined the range in 1993 in an effort to boost sales, and to an extent it, did but this was still not enough and BMW pulled the 8 Series from the North American market in 1997, having sold only 7,232 cars over seven years. BMW continued production for Europe until 1999. The ultimate worldwide production total was 31,062.

 photo Picture 914_zpsmggszvmv.jpg

Also catching my camera were a Z4 Coupe, an E90 generation M3 Saloon, and the very latest M4 and a 340i Touring. This latter is destined to be a rare car in the UK, as the current emissions-based taxation regime militates fairly strongly against potent petrol engined cars, no matter how efficient their engines may actually be.

 photo Picture 269_zpsniao59pt.jpg  photo Picture 286_zpsdv3vq7nr.jpg  photo Picture 245_zpsofahxego.jpg  photo Picture 957_zpsp0cullam.jpg photo Picture 301_zpsu6ppp1gy.jpg

BRISTOL

To replace the 401 – 403 series of cars from the late 40s and early 1950s, Bristol offered the 404 and 405 ranges. The Bristol 404 came first, manufactured from 1953 to 1958, and the 405 from 1955 to 1958. The 404 was a two-seat coupé and the 405 was available as a four-seat, four-door saloon and as a four-seat, two-door drophead coupé, as seen here. Unlike previous or later Bristol models, there is considerable confusion in nomenclature when it comes to the Bristol 404 and 405. The 404 had a very short-wheelbase (8 feet) as against 9 feet 6 inches for the 405. The 405 itself was seen in two versions. The more common (265 of 308 built) is a four-door saloon built on the standard chassis of the previous Bristols, whilst the 405 drophead coupé or 405D (43 built) had a coupé body by Abbotts of Farnham and most built had a highly tuned (through advanced valve timing) version of the 2 litre six-cylinder engine called the 100C which developed 125 bhp as against the 105 bhp of the standard 100B 405 engine. All engines for the 404 and 405 had higher compression ratios than previous Bristols — 8.5:1 as against 7.5:1. Compared to the 403, the 404 and 405 had an improved gearbox with much shorter gear lever which improved what was already by the standards of the day a very slick gearchange. The 405, though not the 404, had overdrive as standard. Seen here was a 405 Saloon.

 photo Picture 1010_zpsv292ygbs.jpg  photo Picture 1009_zpsrru8i4z8.jpg  photo Picture 1008_zpswul4msos.jpg

This is a 409, one of 74 units made between 1965 and 1967. The Bristol 409 was the third series of cars from Bristol Cars powered by Chrysler V8 engines. It was actually introduced before the older Bristol 408 went out of production and only gradually supplanted that model after a year. There were a number of major changes to the chassis of the 409 compared to earlier Bristols. The springs were much softer than of the 408 or 407, so that the ride quality was much better. Following on from Chrysler’s pioneering work in the early 1960s, Bristol fitted an alternating current alternator in place of the traditional direct current dynamo, which had proven difficult to drive at high engine speeds. Also a follow-up to previous work on the 408 was an improved safety lever to prevent anyone from putting the automatic transmission in gear accidentally. There was also an altered differential fitted with a slightly higher (i.e. numerically lower) ratio. The styling was almost unchanged from the 408, though the radiator grille was now altered into a trapezoidal shape rather than the precise rectangle of the 408. The engine was also altered slightly – remaining at 5,211 cc but providing slightly increased power and torque. The 409 was the first Bristol to be offered with power steering, initially as an optional extra but after June 1967 as a standard feature. The 409 was the last Bristol V8 to feature dashboard transmission selector buttons. The subsequent Bristol 410 sported a central transmission shift lever, as well as a more streamlined frontal design.

 photo Picture 1005_zpsijvx1wug.jpg

CHEVROLET

This is an example of the Advance Design truck, Chevrolet’s first major redesign post-World War II. The Advance-Design series was billed as a bigger, stronger, and sleeker design in comparison to the earlier AK Series. First available on Saturday June 28, 1947, these trucks were sold with various minor changes over the years until March 25, 1955, when the Task Force Series trucks replaced the aging Advance-Design model. The same basic design family was used for all of its trucks including the Suburban, panel trucks, canopy express and cab overs. The Cab Overs used the same basic cab configuration and similar grille but used a shorter and taller bonnet and different bumpers. The unique Cab Over bumpers and bonnet required a custom cowl area which makes the Cab Over Engine cabs and normal truck cabs incompatible with one another while all truck cabs of all weights interchange. While General Motors used this front end sheet metal, and to a slightly lesser extent the cab, on all of its trucks except for the Cab Overs, there are three main sizes of this truck: the half-, three-quarter-, and full ton capacities in short and long wheelbase. From 1947 until 1955, Chevrolet trucks were number one in sales in the United States, with rebranded versions sold at GMC locations.

 photo Picture 290_zpstppdilrn.jpg

The third generation Corvette, patterned after the Mako Shark II concept car, was introduced for the 1968 model year and was in production until 1982. C3 coupes featured the first use of T-top removable roof panels. The C3 introduced monikers that were later revived, such as LT-1, ZR-1, Z07 and Collector Edition. In 1978, the Corvette’s 25th anniversary was celebrated with a two-tone Silver Anniversary Edition and an Indy Pace Car replica edition of the C3. This was also the first time that a Corvette was used as a Pace Car for the Indianapolis 500. Engines and chassis components were mostly carried over from the C2, but the body and interior were new. The 350 cu in (5.7 litre) engine replaced the old 327 cu in (5.36 litre) as the base engine in 1969, but power remained at 300 bhp. 1969 was the only year for a C3 to optionally offer either a factory installed side exhaust or normal rear exit with chrome tips. The all-aluminium ZL1 engine was also new for 1969; the special big-block engine was listed at 430-hp , but was reported to produce 560 hp and propelled a ZL1 through the 1/4 mile in 10.89 seconds. There was an extended production run for the 1969 model year due a lengthy labour strike, which meant sales were down on the 1970 models, to 17,316. 1970 small-block power peaked with the optional high compression, high-revving LT-1 that produced 370 bhp. The 427 big-block was enlarged to 454 cu in (7.44 litre) with a 390 bhp rating. The ZR-1 special package was an option available on the 1970 through 1972 model years, and included the LT-1 engine combined with special racing equipment. Only 53 ZR-1’s were built. In 1971, to accommodate regular low-lead fuel with lower anti-knock properties, the engine compression ratios were lowered which resulted in reduced power ratings. The power rating for the 350 cu in (5.7 litre) L48 base engine decreased from 300 to 270 hp and the optional special high performance LT1 engine decreased from 370 to 330 hp. The big-block LS6 454 was reduced from 450 to 425 bhp, though it was not used in Corvettes for 1970; it was used in the Chevelle SS. For the 1972 model year, GM moved to the SAE Net measurement which resulted in further reduced, but more realistic, power ratings than the previous SAE Gross standard. Although the 1972 model’s 350 cu in horsepower was actually the same as that for the 1971 model year, the lower net horsepower numbers were used instead of gross horsepower. The L48 base engine was now rated at 200 bhp and the optional LT1 engine was now rated at 270 bhp. 1974 models had the last true dual exhaust system that was dropped on the 1975 models with the introduction of catalytic converters requiring the use of no-lead fuel. Engine power decreased with the base ZQ3 engine producing 165 bhp), the optional L82’s output 250 bhp, while the 454 big-block engine was discontinued. Gradual power increases after 1975 peaked with the 1980 model’s optional L82 producing 230 bhp. Styling changed subtly throughout the generation until 1978 for the car’s 25th anniversary. The Sting Ray nameplate was not used on the 1968 model, but Chevrolet still referred to the Corvette as a Sting Ray; however, the 1969 (through 1976) models used the “Stingray” name as one word, without the space. In 1970, the body design was updated including fender flares, and interiors were refined, which included redesigned seats, and indication lights near the gear shift that were an early use of fibre optics . Due to government regulation, the 1973 Corvette’s chrome front bumper was changed to a 5-mile-per-hour (8 km/h)system with a urethane bumper cover. 1973 Corvettes are unique in that sense, as they are the only year where the front bumper was polyurethane and the rear retained the chrome two-piece bumper set. 1973 was also the last year chrome bumpers were used. The optional wire-spoked wheel covers (left) were offered for the last time in 1973. Only 45 Z07 were built in 1973. From 1974 onwards both the front and rear bumpers were polyurethane. In 1974, a 5-mph rear bumper system with a two-piece, tapering urethane bumper cover replaced the Kamm-tail and chrome bumper blades, and matched the new front design from the previous year. 1975 was the last year for the convertible, (which did not return for 11 years). For the 1976 models the fibreglass floor was replaced with steel panels to provide protection from the catalytic converter’s high operating temperature. 1977 was last year the tunnelled roof treatment with vertical back window was used, in addition leather seats were available at no additional cost for the first time. The 1978 25th Anniversary model introduced the fastback glass rear window and featured a new interior and dashboard. Corvette’s 25th anniversary was celebrated with the Indy 500 Pace Car limited edition and a Silver Anniversary model featuring silver over gray lower body paint. All 1979 models featured the previous year’s pace car seats and offered the front and rear spoilers as optional equipment.  53,807 were produced for the model year, making 1979 the peak production year for all versions of the Corvette. Sales have trended downward since then. In 1980, the Corvette received an integrated aerodynamic redesign that resulted in a significant reduction in drag. After several years of weight increases, 1980 Corvettes were lighter as engineers trimmed both body and chassis weight.  In mid-1981, production shifted from St. Louis, Missouri to Bowling Green, Kentucky, and several two-tone paint options were offered. The 1981 models were the last available with a manual transmission until well into the 1984 production run. In 1982, a fuel-injected engine returned, and a final C3 tribute Collectors Edition featured an exclusive, opening rear window hatch. Seen here was a late example of the model.

 photo Picture 991_zpsyld1hz8g.jpg  photo Picture 990_zpsmzdtwvsa.jpg

CITROEN

There were lots more Citroen models here, all of which really should have been in the main display. These included several more 2CV cars, including the popular Charleston limited edition and the once popular (in France) Van.


 photo Picture 926_zpsgthltxsx.jpg  photo Picture 925_zps8rfrusyd.jpg  photo Picture 310_zpsgpnyamnh.jpg  photo Picture 951_zpsycbjxeac.jpg

Also here were further examples of the DS21 and the SM.

 photo Picture 871_zpsn3zmqp6f.jpg  photo Picture 873_zpsomy5jfob.jpg  photo Picture 882_zpskqyrvrho.jpg

More recent but now rare is the BX and there was a nice BX GTi 4×4 parked up, as well as a further example of the C6.

 photo Picture 313_zps3ncw64ip.jpg  photo Picture 312_zpssdbdf0e5.jpg  photo Picture 311_zpsuicumte9.jpg  photo Picture 881_zps2yvof4x4.jpg

DAIMLER

Launched late in 1962, the Daimler V8 Saloon was essentially a rebadged Jaguar Mark 2 fitted with Daimler’s 2.5-litre 142 bhp V8 engine and drive-train, a Daimler fluted grille and rear number plate surround, distinctive wheel trims, badges, and interior details including a split-bench front seat from the Jaguar Mark 1 and a black enamel steering wheel. Special interior and exterior colours were specified. Most cars were fitted with power-assisted steering but it was optional. Automatic transmission was standard; manual, with or without overdrive, became an option in 1967. The 2.5 V8 was the first Jaguar designed car to have the Daimler badge. A casual observer, though not its driver, might mistake it for a Jaguar Mark 2. The Daimler’s stance on the road was noticeably different from a Mark 2. In April 1964 the Borg-Warner Type 35 automatic transmission was replaced by a D1/D2 type, also by Borg-Warner. A manual transmission, with or without an overdrive unit usable with the top gear, became available on British 2.5 V8 saloon in February 1967 and on export versions the following month. Cars optioned with the overdrive had the original 4.55:1 final drive ratio. In October 1967, there was a minor face-lift and re-labelling of the car to V8-250. It differed only in relatively small details: “slimline” bumpers and over-riders (shared with the Jaguar 240/340 relabelled at the same time), negative-earth electrical system, an alternator instead of a dynamo and twin air cleaners, one for each carburettor. Other new features included padding over the instrument panel, padded door cappings and ventilated leather upholstery, reclinable split-bench front seats and a heated rear window. Power steering and overdrive were optional extras. Jaguar replaced its range of saloons—the 240, the 340, the 420, and the 420G—with the XJ6 at the end of 1968. The company launched the XJ6-based Daimler Sovereign the following year to replace the Daimler saloons—the 240-based V8-250 and the 420-based Sovereign. Henceforth all new Daimlers would be re-badged Jaguars with no engineering links to the pre-1960 Daimlers.

 photo Picture 731_zpsdkwdqnth.jpg  photo Picture 939_zps1wjglsea.jpg

DELAGE

 photo Picture 971_zps0fiagwh9.jpg

DE TOMASO

Another car that should have been in the Paddock rather than here was this late model Pantera. Perhaps the loudest of everything that was on show were the duo of Pantera models. Designed by American Tom Tjaarda, and unlike the Mangusta, which employed a steel backbone chassis, the Pantera was a steel monocoque design, the first instance of De Tomaso using this construction technique. The Pantera logo included a version of Argentina’s flag turned on its side with a T-shaped symbol that was the brand used by De Tomaso’s Argentinian cattle ranching ancestors. The car made its public debut in Modena in March 1970 and was presented at the 1970 New York Motor Show a few weeks later. Approximately a year later the first production Panteras were sold, and production was increased to three per day.  The curious slat-backed seats which had attracted comment at the New York Show were replaced by more conventional body-hugging sports-car seats in the production cars: leg-room was generous but the pedals were off-set and headroom was insufficient for drivers above approximately 6 ft. Reflecting its makers’ transatlantic ambitions, the Pantera came with an abundance of standard features which appeared exotic in Europe, such as electric windows, air conditioning and even “doors that buzz when … open”. By the time the Pantera reached production, the interior was in most respects well sorted, although resting an arm on the central console could lead to inadvertently activating the poorly located cigarette lighter. The first 1971 Panteras were powered by a Ford 351 cu in (5.8  litre)  V8 engine that produced a severely underrated 330 hp. Stock dynos over the years proved that power was more along the lines of about 380 hp. The high torque provided by the Ford engine reduced the need for excessive gear changing at low speeds: this made the car much less demanding to drive in urban conditions than many of the locally built competitor products. The ZF transaxle used in the Mangusta was also used for the Pantera: a passenger in an early Pantera recorded that the mechanical noises emanating from the transaxle were more intrusive than the well restrained engine noise. Power-assisted four-wheel disc brakes and rack and pinion steering were all standard equipment on the Pantera. The 1971 Pantera could accelerate to 60 mph in 5.5 seconds. In the summer of 1971, a visitor to the De Tomaso plant at Modena identified two different types of Pantera awaiting shipment, being respectively the European and American versions. From outside, the principal differences were the larger tail lamps on the cars destined for America, along with addition of corner marker lamps. The visitor was impressed by the large number of cars awaiting shipment; but in reality, spending the best part of a year under dust covers in a series of large hangars probably did nothing for the cash-flow of the business or the condition of some of the cars by the time they crossed the Atlantic. Late in 1971, Ford began importing Panteras for the American market to be sold through its Lincoln Mercury dealers. The first 75 cars were simply European imports and are known for their “push-button” door handles and hand-built Carrozzeria Vignale bodies. A total of 1,007 Panteras reached the United States that first year. These cars were poorly built, and several Panteras broke down during testing on Ford’s test track. Early crash testing at UCLA showed that safety cage engineering was not very well understood in the 1970s. Rust-proofing was minimal on these early cars, and the quality of fit and finish was poor, with large amounts of body solder being used to cover body panel flaws. Notably, Elvis Presley once fired a gun at his Pantera after it would not start. An L model (“Lusso”) was added in 1972 and a GTS version in 1974, but it was not enough and Ford ended their importation to the US in 1975, having sold around 5,500 cars. De Tomaso continued to build the car in ever-escalating forms of performance and luxury for almost two decades for sale in the rest of the world. A small number of Panteras were imported to the US by grey market importers in the 1980s, notably Panteramerica and AmeriSport. After 1974, Ford US discontinued the Cleveland 351 engine, but production continued in Australia until 1982. De Tomaso started sourcing their V8s from Australia once the American supplies dried up. These engines were tuned in Switzerland and were available with a range of outputs up to 360 PS. The chassis was completely revised in 1980, beginning with chassis number 9000. From May 1980 the lineup included the GT5, which had bonded and riveted-on fibreglass wheelarch extensions and from November 1984 the GT5S model which had blended arches and a distinctive wide-body look. The GT5 also incorporated better brakes, a more luxurious interior, much larger wheels and tires and the fibreglass body kit also included an air dam and side skirts. Production of the wide body GT5 (and similarly equipped narrow body GTS models) continued until 1985, when the GT5-S replaced the GT5. Although the factory has not made its records available, an analysis based on Vehicle Identification Numbers by the Pantera Owners Club of America (POCA) late model (9000 series) registrar has shown that fewer than 252 GT5 Panteras were likely to have been built. The GT5-S featured single piece flared steel fenders instead of the GT5’s riveted-on fibreglass flares, and a smaller steel front air dam. The ‘S’ in the GT5-S name stood for “steel”. Otherwise the GT5-S was largely identical to the GT5. The POCA 9000 series registrar’s VIN analysis indicates that fewer than 183 GT5-S Panteras were built. Concurrent GTS production continued, on a custom order and very limited basis, until the late 1980s. The car continued to use a Ford V8 engine, although in 1988, when the supply of Ford 351 Cleveland engines from Australia ran out, De Tomaso began installing Ford 351 Windsor engines in the Pantera instead. For 1990 the 351 was changed to the Ford 302 cu in (4942 cc, commonly called a “5.0”). Incorporating a Marcello Gandini facelift, suspension redesign, partial chassis redesign and the new, smaller engine, the Pantera 90 Si model was introduced in 1990. Only 38 90 Si models were sold before the Pantera was finally phased out in 1993 to make way for the radical, carbon-fibre-bodied Guarà. Some say 41 were built (with the last one not finished until 1996), of which four were targa models. The targas were converted by Pavesi directly off the production lines. In all, about 7,200 Panteras were built. The duo here were from the later production, with the much wider body and extended wheelarches.

 photo Picture 875_zps5x4me51c.jpg  photo Picture 874_zpscqpcdsrw.jpg  photo Picture 876_zpsi2f6myd8.jpg

DUNSMORE

I’ve seen this car at a number of events over the years. It is a Dunsmore. Never heard of it? Hardly surprising, really, as only a few were made.  When Bill Hines set out to build a car that reflected his taste for nostalgia, it was natural that he should draw on his family’s long involvement with the motor trade.  In the 1920s, his father had been offered a job at Riley by fellow London resident, Percy McClure, one of the Works Drivers.  On a Monday morning the two would set out from Marble Arch at 6am and, 100 miles later, would clock-in at Riley’s Coventry factory just before 8am, having negotiated heavy traffic on the A5.  Bill’s father was a keen enthusiast and loyal Riley employee and travelled everywhere with the Works Team.  Hence the topic of conversation at the family home often turned to motor sport and the motor industry. Bill himself ran a JAP-engined Cooper in hill climbs and a Jaguar-engined Marendaz tourer, plus another fearsome cable braked Jaguar special, before settling down to establish his own motor repair business. Following a move to Dunsmore Heath between Coventry and Rugby, he once again had the time to pursue his passion, and the first ‘Dunsmore Special’ was born of a £500 Vauxhall VX4/90.  Subsequent cars with both Vauxhall Ventora and Jaguar XK engines were built, each as if it were Bill’s own, and finished with an external brake lever, beam axles, cycle wings and aero screens to give that Vintage feel. This example – the original donor car having been an early 420 Jaguar Saloon – is powered by a triple carburettor 4.2-litre unit to E-Type specification.  Finished in a dark red with cream leather trimmed seats, it is of very good appearance.  The quality of the original build shows through, with components fitting nicely and no excessively awkward elements spoiling the looks.

 photo Picture 274_zpswh0mhcot.jpg

FACEL VEGA

What a shame that this Facellia was not with the other French cars in the Orchard. n 1960, Facel entered the sports car market with the Facellia, a small car similar in size to the then popular Mercedes 190SL. Facellias were advertised in three body styles: cabriolet, 2+2 coupé and 4-seat coupé — all with the same mechanical parts and a 2,450 mm (96.5 in) wheelbase. Styling was similar to the Facel HK500, but with rather elegant (though fingernail-breaking) flush door handles. Following Facel Vega’s demise several of M Daninos’s styling cues were “borrowed” by Mercedes-Benz. Prices were roughly US$4,000 for the Facellia, US$5,500 for the Facel III and US$6,000 for the Facel 6. With the idea of creating a mass-produced all-French sports car competing with the Alfa Romeos, Facel moved away from American engines. The Facellia had a 4-cylinder 1.6 litre DOHC engine built in France by Paul Cavallier of the Pont-à-Mousson company (which already provided manual gear boxes for the company’s larger models). The engine had only two bearings supporting each camshaft, using special steels, as opposed to the usual four or five. Despite the metallurgical experience of Pont-à-Mousson, this resulted in excessive flex, timing problems and frequent failures. Famed engineers Charles Deutsch and Jean Bertin were called in to solve the issues, but it was not enough and the engine was pronounced a disaster and the Facellia with it. Company president, Jean Daninos having been obliged to resign in August 1961 in response to the company’s financial problems, the new boss, a former oil company executive called André Belin, gave strict instructions to the after-sales department to respond to customer complaints about broken Facellia engines by replacing the units free of charge without creating “difficulties”. The strategy was intended to restore confidence among the company’s customer base. It would certainly have created a large hole in the income statement under the “warranty costs” heading, but it may have been too late for customer confidence. The troublesome engine was replaced with a Volvo B18 powerplant in the Facel III, but the damage was done. Production was stopped in 1963 and despite the vision of it being a “volume” car, only 1,100 were produced – still enough to make this Facel’s highest production number. Facel lost money on every car they built, with the luxury car side of the company being supported entirely by the other work done by Facel Metallon. The small Facellia met with little success and the losses from this, due to strong competition at the luxury end of the market, killed off the business which closed its doors at the end of October, 1964. What was, according to some, the best small Facel, the Facel 6, which used an Austin-Healey 2.8-litre engine, came too late to save the company with fewer than 30 having been produced when the financial guarantors withdrew their support.

 photo Picture 916_zps3jzvd6pn.jpg  photo Picture 915_zps7vt3fxkq.jpg  photo Picture 917_zps1zsaf3x2.jpg  photo Picture 918_zpsw3ca1p2x.jpg

FERRARI

There were a number of Ferrari models that were parked away in public parking. Oldest of these was a 330 GT 2 + 2. The provisional 330 America was replaced in January 1964 by the new 330 GT 2+2. It was first shown at the Brussels Show, early that year. It was much more than a re-engined 250, however, with a sharper nose and tail, quad headlights, and a wide grille. The wheelbase was 50 mm (2.0 in) longer, but Koni adjustable shock absorbers improved handling. A dual-circuit Dunlop braking system was used with discs all around, though it separated brakes front to back rather than diagonally as on modern systems. When leaving the factory the 330 GT originally fitted Pirelli Cinturato 205VR15 tyres (CN72). The 1965 Series II version featured a five-speed gearbox instead of the overdrive four-speed of the prior year. Other changes included the switch back to a dual-light instead of quad-light front, alloy wheels, and the addition of optional air conditioning and power steering. Prior to the introduction of the ‘Series II’ 330 GTs, a series of 125 ‘interim’ cars were produced, with the quad-headlight external configuration of the Series I cars, but with the five-speed transmission and ‘suspended’ foot pedals of the ‘Series II’ cars. 625 Series I (including 125 ‘interim’ cars) and 455 Series II 330 GT 2+2 cars had been built when the car was replaced by the 365 GT 2+2 in 1967. Production of the smaller 330 GTC and GTS models overlapped with the GT 2+2 for more than a year.

 photo Picture 356_zpsueviiodg.jpg  photo Picture 359_zps5dm1bgdv.jpg

Produced by Ferrari from 1980 through 1993, the Mondial replaced the 208/308 GT4. The “Mondial” name came from Ferrari’s history — the 500 Mondial race car of the early 1950s. Despite its predecessor being Bertone styled, the Mondial saw Ferrari return to Pininfarina for styling. Sold as a mid-sized coupe and, eventually a cabriolet, it was conceived as a ‘usable’ model, offering the practicality of four seats and the performance of a Ferrari. The car had a slightly higher roofline than its stablemates, with a single long door either side, offering easy access and good interior space, reasonable rear legroom while all-round visibility was excellent. The cabriolets also hold the distinction of being the only production automobile in history that has four seats, is rear mid-engined, and is a full convertible. The car body was not built as a monocoque in the same way as a conventional car. The steel outer body produced by the famous Italian coachbuilder Carrozzeria Scaglietti, in nearby Modena, was  built over a lightweight steel box-section space frame. The engine cover and rear luggage compartment lids are in light alloy. The seats and interior were trimmed in Connolly hide, contrasting with the body colour. Most cars were painted rosso red, but some were black or silver, and a few were dark blue. The Mondial was the first Ferrari car where the entire engine/gearbox/rear suspension assembly is on a detachable steel subframe. This design made engine removal for a major rebuild or cylinder head removal much easier than it was on previous models. Unusually, the handbrake is situated between the driver’s seat and the inner sill. Once the handbrake is set it drops down so as, not to impede egress and ingress. Instead of the conventional “H” shift pattern, the gearbox has 1st gear situated in a “dog leg” to the left and back, behind reverse. This pattern, otherwise known as a “reverse h-gate”, allows quicker gear shifts between 2nd and 3rd gear, and also between 4th and 5th. The Mondial underwent many updates throughout production. There were four distinct iterations (8, QV, 3.2, and t), with the latter 3 having two variations each. (coupe and cabriolet). The first car was introduced as the Mondial 8 at the 1980 Geneva Auto Salon. It was the first Ferrari to depart from the company’s simple 3-digit naming scheme, and some reviews found it relatively mild, compared to other Ferraris, regarding performance, drawing criticism from some in the motoring press. It used a mid/rear-mounted Bosch K-Jetronic fuel injection V8, shared with the 308 GTBi/GTSi, mounted transversely. The engine used in the 1973 Dino 308 GT4. The K-Jetronic system is mechanical, with a high-pressure pump which streams fuel continuously to the injectors; it does not have a computer, just a few relays to handle the cold start sequence etc. The chassis was also based on the 308 GT4, but with a 100mm (3.9 inch) longer wheelbase at 2,650 mm (104.3 in). The suspension was the classic layout of unequal-length double wishbones and Koni dampers all around. Today, the Mondial 8 is considered one of the marque’s most “practical” vehicles, due to its 214 hp, proven drivetrain, four seats, and relatively low cost of maintenance (major services can be performed without removing the entire engine/transmission subframe). 703 examples were made. The first Mondial engine, although a DOHC design, used just two valves per cylinder. The 1982 Quattrovalvole or QV introduced a new four-valve head; the combustion chamber design purportedly based on the early eighties Formula 1 engine. Again, the engine was shared with the contemporary 308 GTB/GTS QV, and produced a much more respectable 240 hp. Appearance was largely as per the Mondial 8, although with red engine heads and prominent “quattrovalvole” script at the rear. 1,145 coupés built between 1982 and 1985. A new Cabriolet body style added for 1983. Body styling remained the same as the coupé variant, with the roof maintaining the ‘buttress’ design of the roof, though the Cabriolet required the rear seats to be mounted closer together laterally. The introduction of the Cabriolet saw the popularity of the Mondial rise, particularly in the American market, where the convertible body style was highly desirable. The Cabriolet has the added distinction of being the only four-seat, mid-rear engine, convertible automobile ever manufactured in regular production. 629 units were produced between 1983 and 1985, making this the rarest version of the Mondial. Like the Ferrari 328, the Mondial’s engine grew in both bore and stroke to 3,185 cc in 1985. Output was now 270 PS.  The Mondial 3.2 was first presented at the 1985 Frankfurt Auto Show in September that year.  Available in both Coupé and Cabriolet forms, styling refreshed with restyled and body-coloured bumpers, similar to the 328 with more integrated indicators and driving lamps, and new alloy wheels with a more rounded face. The 3.2 also boasted a major interior update, with a more ergonomic layout and a more rounded instrument binnacle. Later cars, from 1987 onwards, also sported ABS brakes. Fuel injection remained the primarily mechanical Bosch K-Jetronic (CIS) with an O2 sensor in the exhaust providing feedback to a simple computer for mixture trimming via a pulse modulated frequency valve that regulated control fuel pressure. The ignition system was Marelli Microplex, with electronic advance control and one distributor per bank of the V8. The 1988 Mondial 3.2 would be the final model year that retained the relatively low maintenance costs of the 308/328 drivetrain, allowing major service items like timing belt and clutch replacement performed with the engine/transmission package still in the car. The final Mondial evolution was 1989’s Mondial t, which was a substantially changed model. It was visually different from preceding Mondial models, the most recognizable being the redesign of the air intakes to a smaller rectangular shape. Additionally, the door-handles were of a visually different design, as were the front and rear bumpers which became body coloured. New front and rear wings cover wider tracks and are re-profiled to a fuller shape compared to previous models, which feature a rolled lip. The ‘t’ called attention to the car’s new engine/transmission layout: the previously-transverse engine mounted longitudinally while the gearbox remained transverse, thus forming a ‘t’. By adopting this layout, a longer engine could be mounted lower in the chassis, improving handling dramatically. The ‘t’ configuration was used by Ferrari’s Formula One cars of the 1980s, and would be the standard for the marque’s future mid-engined V8 cars, beginning with the 348, introduced later in the year. The transverse manual gearbox fitted with a Limited Slip Differential with a twin-plate clutch design with bevel gears driving the wheels. Later in production, a Semi-automatic transmission termed “Valeo” was available as an option; while shifting was using a traditional gear lever, the clutch was actuated automatically without a clutch pedal. The engine was up to 3405 cc and 300 hp, controlled by Bosch Motronic DME 2.5 (later DME 2.7) electronic engine management that integrated EFI and ignition control into a single computer unit. Two of these used in the car: one for each bank of the engine. Engine lubrication upgraded to a dry-sump system. The Mondial’s chassis would underpin a new generation of 2-seat Ferraris, right up to the 360, but the 2+2 Mondial would end production just four and a half years later in 1993. However, the “t” layout of the engine and transaxle, adapted from Ferrari’s Formula One cars, continues to be used in mid-engined V8 model Ferraris to date, albeit with a more sophisticated chassis. The new layout saw the engine and transmission mounted on a removable subframe; the assembly removed from the underside of the vehicle for maintenance. This process is necessary for timing belt replacement, making this a costly procedure for the owner who does not have a lift. On the other hand, the clutch was now located at the very rear of the drive train. This arrangement makes clutch replacement and service a simple, inexpensive, and readily owner-doable proposition. The “t” was home to other Ferrari firsts: It used power assisted steering for the first time and had a 3-position electronically controlled suspension for a variable tradeoff between ride quality and road holding. It also had standard ABS. Total production of the t Coupe was 858 (45 Right Hand Drive), and the t Cabriolet of 1,017 (51 Right Hand Drive, meaning that around 6000 Mondial cars were produced over those 13 years, making it one of the most commercially significant Ferraris to date.

 photo Picture 968_zpsv6rrkbm2.jpg  photo Picture 967_zpsnj96vwda.jpg

It was with the 360 Modena that sales of Ferrari models really took off, with unprecedented volumes of the car being sold. The 360 Modena was launched in 1999,  named after the town of Modena, the birthplace of Enzo Ferrari. A major innovation in this all new model came from Ferrari’s partnership with Alcoa which resulted in an entirely new all-aluminium space-frame chassis that was 40% stiffer than the F355 which had utilised steel. The design was 28% lighter despite a 10% increase in overall dimensions. Along with a lightweight frame the new Pininfarina body styling deviated from traditions of the previous decade’s sharp angles and flip-up headlights. The new V8 engine, common to all versions, was of 3.6 litre capacity with a flat plane crankshaft, titanium connecting rods and generates 400 bhp  Despite what looks like on paper modest gains in reality the power to weight ratio was significantly improved on over the F355, this was due to the combination of both a lighter car and more power. The 0 to 100 km/h acceleration performance improved from 4.6 to 4.3 seconds. The first model to be rolled out was the 360 Modena, available as a manual, or an F1 electrohydraulic manual. Next up was an open car. The 360 was designed with a Spider variant in mind; since removing the roof of a coupe reduces the torsional rigidity, the 360 was built for strength in other areas. Ferrari designers strengthened the sills, stiffened the front of the floorpan and redesigned the windscreen frame. The rear bulkhead had to be stiffened to cut out engine noise from the cabin. The convertible’s necessary dynamic rigidity is provided by additional side reinforcements and a cross brace in front of the engine. Passenger safety is ensured by a strengthened windscreen frame and roll bars. The 360 Spider displays a curvilinear waistline. The fairings imply the start of a roof, and stable roll bars are embedded in these elevations. Due to use of light aluminium construction throughout, the Spider weighs in only 60 kg heavier than the coupé. As with the Modena version, its 3.6 litre V8 with 400 bhp is on display under a glass cover. The engine — confined in space by the convertible’s top’s storage area — acquires additional air supply through especially large side grills. The intake manifolds were moved toward the centre of the engine between the air supply conduits in the Spider engine compartment, as opposed to lying apart as with the Modena. In terms of performance, the 0-60 mph time was slightly slower at 4.4 seconds due to the slight weight increase, and the top speed was reduced from 189 to 180 mph. Despite the car’s mid-mounted V8 engine, the electrically operated top is able to stow into the compartment when not in use. The convertible top was available in black, blue, grey and beige. The transformation from a closed top to an open-air convertible is a two-stage folding-action that has been dubbed “a stunning 20 second mechanical symphony”. The interior of the Spider is identical to that of the coupé. There were several examples of both the Modena Coupe and the Spider here.

 photo Picture 355_zpsgkp4kspd.jpg  photo Picture 734_zpsnr6vg8ax.jpg  photo Picture 904_zpsuurqqs3y.jpg

There was a further example from the F430 range, this one a Scuderia.

 photo Picture 323_zpsl3iu7tzl.jpg  photo Picture 324_zpskllwfkyi.jpg

Next up was the 458, of which there were examples of both the closed Coupe and the later Spider model. An all new design, the 458 Italia was first officially unveiled at the 2009 Frankfurt Motor Show. Once more, Ferrari advised that the model incorporated technologies developed from the company’s experience in Formula 1. The body computer system was developed by Magneti Marelli Automotive Lighting. The 458 came with a 4,499 cc  V8 engine of the “Ferrari/Maserati” F136 engine family, producing 570 PS ( 562 hp) at 9,000 rpm and 540 N·m (398 lb/ft) at 6,000 rpm with 80% torque available at 3,250 rpm. The engine featured direct fuel injection, a first for Ferrari mid-engine setups in its road cars. The only transmission available was a dual-clutch 7-speed Getrag gearbox, in a different state of tune shared with the Mercedes-Benz SLS AMG. There was no traditional manual option, making this the fourth road-car after the Enzo, Challenge Stradale and 430 Scuderia not to be offered with Ferrari’s classic gated manual. The car’s suspension featured double wishbones at the front and a multi-link setup at the rear, coupled with E-Diff and F1-Trac traction control systems, designed to improve the car’s cornering and longitudinal acceleration by 32% when compared with its predecessors.The brakes included a prefill function whereby the pistons in the calipers move the pads into contact with the discs on lift off to minimise delay in the brakes being applied. This combined with the ABS and standard Carbon Ceramic brakes caused a reduction in stopping distance from 100–0 km/h (62-0 mph) to 32.5 metres. Ferrari’s official 0–100 km/h (62 mph) acceleration time was quoted as 2.9–3.0 seconds with a top speed of 340 km/h (210 mph).  In keeping with Ferrari tradition the body was designed by Pininfarina under the leadership of Donato Coco, the Ferrari design director. The interior design of Ferrari 458 Italia was designed by Bertrand Rapatel, a French automobile designer. The car’s exterior styling and features were designed for aerodynamic efficiency, producing a downforce of 140 kg (309 lb) at 200 km/h. In particular, the front grille features deformable winglets that lower at high speeds, in order to offer reduced drag. The car’s interior was designed using input from former Ferrari Formula 1 driver Michael Schumacher; in a layout common to racing cars, the new steering wheel incorporates many controls normally located on the dashboard or on stalks, such as turning signals or high beams. At launch the car was widely praised as being pretty much near perfect in every regard. It did lack a fresh air version, though, but that was addressed with the launch of the 458 Spider at the 2011 Frankfurt Motor Show. This convertible variant of the 458 Italia featured an aluminium retractable hardtop which, according to Ferrari, weighs 25 kilograms (55 lb) less than a soft roof such as the one found on the Ferrari F430 Spider, and can be opened in 14 seconds The engine cover was redesigned to accommodate the retractable roof system. It had the same 0–100 km/h time as the hard-top but a lower top speed of 199 mph. It quickly became the better seller of the two versions.

 photo Picture 738_zps8jm9uuma.jpg

After a gap of some years, Ferrari added a 4 seater V8 model to the range at the 2008 Paris Motor Show, with the California. According to industry rumours, the California originally started as a concept for a new Maserati, but the resulting expense to produce the car led the Fiat Group to badge it as a Ferrari in order to justify the high cost of purchase; the company denies this, however. The California heralded a number of firsts for Ferrari: the first front engined Ferrari with a V8; te first to feature a 7-speed dual-clutch transmission; the first with a folding metal roof; the first with multi-link rear suspension; and the first with direct petrol injection. Bosch produced the direct injection system. The engine displaces 4,297 cc, and used direct injection. It delivered 453 bhp at 7,750 rpm; its maximum torque produced was 358 lbf·ft at 5,000 rpm. The resulting 106 bhp per litre of engine displacement is one of the highest for a naturally aspirated engine, as other manufacturers have used supercharging or turbocharging to reach similar power levels. Ferrari spent over 1,000 hours in the wind tunnel with a one-third-scale model of the California perfecting its aerodynamics. With the top up, the California has a drag coefficient of Cd=0.32, making it the most aerodynamic Ferrari ever made until the introduction of the Ferrari F12 Berlinetta. Throughout the California’s production, only 3 cars were built with manual transmission, including one order from the UK. On 15 February 2012, Ferrari announced an upgrade, which was lighter and more powerful. Changes include reducing body weight by 30 kg (66 lb), increased power by output of 30 PS and 11 lbf·ft, acceleration from 0–100 km/h (62 mph) time reduced to 3.8 seconds, introduction of Handling Speciale package and elimination of the manual transmission option. The car was released at the 2012 Geneva Motor Show as a 2012 model in Europe. To give the clients a more dynamic driving experience, an optional HS (Handling Speciale) package was developed as part of the update. It can be recognised by a silver coloured grille and ventilation blisters behind the front wheel wells. The HS package includes Delphi MagneRide magnetorheological dampers controlled by an ECU with 50% faster response time running patented Ferrari software, stiffer springs for more precise body control and a steering rack with a 9 per cent quicker steering ratio (2.3 turns lock to lock as opposed to the standard rack’s 2.5). A more substantive update came in 2014, with the launch of the California T, which remains in production. It featured new  sheetmetal, a new interior, a revised chassis and a new turbocharged powertrain.

 photo Picture 743_zpsahtkftig.jpg

A front-engined grand tourer, the 456 was produced from 1992 until 2003, as an overdue replacement for the long-defunct front-engined 412 as the company’s V12 four seater.  Pietro Camardella and Lorenzo Ramaciotti at Pininfarina designed the original 456 which was available in GT and from 1996 in GTA forms. The difference in name signifies the transmission: the former has a six-speed manual and the latter has a four-speed automatic developed in partnership with FF Developments, in Livonia, MI (which was later purchased by Ricardo Engineering in the UK). This was only the fourth automatic transmission ever offered by Ferrari. The 5473 cc 65° V12 engine was derived from the Dino V6 rather than the more conventional 60° V12s used in the 412 and Daytona. It produced 442 PS with 4 valves per cylinder and Bosch Motronic M2.7 engine management. It could push the 1690 kg car and four passengers to 302 km/h (188 mph) making it the world’s fastest production four-seater. Acceleration to 100 km/h was just 5.2 seconds, with a 13.4 second quarter-mile time. At the time of its development it was the most powerful road car ever developed by Ferrari (aside from the F40). In 1996 engine was changed with Motronic M5.2 management and typed as F116C. The name 456, as was Ferrari practice, came from the fact that each cylinder displaces 456 cubic centimeters. This was the last Ferrari to use this naming convention. Despite its supercar performance, the 456 has a relatively unstressed engine, which has proven to be a very reliable unit. The chassis is a tubular steel spaceframe construction with a one-piece composite bonnet and body panels of aluminium. The body panels are welded to the chassis by using a special “sandwich filler” called feran that, when laid between, allows steel and aluminium to be welded. The Modificata 456M appeared in 1998, starting with chassis number 109589. Many changes were made to improve aerodynamics and cooling, and the interior – still featuring Connolly Leather – was freshened with new seats and other conveniences (fewer gauges on dash, and a new Becker stereo fitted in front of gear stick rather than behind as in the very shallow and special Sony head unit in the 456 GT). The 456 has a smaller grille with fog lights outside the grille, and lacked the bonnet-mounted air scoops. The undercarriage spoiler on the 456M is fixed, where the older 456 had a motorised spoiler that began its deployment above 105 km/h (65 mph). Power remained unchanged on the Modificata using Bosch Motronic M5.2 engine management at 442 PS; the cylinder firing order was changed for smoother running, and the torque remained the same for later versions of the 456 GT. The Tour de France Blue with Daytona Seats was the most desirable colour and leather combination. Approximately 3,289 of all versions were built, consisting of: 456 GT: 1,548; 456 GTA: 403; 456M GT: 688; 456M GTA: 650.

 photo Picture 905_zpswwujkrn3.jpg

FIAT

The only Fiat to attract my attention in the car park was a rather nice, and now rather rare, Uno 70SL.  Fiat launched the Uno, the Tipo 146,  in January 1983, just one day before the equally iconic Peugeot 205, to replace the elderly Fiat 127. Both were huge sellers, and deservedly so too, but it was the Fiat that sold in greater quantity, with over 8 million examples produced. It was Italy’s best selling car, and by some margin, throughout its 10 year production life, though you might find that hard to believe now, as they were are not a common sight even in Italy. The 127 had revolutionised the supermini market on its launch more than 10 years earlier, and the Uno followed the same format, but brought uptodate. Designed by Giorgetto Giugiaro’s ItalDesign company, its tall, square body utilising a Kamm tail achieved a low drag coefficient of 0.34 won it much praise for interior space and fuel economy as well as its excellent ride and handling, and was widely regarded as the most innovative small car in Europe at the time of its launch. It incorporated many packaging lessons learnt from Giugiaro’s 1978 Lancia Megagamma concept car (the first modern people carrier / MPV / mini-van) but miniaturised. Its tall car / high seating packaging is imitated by every small car today. It reversed the trend for lower and lower built cars. It showed that not just low sleek cars could be aerodynamic, but small, roomy, boxy well packaged cars could be too. There was a lot of activity in the supermini class in 1983, as the Uno hit the UK market a couple of months before the Peugeot 205 – another small European car which became the benchmark for this market sector, enjoying a long production life and strong sales, and just after General Motors launched its new Opel Corsa/Vauxhall Nova. Within a few months of its launch it had gained two new major competitors in the shape of the restyled Ford Fiesta and Nissan’s new Micra. UK sales began in June 1983, and more than 20,000 were sold in its first full year and peaking at more than 40,000 sales in 1988, making it one of the UK’s most popular imported cars during the 1980s. In December 1983, it was European Car of the Year for 1984, finishing narrowly ahead of the Peugeot 205. Initially, the Uno was offered with the 0.9 litre (903 cc) 100-series OHV, 1.1 litre (1116 cc) and 1.3 litre (1301 cc) 128-series SOHC petrol engines and transmissions carried over from the 127. The Uno’s badging was not by the commonly used measurement of engine size but by metric horsepower: 45, 55, 60, 70, or 75. The Uno was available as either a three- or five-door hatchback. It also featured ergonomic “pod” switchgear clusters each side of the main instrument binnacle, (that could be operated without removing the driver’s hands from the steering wheel), although indicators remained on a stalk; an unusual arrangement similar to that used by Citroën. The Uno had MacPherson strut independent front suspension and twist-beam rear suspension with telescopic dampers and coil springs. From 1985, the 1.0 litre (999 cc) SOHC Fully Integrated Robotised Engine (FIRE) powerplant was offered, replacing the 0.9 litre unit. This was a lighter engine, built with fewer parts, and gave improved performance and economy. The most luxurious version, the single-point injected 75 SX i.e., had remote door locks, integrated front foglamps, and the oval exhaust tip also used on the Turbo. In April 1985 the hot hatch version of the first series Uno – the Uno Turbo i.e. – was launched as a three-door only derivative. It competed with the likes of the Ford Fiesta XR2, MG Metro Turbo and Peugeot 205 GTI. The Uno was replaced by the Punto in late 1993, although production for some markets continued for some time after that.

 photo Picture 338_zpsylxfarbw.jpg  photo Picture 337_zpsjm30qkem.jpg  photo Picture 336_zpsralgidhx.jpg

FORD

Ford models to capture my interest and be worthy of inclusion here were the Mustang GT Coupe and Convertible, now available in right hand drive and finally reaching the UK after a very long wait, as well as the latest third generation Focus RS.

 photo Picture 928_zpsezwvszew.jpg  photo Picture 927_zpsrhhe6rki.jpg  photo Picture 930_zpsuld4kea7.jpg  photo Picture 931_zpserkqpq3i.jpg photo Picture 934_zpsw4mjacle.jpg  photo Picture 933_zpsrwikvtpc.jpg  photo Picture 932_zpswpf4olwi.jpg

GILBERN

The Invader was the last car made by Welsh car company, Gilbern. Introduced in July 1969, it was based on the Genie but with improved chassis and larger brakes. The front suspension now came from the MGC and the chassis was strengthened. It took the brand further up- market with fittings such as electric windows and walnut-veneered dashboard. The Invader was available as a complete car and from 1970 an estate version was also produced. Automatic or manual transmission with overdrive were available. It was updated to the Mk II version in 1971. In September 1972, a Mk III version was released, which had a Ford Cortina front suspension and was restyled front and rear. The engine was the higher tune unit from the Ford Capri 3000GT. The body was produced using new moulds and was both wider and lower than that of the earlier Invader, with the tack was extended by four inches. The wider axle led to wheel spats being added to the sides of the car. At the back the live rear axle was located by trailing links and a Panhard rod: adjustable shock absorbers were fitted all round. It was only available as a factory-built car and cost £2,693 in 1972, which was a lot of money. That proved to be the car’s ultimate downfall, and production ceased in 1973 after 603 had been made. The survival rate of Gilbern models is very high.

 photo Picture 899_zpsijs2mxp1.jpg  photo Picture 898_zpsqlyqfuw4.jpg

GINETTA

Following reorganisation the company moved to Scunthorpe and started making cars in kit form again in the 1980s starting with the G27 and followed by the G26, G28, G30 and G31, with all cars using Ford parts. This is a G26.

 photo Picture 753_zpsfrlzms2b.jpg  photo Picture 748_zpseuyqtazq.jpg

HONDA

Few second generation Legend Coupe models were sold in the UK, so this would have been rare even when new. The second generation model was introduced October 24, 1990, and continued to offer both a sedan and coupé. The Rover 800 was not updated to the new platform, and instead continued with the old XX platform. In Japan, this Legend was also known as the “Super Legend” due to the much larger 3.2 C32A engine, which was now the only engine offered in the Legend. The Type I engine was rated at 215 PS (212.1 bhp), and the Type II was rated at 235 PS (231.8 bhp) and included with the touring system. This Legend benefited from much of the research and testing done for Honda’s new mid-engined high performance sports car, the Honda NSX, and the Legend was used as a test platform for new NSX technologies and research. Honda introduced a passenger side airbag on this model, and used off-set collision testing to improve collision performance and safety. Trim level designations were changed to “Alpha” for the top level vehicle, and “Beta” for the lower grade. No other trim levels were offered. The “Alpha” was very well equipped, offering ABS, leather or 100% wool moquette upholstery, projector beam headlights, and dual-zone air conditioning. The customer base served by the slightly smaller first generation Legend was now offered the completely revised CB5 series Honda Vigor and Honda Inspire sold at different Japanese Honda retail sales locations Honda Clio and Honda Verno. The business practice of offering the previous generation Legend in two sizes so that it could comply with Japanese dimension and engine displacement regulations was ceded to the Inspire and Vigor, where both vehicles were offered in two versions so as to comply with the regulations, and offer Japanese buyers with more choices. The installation of the larger 3.2 litre engine obligated Japanese buyers for higher amounts of annual road tax over the smaller engines in the previous generation. The Japanese Domestic Market version of the 1990 Legend (2nd generation) was the second vehicle offered with a navigation system called the Electro Gyrocator (first being the 1981 Honda Accord and Vigor), although it was not satellite-based and instead relied on a gas gyroscope (Inertial navigation system). September 29, 1992 saw an upgrade to the “Alpha” trim level, called the Touring Series, which added the Honda Progressive Damper suspension system, and included upgraded calipers for the front and rear disc brakes, and increased the wheel size to 16 inches. A Luxman premium sound system was added to the options list. The prefectural police department of Aomori used “Beta” sedans with the Type II engine for traffic monitoring. A third generation model was launched in 1995, but only with a saloon body.

 photo Picture 196_zpsfaoqqwlc.jpg

JAGUAR

Jaguar stunned the world with the XK120 that was the star of the Earls Court Motor Show in 1948. Seen in open two seater form, the car was a testbed and show car for the new Jaguar XK engine. The display car was the first prototype, chassis number 670001. It looked almost identical to the production cars except that the straight outer pillars of its windscreen would be curved on the production version. The roadster caused a sensation, which persuaded Jaguar founder and design boss William Lyons to put it into production. Beginning in 1948, the first 242 cars wore wood-framed open 2-seater bodies with aluminium panels. Production switched to the 112 lb heavier all-steel in early 1950. The “120” in the name referred to the aluminium car’s 120 mph top speed, which was faster with the windscreen removed. This made it the world’s fastest production car at the time of its launch. Indeed, on 30 May 1949, on the empty Ostend-Jabbeke motorway in Belgium, a prototype XK120 timed by the officials of the Royal Automobile Club of Belgium achieved an average of runs in opposing directions of 132.6 mph with the windscreen replaced by just one small aeroscreen and a catalogued alternative top gear ratio, and 135 mph with a passenger-side tonneau cover in place. In 1950 and 1951, at a banked oval track in France, XK120 roadsters averaged over 100 mph for 24 hours and over 130 mph for an hour, and in 1952 a fixed-head coupé took numerous world records for speed and distance when it averaged 100 mph for a week. Roadsters were also successful in racing and rallying. The first production roadster, chassis number 670003, was delivered to Clark Gable in 1949. The XK120 was ultimately available in two open versions, first as an open 2-seater described in the US market as the roadster (and designated OTS, for open two-seater, in America), and from 1953 as a drophead coupé (DHC); as well as a closed, or fixed head coupé (FHC) from 1951.  A smaller-engined version with 2-litres and 4 cylinders, intended for the UK market, was cancelled prior to production. There were a number of the open two seater version seen here.

 photo Picture 1042_zpsoqw5bdnk.jpg  photo Picture 752_zpsunoktbvb.jpg

The XK140, seen here in Open Two Seater guise was the successor to the XK120, with a number of useful changes and upgrades over the earlier car which included more interior space, improved brakes, rack and pinion steering, increased suspension travel, and telescopic shock absorbers instead of the older lever arm design. The XK140 was introduced in late 1954 and sold as a 1955 model. Exterior changes that distinguished it from the XK120 included more substantial front and rear bumpers with overriders, and flashing turn signals (operated by a switch on the dash) above the front bumper. The grille remained the same size but became a one-piece cast unit with fewer, and broader, vertical bar, making it easy to tell an XK140 apart from an XK120. The Jaguar badge was incorporated into the grille surround. A chrome trim strip ran along the centre of the bonnet and boot lid. An emblem on the boot lid contained the words “Winner Le Mans 1951–3”. The interior was made more comfortable for taller drivers by moving the engine, firewall and dash forward to give 3 inches more legroom. Two 6-volt batteries, one in each front wing were fitted to the Fixed Head Coupe, but Drop Heads and the Open Two Seater had a single 12-volt battery. This was installed in the front wing on the passenger side (e.g. In the left wing on right hand drive cars and in the right wing on left hand drive). The XK140 was powered by the Jaguar XK engine with the Special Equipment modifications from the XK120, which raised the specified power by 10 bhp to 190 bhp gross at 5500 rpm, as standard. The C-Type cylinder head, carried over from the XK120 catalogue, and producing 210 bhp ross at 5750 rpm, was optional equipment. When fitted with the C-type head, 2-inch sand-cast H8 carburettors, heavier torsion bars and twin exhaust pipes, the car was designated XK140 SE in the UK and XK140 MC in North America. In 1956 the XK140 became the first Jaguar sports car to be offered with automatic transmission. As with the XK120, wire wheels and dual exhausts were options, and most XK140s imported into the United States had wire wheels. Cars with the standard disc wheels had spats over the rear wheel opening. When leaving the factory it originally fitted either 6.00 × 16 inch crossply tyres or you could specify 185VR16 Pirelli Cinturato CA67 as a radial option on either 16 × 5K½ solid wheels or 16 × 5K (special equipment) wire wheels. The Roadster (designated OTS – Open Two Seater – in America) had a light canvas top that folded out of sight behind the seats. The interior was trimmed in leather and leatherette, including the dash. Like the XK120 Roadster, the XK140 version had removable canvas and plastic side curtains on light alloy barchetta-type doors, and a tonneau cover. The door tops and scuttle panel were cut back by two inches compared to the XK120, to allow a more modern positioning of the steering wheel. The angle of the front face of the doors (A-Post) was changed from 45 degrees to 90 degrees, to make access easier. The Drophead Coupé (DHC) had a bulkier lined canvas top that lowered onto the body behind the seats, a fixed windscreen integral with the body (the Roadster’s screen was removable), wind-up side windows, and a small rear seat. It also had a walnut-veneered dashboard and door cappings. The Fixed Head Coupé (FHC) shared the DHC’s interior trim and rear seat. The prototype Fixed Head Coupe retained the XK120 Fixed Head roof-profile, with the front wings and doors the same as the Drophead. In production, the roof was lengthened with the screen being placed further forward, shorter front wings, and longer doors. This resulted in more interior space, and more legroom. The XK140 was replaced by the XK150 in March 1957.

 photo Picture 958_zpsl4fsunf8.jpg  photo Picture 963_zpsrdg7o3qy.jpg

This may look a C-Type, but it is not. And nor is it one of the faithful replicas created by the likes of Suffolk. Instead, it is the result of many year’s hard work by one man, who built it himself using a 19984 XJ6 platform. Hence the B prefix registration plate. To look at, you really would think it was one of the original factory cars, and that was absolutely the point, but the advantage of the XJ6 underpinnings, as the owner has told me on another occasion, is that the car is much more driveable, with brakes that are fit for modern traffic, and power steering, as well as general levels of reliability which mean that the car can be used.

 photo Picture 240_zpsqdvg26pw.jpg

Also here was a D Type, in replica guise.

 photo Picture 1007_zpsmfgj7rmu.jpg  photo Picture 1006_zpsduixvuas.jpg

Replacement for the XK models came in 1961 with the E Type, and it stunned the world at its premier at the 1961 Geneva Show. Considered by many to be Sir William Lyons’ greatest achievement, not only did the car have stop-you-in-your-tracks gorgeous styling, but it had explosive performance (even if the 150 mph that was achieved in The Autocar’s Road Test is now known to have been with a little “help”), but it was the price that amazed people more than anything else. Whilst out of reach for most people, who could barely afford any new car, it was massively cheaper than contemporary Aston Martins and Ferraris, its market rivals. It was not perfect, though, and over the coming years, Jaguar made constant improvements. A 2+2 model joined the initial range of Roadster and Coupe, and more powerful and larger engines came when the 3.8 litre was enlarged to 4.2 litres, before more significant styling changes came with the 1967 Series 2 and the 1971 Series 3, where new front end treatments and lights were a consequence of legislative demands of the E Type’s most important market, America. There were examples of all the first and three Series here, both in Coupe format.

 photo Picture 754_zpstldzbboi.jpg  photo Picture 342_zpsoktz4dbe.jpg  photo Picture 341_zpshykskeuq.jpg  photo Picture 193_zps4nyeo6ed.jpg  photo Picture 315_zpswzkreetl.jpg  photo Picture 880_zpskih9q15a.jpg

One of the most loved Jaguars of all time, both when it was new, and still now, is the Mark 2 saloon. Many will tell you that it is not the 3 Series BMW that “invented” the “compact sports saloon” car class, but this model, which dates back to 1959. A thorough revision of the small Jaguar saloon that had joined the range in 1955, the Mark 2 was notable in that it was the first car to use the Arabic numeral in its name, as opposed to the Roman numerals of the larger Jaguar models. At launch, the earlier model which had hitherto been known by its engine size was christened the Mark 1. Although clearly based on that car, the updated car looked significantly different, with an increase of 18% in cabin glass area greatly improving visibility. The car was re-engineered above the waistline. Slender front pillars allowed a wider windscreen and the rear window almost wrapped around to the enlarged side windows now with the familiar Jaguar D-shape above the back door and fully chromed frames for all the side windows. The radiator grille was amended and larger side, tail and fog lamps repositioned. Inside a new heating system was fitted and ducted to the rear compartment (although still notoriously ineffective). There was an improved instrument layout that became standard for all Jaguar cars until the XJ Series II of 1973. As well as the familiar 2.4 and 3.4 litre engines, what made this car particularly special was that it was also offered with the potent 220 bhp 3.8 litre unit that was fitted to the XK150 and which would later see service in the E Type. This gave the car a 0 – 60 time of around 8.5 seconds and a top speed of 125 mph. No wonder that the Mark 2 became popular as a get-away car for the criminal fraternity, and to keep up with and catch them, many police forces bought the car as well. With revised suspension and standard four wheel disc brakes, the car was effective on the track, taking plenty of class wins when new, and it is still popular in historic racing circles today. The quickest and most successful private entries came from John Coombs, a man with significant race experience who operated a large Jaguar dealership in Guildford. Coombs would undertake modifications to meet the demands of his customers, so not all the cars that he worked on are the same. Jaguar replaced the Mark 2 with simplified and slightly more cheaply finished 240 and 340 models, as an interim measure until an all-new model was ready to take over from them. The 3.8 litre disappeared from the range at this time, but in the 7 years it had been in production, it had been the best seller of the range, with around 30,000 cars produced, as compared to 28,666 of the 3.4 litre and 25,741 of the 2.4 litre model.

 photo Picture 890_zpsvipnjo3u.jpg

This is an early XJ6 from the first few months of production.

 photo Picture 750_zpsfwbkonfi.jpg  photo Picture 749_zpsyddttvo1.jpg

Successor to the E Type was the XJ-S, launched in September 1975, and to a not universally approving public. This was a very different sort of sporting Jaguar, more boulevard cruiser than sports car, even though the car had plenty of appeal with its smooth V12 engine which gave it genuine 150 mph performance. Press reports were favourable, but a thirsty V12 and a car with inconsistent build quality and styling that not everyone warmed to meant that sales were slow, and they got slower as the decade passed, leading questions to be asked as to whether the car should continue. As well as sorting the saloon models, Jaguar’s Chairman, John Egan, put in place a program to improve the XJ-S as well, which also benefitted from the HE engine in early 1981. A Cabrio model and the option of the new 3.6 litre 6 cylinder engine from 1984 widened the sales appeal, and the volumes of cars being bought started to go up. A fully open Convertible, launched in 1988 was the model many had been waiting for, and by this time, although the design was over 10 years old, it was now brimming with appeal to many. 1991 saw an extensive facelift which changed the styling details as well as incorporating the latest mechanical changes from the Jaguar parts bin, making the XJS (the hyphen had been dropped from the name in 1990) a truly desirable car. Seen here were was one of the XJ-S Convertible models.

 photo Picture 316_zps8535r0oj.jpg

Much more recent than all of these was one of the current F Type Coupe models.

 photo Picture 942_zps4r9xl2fg.jpg

JOWETT

This Jowett van dates from 1935.

 photo Picture 943_zpsw5ni8z5e.jpg  photo Picture 941_zpslo01map7.jpg

LAMBORGHINI

There was a further Gallardo Spyder here. Must have been interesting getting that up and down the very bumpy car park, even with an adjustable front spoiler!

 photo Picture 328_zpsjbvqlkx8.jpg

LANCIA

There was another Fulvia Coupe here, this was a later S3 car, with the raised headlights.

 photo Picture 345_zpsgemnt7ph.jpg  photo Picture 344_zpsfwtflqum.jpg

Also hidden away was this fabulous Gamma Berlina, which I have a feeling belongs to motoring journalist Martin Buckley. And if it does not, it probably did at some point, as he has a very soft spot for the car and has owned most of the remaining examples at some point. After finishing the Beta family, Lancia turned their engine to a new flagship, calling their new model the Gamma, which continued the naming convention of using Greek letters that was started by its smaller stablemate. Launched at the 1976 Geneva Show, there were several surprises about the new car. As with several other cars of the period, the fastback style of the Berlina featured a conventional boot at the rear, and was not a hatchback, despite its appearance. At the car’s press launch Pininfarina explained that a hatchback was avoided to save the inconvenience to back seat passengers when luggage is being loaded: “inconvenience” was thought to be a reference to possible draughts. More surprising, perhaps was the mechanical configuration. Lancia developed unique flat-4 engines for the Gamma (an idea initially was to use a Fiat V6). Engine designer De Virgilio also drew up an engine for the Gamma which was a V6 4-cam with either 3- or 4-litre displacement, but this never came to fruition. The Flat four engine finally chosen for the Gamma lacked the cachet afforded to luxury cars in this sector, which generally came with 6 or 8 cylinders. The 4-cylinder engine was unusually large for a modern 4-cylinder petrol engine, though Subaru EJ flat-4 engines matched it in volume and the later Porsche 944 and 968 had 3 litre straight-4 engines. The “4” had certain engineering advantages, but more than anything it allowed Aldo Brovarone (Pininfarina chief stylist) to design a rakish looking coupé with a low bonnet line and a steeply raked windscreen. Pressure cast in alloy with wet cylinder liners, the engine was also extremely light and though it only produced 140 bhp, (120 bhp in 2.0-litre form) in line with traditional Lancia thinking it generated a huge amount of torque, most of which was available at just 2000 rpm. The car was initially available with a displacement of 2.5 litres, as the Gamma 2500, but this was later joined by a 2.0 litre version (Gamma 2000), which resulted from the Italian tax system (cars with engines larger than 2.0 L are subject to heavier tax burden). The displacement was lowered by decreasing the bore rather than the stroke of the engine. Both displacements were using Weber carburettors, though the 2.5 litre later came in a version fitted with fuel injection, the Gamma 2500 I.E. Ironically, it was the engines that caused the Gamma to have a poor name. They overheated far too easily, wore its cams, and leaked oil. The wishbone bushes wore out early, and, because the power steering was driven from the left cam-belt, the car was prone to snapping that belt when steering was on full lock — with disastrous results. By the time the Facelifted car was launched most of these problems had been addressed, but the damage was done, and the car’s poor reputation cemented. Lancia referred to the change merely as a “face-lift”. The main change was that the engines went from carburettors to Bosch L-Jetronic fuel injection. At the same time a lot of cosmetic work was done; the cars got a new corporate grille, 15-inch “sunburst” alloy wheels, and a slightly upgraded interior, with new instrumentation and interior lighting, new badging, a new style handbrake and gear lever gaitor. But sales continued to lessen, and the car was deleted in 1984, Lancia having built 15,272 berlinas and 6,790 coupés.

 photo Picture 974_zpsesluiwru.jpg  photo Picture 973_zpsrqcnuosc.jpg  photo Picture 972_zpshmx35ug4.jpg  photo Picture 975_zpsczcylhj7.jpg

LAND ROVER

This is an early Range Rover, a model which has gained quite a cult status and whose values are accelerating hard at present.

 photo Picture 897_zpsqr6uphsi.jpg  photo Picture 896_zps3ij3qgrm.jpg

LEXUS

A rarity, for sure, was this Lexus IS-F, a car conceived to rival the BMW M3 and AMG C63, but which completely flopped in the market. In early 2004, just after the final XE20 design had been frozen for production, Lexus engineer Yukihiko Yaguchi, assembled a small team and on a limited budget began work on a higher performance IS. By the first half of 2005, XE20-body prototype mules with the 4.6 litre 1UR-FE V8 were spotted testing on the Nürburgring. These prototypes were nicknamed “IS 460” by the media. In late 2005, shortened Toyota Crown test mules were also spotted on the Nürburgring. The winning exterior design proposal by Hiroshi Okamato (supervised by chief IS designer Kengo Matsumoto), was finalised in 2005. On 6 December 2006, Lexus officially confirmed the existence of the vehicle which they called IS F in the press release. At the North American International Auto Show on 8 January 2007, the new IS F sedan was debuted to the public along with the LF-A supercar concept. Images were leaked a couple of hours before the official announcement. At its press debut, Lexus revealed that a separate “skunk works” team designed the IS F in a manner distinct from typical Lexus engineering efforts. The chief engineer of the IS F, Yukihiko Yaguchi, previously worked on the Toyota Supra. Much of the IS F’s suspension tuning took place at Fuji Speedway in Japan. The IS F vehicle body was lowered by 1 cm (0.5 inches) compared to the standard IS. The bonnet features a bulged appearance, with sharper curve than the standard IS, due to the added space needed to contain the 5.0 litre V8 engine. The drag coefficient is 0.30 Cd. The exterior also features a wire-mesh grille, changed side fenders and skirts, along with side air vents. One noticeable element of the IS F design were its faux quad exhaust tailpipes consisting of two vertically stacked exhaust tips on each side that did not directly connect to the actual exhaust pipes ( tips were part of the bumper, rather than the exhaust). The interior features a four-passenger cabin with braided aluminum panels, steering wheel paddle shifters, and F marque emblems. The IS F also features different seating, with bucket seats in front and rear. The Lexus IS F features a 4,969 cc direct-injected 2UR-GSE V8 producing 416 bhp at 6600 rpm, while peak torque is 371 lb⋅ft (503 N⋅m) at 5200 rpm. The engine redlines at 6800 rpm and also features a two-stage intake system, engine oil and automatic transmission fluid coolers and an oil pump designed for high-speed cornering. Along with both port and direct injection, the engine features VVT-iE camshaft timing, and has a compression ratio of 11.8:1. The 2UR-GSE is derived from the Lexus UR-series V8 engines, which debuted as the 1UR-FSE on the 2007 Lexus LS 460. Of the UR-series V8s, the 2UR-GSE is most closely related to the 2UR-FSE used in the 2008 LS 600h. It features the same bore and stroke dimensions (3.70 in x 3.52). However, extensive modifications carried out by the IS F engineering team in conjunction with Yamaha’s Formula One (F1) engine program resulted in a cast-aluminum intake manifold, new cylinder heads, and titanium intake valves. Additionally the engine features a forged crankshaft, connecting rods and cam lobes. At maximum acceleration above 3400 rpm, the secondary intake opens. Compared with the LS 600h’s 2UR-FSE (measured alone without its hybrid-electric motors), the IS F 2UR-GSE has more horsepower and torque at higher rpm, and 17 lb·ft less peak torque (see also Lexus IS F performance specifications). The Lexus IS F features an 8-speed Sport Direct Shift (SPDS) automatic transmission with sequential shift which can lock-up the torque converter from 2nd through 8th gears. The SPDS is derived from the unit introduced in the 2007 Lexus LS, which was the first vehicle to carry an 8-speed transmission. The SPDS allows for shifts to occur in 0.1 s compared to 0.05 s of F1 race cars. The wheel-mounted paddle shifters allow for gear shifting while steering, and a manual mode can be selected for added control. The 8-speed transmission also improves fuel economy, with lower overall consumption than BMW, Mercedes, and Audi rivals, and avoidance of the U.S. Gas Guzzler Tax. The IS F uses an all-electric rack and pinion steering system with a 13.6:1 gear ratio. The drivetrain is linked to a new sport version of Lexus’ electronic stability control system (Vehicle Dynamics Integrated Management, or VDIM, featuring three distinct on-off modes). The Lexus IS F comes equipped with Brembo cross-drilled brake rotors (14.2 in front, 13.6 rear) and 6-piston front and 2-piston rear aluminium calipers stamped with the Lexus emblem, along with 19-inch BBS forged aluminium alloy wheels. In October 2007, the IS F premiered in Japan, with a 500-unit yearly target for that country, and a 5,000–6,000 yearly unit target for the U.S. market. Top speed was listed at 168 mph. The IS F went on sale in the US in early 2008 with the first 50 IS F units sold as a limited Neiman Marcus special edition. In 2007, the head of Lexus GB stated in an interview that 150 IS Fs would be allocated for the UK market. For 2008, the IS F carried a base price of US$56,000. For 2010, the IS F added a Torsen limited-slip differential, standard iPod/USB connectivity, Bluetooth streaming audio capability, casual language voice commands, and standard XM Satellite Radio. For the 2011 model year the electric power steering system and suspension were revised, with tweaks to the front and rear spring rates, shock absorber dampening, rear bushings and rear camber angle. An interior update included the addition of the Sport button to the steering wheel and a redesign of the gauge cluster featuring a large central tachometer similar to the Lexus LFA. The exterior adds LED daytime running lights and according to Lexus the 2011 IS F can lap Fuji Speedway in 2 minutes, 3.4 seconds or nearly 2 seconds quicker than before.

 photo Picture 1014_zpseoxlqvxr.jpg

LOTUS

Oldest Lotus here, a car which has been at this event before, was a Mark VI, a precursor to the legendary Seven. After building multiple trials and road racing cars, Colin Chapman introduced his first ‘production’ car, the Lotus Mark VI, in 1952. The heart of the Mark VI was a space frame chassis. Rather than a complete car, it was available to the general public as kit, wherein the customer could install any preferred engine and gearbox, making it eligible for a wider number of formulae. The Mark VI in many ways reflected Chapman’s background in engineering: his designs resulted from a stress analysis of loads into the frame, they were extremely light (the 6′ space frame weighed only 55 lbs), and the suspension incorporated the latest advances. The prototype chassis was built up by the Progress Chassis Company and the aluminium body was constructed by panel beaters Williams and Prichard. (Both firms would later furnish bodies and chassis for subsequent models.) The cheap and easily available mechanical parts were sourced from the Ford Prefect. The Mark VI became a popular sight on Britain’s racetracks, and was a frequent winner, beating many more powerful and expensive cars, earning praise for very good handling and superior low-speed acceleration. An important facet of the success of the kit was Chapman’s offering a comprehensive package in the Mark VI, including most of the special parts needed, and not just the chassis. The Mark VI chassis came with mounting points for several different engines including the 1172cc Ford 10, the 1250 cc or 1500 cc MG TF, the 1500cc Consul, and the exalted Coventry Climax. Standardised as far as possible for volume production, some units were customised per the owners wishes. Lotus even modified the owner’s parts, if needed.  When fitted with the 1172cc Ford engine, and a 3 speed gearbox,  the car put out 50 bhp at 5000 rpm, and generated 57 lb/ft of torque, which gave the car a 0 – 60 time of 15 seconds and a top speed of 93 mph. The success of the Mark VI in competition and sales  – 100 had been built by 1955 – established Chapman as a manufacturer of specialty cars.

 photo Picture 886_zpskhf27drh.jpg

The original Elan was introduced in 1962 as a roadster, although an optional hardtop was offered in 1963 and a coupé version appeared in 1965, and there were examples of all of these here. The two-seat Lotus Elan replaced the elegant, but unreliable and expensive to produce Lotus Elite. It was the first Lotus road car to use a steel backbone chassis with a fibreglass body. At 1,600 lb (726 kg), the Elan embodied the Colin Chapman minimum weight design philosophy. Initial versions of the Elan were also available as a kit to be assembled by the customer. The Elan was technologically advanced with a DOHC 1557 cc engine, 4-wheel disc brakes, rack and pinion steering, and 4-wheel independent suspension. Gordon Murray, who designed the spectacular McLaren F1 supercar, reportedly said that his only disappointment with the McLaren F1 was that he couldn’t give it the perfect steering of the Lotus Elan. This generation of the two-seater Elan was famously driven by the character Emma Peel on the 1960s British television series The Avengers. The “Lotus TwinCam” engine was based on Ford Kent Pre-Crossflow 4-cylinder 1498 cc engine, with a Harry Mundy-designed 2 valve alloy chain-driven twin-cam head. The rights to this design was later purchased by Ford, who renamed it to “Lotus-Ford Twin Cam”. It would go on to be used in a number of Ford and Lotus production and racing models. Seen here was a nice example of the Drophead.

 photo Picture 241_zpsgngdzmq2.jpg  photo Picture 746_zpsixergofb.jpg

There was also an example of the Excel here. Known internally as the Type 89, the Excel, built from 1982 to 1992, was a development of the earlier Lotus Eclat, which itself was based on the Type 75 Elite. Although a promising design, the Elite and Eclat had suffered from numerous quality control issues which were difficult for owners to accept given the price of the cars. The Excel was a concerted effort to address these, and it stood every chance of so doing, as it took advantage of the relationship with Toyota. This had started when Toyota engaged Lotus to assist with engineering work on the Supra. During this period, Toyota then became a major shareholder in Lotus. Part of the deal between the two included the use of many Toyota mechanical components in Lotus’ cars. The original Excel (aka the Eclat Excel) used the W58 manual transmission, driveshafts, rear differential, 14×7 in alloy wheels, and door handles from the Supra Mk II, which was made from 1982 to 1986. The engine was the familiar all-aluminium, DOHC 2.2 litre Lotus 912 Slant Four which was also used in the Lotus Esprit S3. During its lifetime, the Excel received two major upgrades. With the introduction of the Excel SE which had a 180 bhp engine vs the standard 160 bhp car in October 1985, the bumpers, wing and interior was changed, including a new dashboard. In October 1986 the Excel SA with automatic gearbox was introduced. Further facelifts in 1989 saw Citroën-derived mirrors, as featured on the Esprit, and 15 inch OZ alloy wheels to a similar pattern as the Esprit’s. According to Lotus records, only 1 Excel was manufactured to USA specification. The lack of release in the USA was due to the high emission regulations (which would hinder the car’s performance), and poor sales of the car in Europe.

 photo Picture 304_zpsvxa8usyt.jpg  photo Picture 302_zpsdozvu6ma.jpg

It is now over 20 years since Lotus launched the Elise, a model which showed a return to the core values of simplicity and light-weight which were cornerstones of Colin Chapman’s philosophy when he founded the marque in 1955. The first generation Elise was produced for just over 4 years, with a replacement model, the Series 2 arriving in October 2000. It came about as the Series 1 could not be produced beyond the 2000 model production year due to new European crash sustainability regulations. Lacking the funding to produce a replacement, Lotus needed a development partner to take a share of investment required for the new car. General Motors offered to fund the project, in return for a badged and GM-engined version of the car for their European brands, Opel and Vauxhall. The result was therefore two cars, which although looking quite different, shared much under the skin: a Series 2 Elise and the Vauxhall VX220 and Opel Speedster duo. The Series 2 Elise was a redesigned Series 1 using a slightly modified version of the Series 1 chassis to meet the new regulations, and the same K-series engine with a brand new Lotus-developed ECU. The design of the body paid homage to the earlier M250 concept, and was the first Lotus to be designed by computer. Both the Series 2 Elise and the Opel Speedster/Vauxhall VX220 were built on the same production line, in a new facility at Hethel. Both cars shared many parts, including the chassis, although they had different drive-trains and power-plants. The VX220 carried the Lotus internal model identification Lotus 116, with the code name Skipton for the launch 2.2 normally aspirated version and Tornado for the 2 litre Turbo which came out in 2004. Fitted with 17 inch over the Elise’s 16 inch front wheels, the Vauxhall/Opel version ceased production in late 2005 and was replaced by the Opel GT for February 2007, with no RHD version for the United Kingdom. The Elise lived on. and indeed is still in production now, some 15 years later, though there have been countless different versions produced in that time. Whilst the first of the Series 2 cars came with the Rover K-Series engine, and that included the 111S model which had the VVC engine technology producing 160 hp, a change came about in 2005 when Lotus started to use Toyota engines. This was initially due to Lotus’ plans to introduce the Elise to the US market, meaning that an engine was needed which would comply with US emissions regulations. The selected 1.8 litre (and later 1.6 litre) Toyota units did, and the K-series did not. that MG-Rover went out of business in 2005 and engine production ceased confirmed the need for the change. Since then, Lotus have offered us track focused Elise models like the 135R and Sport 190, with 135 bhp and 192 bhp respectively, as well as the 111R, the Sport Racer, the Elise S and Elise R. In 2008  an even more potent SC model, with 218 bhp thanks to a non-intercooled supercharger was added to the range. In February 2010, Lotus unveiled a facelifted version of the second generation Elise. The new headlights are now single units; triangular in shape they are somewhat larger than the earlier lights. The cheapest version in Europe now has a 1.6 litre engine to comply with Euro 5 emissions, with the same power output as the earlier 1.8 136bhp car. Lotus has been through some difficult times in recent years, but things are looking more optimistic again, with production numbers having risen significantly in the last couple of years, after a period when next to no cars were made. The Elise is still very much part of the range. Seen here was a Series 2 model.

 photo Picture 872_zpsbcbdte4l.jpg  photo Picture 732_zpsnugaaimp.jpg

MASERATI

There were further examples of both the 3200GT and later 4200 GT model here.

 photo Picture 994_zpsy7ps9gj9.jpg  photo Picture 335_zpsrfskkx4m.jpg

McLAREN

This 570S was about as far as away as you could get from the event, and being low, was well hidden, so was quite a find in the car park. Just as I found it, so I noticed had Stuart and Harry Theobald, both inveterate “spotters” who were making a bee-line for the car, cameras at the ready.

 photo Picture 296_zpsvl7kfjda.jpg  photo Picture 297_zpsm6wgkjmu.jpg  photo Picture 298_zpswclh19u6.jpg  photo Picture 299_zpswyh2sz4s.jpg photo Picture 295_zpsxahxq1o3.jpg  photo Picture 294_zpsecshocns.jpg

MERCEDES-BENZ

There were a couple of AMG models here, and not ones you see that often. Older of the pair was an E55 AMG W210 and there was also an S65 AMG from the W221 generation.

 photo Picture 271_zpsa33y4a1l.jpg  photo Picture 317_zpsodltxwwh.jpg

Slightly more common a sighting, as the cars are now respected as “Youngtimer” classics was this W123 Estate. Mercedes-Benz introduced the W123 four-door versions on 29 January 1976. While there were some technical similarities to their predecessors, the new models were larger in wheelbase and exterior dimensions. The styling was also updated, although stylistic links with the W114 / W115 were maintained. Initially, all models except 280/280E featured quad unequal-size round headlights and the latter large rectangular units. When facelifted, these units became standard across the range. All W115 engines were carried over, with the 3-litre 5-cylinder diesel model being renamed from “240D 3.0” to “300D” (as it had already been called before in North American markets). The only new engine was the 250’s 2,525 cc inline-six (Type M123, a short-stroke version of the 2.8-litre six Type M110) that replaced the old 2,496 cc Type M114 “six”. In the spring of 1976, a Coupé version was introduced on a shorter wheelbase than the saloon (106.7 in versus 110.0 in). This W123C/CE was available as a 230C (later 230CE) and as a 280C/CE in most markets; in North America there were additional 300CD versions with naturally aspirated, later turbocharged 3-litre diesel engines. In North America, buyers favoured diesel engines for upmarket cars, while CAFE legislation meant that Mercedes-Benz North America had to lower their corporate average fuel economy. This led to the introduction of a few diesel models only sold in the United States. It is a tribute to the car’s instant popularity – and possibly to the caution built into the production schedules – that nine months after its introduction, a black market had developed in Germany for Mercedes-Benz W123s available for immediate delivery. Customers willing to order new cars from their local authorised dealer for the recommended list price faced waiting times in excess of twelve months. Meanwhile, models that were barely used and were available almost immediately commanded a premium over the new price of around DM 5,000. From August 1976, long-wheelbase versions (134.8 in) were produced. These were available as 7/8 seater saloons with works bodies or as a chassis with complete front body clip, the latter serving as the base for ambulance and hearse bodies by external suppliers like Binz or Miesen. These “Lang” versions could be ordered as 240D, 300D and 250 models. At the Frankfurt Auto Show in September, 1977 the W123T estate was introduced; the T in the model designation stood for “Touring and Transport”. All engines derivative except “200TD” were available in the range. T production began in March, 1978 in Mercedes’ Bremen factory. It was the first factory-built Mercedes-Benz estate, previous estates had been custom-built by external coachbuilders, such as Binz. In early 1979, the diesel models’ power output was increased; power rose from 54 hp to 59 hp in the 200D, from 64 hp to 71 hp in the 240D and from 79 hp to 87 hp in the 300D; at the same time, the 220D went out of production. The first Mercedes turbo diesel production W123 appeared in September, 1981. This was the 300 TD Turbodiesel, available with automatic transmission only. In most markets, the turbocharged 5-cylinder 3-litre diesel engine (Type OM617.95) was offered only in the T body style, while in North America it was also available in saloon and coupé guises. June 1980 saw the introduction of new four-cylinder petrol engines (Type M102). A new 2-litre four with shorter stroke replaced the old M115, a fuel-injected 2.3-litre version of this engine (in 230E/TE/CE) the old carburettor 230. Both engines were more powerful than their predecessors. In 1980/81, the carburettor 280 versions went out of production; the fuel-injected 280E continued to be offered. In September 1982, all models received a mild facelift. The rectangular headlights, previously fitted only to the 280/280E, were standardised across the board, as was power steering. Since February 1982, an optional five-speed manual transmission was available in all models (except the automatic-only 300 turbodiesel). W123 production ended in January, 1986 with 63 final T-models rolling out. Most popular single models were the 240D (455,000 built), the 230E (442,000 built), and the 200D (378,000 built). The W123 introduced innovations including ABS (optional from August, 1980), a retractable steering column and an airbag for the driver (optional from 1982). Power (vacuum servo) assisted disc brakes were standard on all W123s. Available options included MB-Tex (Mercedes-Benz Texturized Punctured Vinyl) upholstery or velour or leather upholstery, interior wood trim, passenger side exterior mirror (standard on T models), 5-speed manual transmission (European market only), 4-speed automatic transmission (standard in turbodiesel models), power windows with rear-seat switch cut-outs, vacuum powered central locking, rear-facing extra seats (estate only), Standheizung (prestart timer-controlled engine heating), self-locking differential, sun roof, air conditioning, climate control, “Alpine” horn (selectable quieter horn), headlamp wipers (European market only), Tempomat (cruise control), power steering (standard after 1982/08), seat heating, catalytic converter (available from 1984 for California only, from autumn 1984 also in Germany for the 230E of which one thousand were built).

 photo Picture 759_zpsoetexrbg.jpg  photo Picture 758_zps8a8cof4x.jpg

This 280SE Coupe 3.5 is a common sighting at events over quite a wide area of England, and very splendid it is too. The Mercedes range of the 1960s was quite complex, with body styles and mechanical updates proceeding at a different rate, and even by referring to the cars by their internal development codes (the “W” number), they are still quite hard to define unambiguously. In the W111 family, the Coupe was the first to appear, a replacement for the two-door W120 “Ponton” models, and work on it began in 1957. Since most of the chassis and drivetrain were to be unified with the sedan, the scope was focused on the exterior styling. Some of the mockups and prototypes show that Mercedes-Benz attempted to give the two-door car a front styling almost identical to what would be realised in the Pagoda (W113), but ultimately favoured the work of engineer Paul Bracq. The rear featured small tailfins, subtle compared to the fintails’ and evocative of the later squarish styling of the W108/W109. Production began in late 1960, with the coupe making its debut at the 75th anniversary of the opening of Mercedes-Benz Museum in Stuttgart in February of the next year. The convertible followed at the Frankfurt Auto Show a few months later. Almost identical to the coupe, its soft-top roof folded into a recess behind the rear seat and was covered by a tightly fitting leather “boot” in the same colour as the seats. Unlike the previous generation of two-door ponton series, the 220SE designation was used for both the coupe and convertible; both received the same version of the 2195 cc M127 engine. Options included a sliding sunroof for the coupe, automatic transmission, power steering, and individual rear seats. In March 1962, Mercedes-Benz released the exclusive two-door M189-powered 300SE. Like the 300 sedan, it was based on the W111 chasis but shared both Daimler’s top-range 2996 cm3 fuel-injected engine and the unique W112 chassis designation, efforts on Mercedes’ part to distance it from the maker’s modest W110 and W111 lineups and link it to the prestigious W188 300S two-door luxury sports tourer. It was distinguished by a chrome strip, and featured air suspension and a higher level of interior trim and finish. In summer of 1965, Mercedes-Benz launched replacements for both W111 and W112 sedans, the W108 and W109 respectively. With the tailfin fashion well eroded by the mid 1960s, the new design was based on the restrained W111 coupe, widened and squared off. Work on a future new chassis that would fully replace the Ponton-derived W111/W112 and W108/W109 was well under way. With a concept car of the first S-Class shown in 1967, Daimler declined to develop a two-door W108/W109 vehicle, instead continuing production of the aging W111/W112 with modest changes. The 220SE was superseded in early autumn 1965 by the 250SE, which featured the new 2496 cm3 M129 engine. Producing 150 hp. it gave the vehicle a significant improvement in top speed, to 120 mph. Visibly the only changes affected the new 14-inch rims, which came with new hub cabs and beauty rings accommodating the larger disk brakes and new rear axle from the W108 family. In November 1967 the 250 SE was superseded by the 280 SE. It was powered by the new 2778 cc M130 engine, which produced 160 hp. The top speed was hardly affected, but acceleration improved to 10.5 seconds. Inside the car received a wood veneer option on the dashboard and other minor changes, including door lock buttons and different heater levers. The hubcaps were changed yet again to a new one piece wheelcover, and the exterior mirror was changed. Despite its smaller engine, the 280 SE could outperform the early 1950s M189 powered 300 SE, resulting in the more expensive model’s retirement. The coupe and cabriolet retained their shared model model designation until replaced by a new-generation chassis in 1968. A final model was added in August 1969, the 280 SE 3.5. The car was fitted with the brand-new M116 3499 cc V8. It produced 200 hp, and had a top speed of 130 mph and a 0-100 km/h at 9.5 seconds. To accommodate the large engine, the car’s front grille was widened; front and rear bumpers were also modified with the addition of rubber strips. The rear lenses changed to a flatter cleaner design. This change was carried across the standard 280 SE. As the top of its range, the 280 SE 3.5 is seen as an ideological successor to the W112 300 SE, though it lacked the W112’s air suspension. The  last 280 SE was produced in January 1971, with the 280 SE 3.5 ending in July. The total production over the decade was: 220 SEb – 16,902, 250 SE – 6,213, 280 SE – 5,187, and 280 SE 3.5 – 4,502 units. Not including 3,127 W112 300 SE models, the grand total of 2-door W111 models was 32,804 of which 7,456 were convertibles. These days the cars are much sought after and prices, especially for the convertible, are high and still rising.

 photo Picture 955_zpskvneywzl.jpg

With prices of the classic Pagoda model having risen to unaffordable for most people attention has started to switch to it successor, the R107 SL range, which had a long production life, being the second longest single series ever produced by the automaker, after the G-Class. The R107 and C107 took the chassis components of the mid-size Mercedes-Benz W114 model and mated them initially to the M116 and M117 V8 engines used in the W108, W109 and W111 series. The SL variant was a 2-seat convertible/roadster with standard soft top and optional hardtop and optional folding seats for the rear bench. The SLC (C107) derivative was a 2-door hardtop coupe with normal rear seats. The SLC is commonly referred to as an ‘SL coupe’, and this was the first time that Mercedes-Benz had based a coupe on an SL roadster platform rather than on a saloon, replacing the former saloon-based 280/300 SE coupé in Mercedes lineup. The SLC was replaced earlier than the SL, with the model run ending in 1981, with a much larger model, the 380 SEC and 500SEC based on the new S class. Volume production of the first R107 car, the 350 SL, started in April 1971 alongside the last of the W113 cars; the 350 SLC followed in October. The early 1971 350SL are very rare and were available with an optional 4 speed fluid coupling automatic gearbox. In addition, the rare 1971 cars were fitted with Bosch electronic fuel injection. Sales in North America began in 1972, and cars wore the name 350 SL, but had a larger 4.5L V8 with 3 speed auto (and were renamed 450 SL for model year 1973); the big V8 became available on other markets with the official introduction of the 450 SL/SLC on non-North American markets in March 1973. US cars sold from 1972 through 1975 used the Bosch D Jetronic fuel injection system, an early electronic engine management system. From July 1974 both SL and SLC could also be ordered with a fuel-injected 2.8L straight-6 as 280 SL and SLC. US models sold from 1976 through 1979 used the Bosch K Jetronic system, an entirely mechanical fuel injection system. All US models used the 4.5 litre engine, and were called 450 SL/SLC. In September 1977 the 450 SLC 5.0 joined the line. This was a homologation version of the big coupé, featuring a new all-aluminium five-litre V8, aluminium alloy bonnet and boot-lid, and a black rubber rear spoiler, along with a small front-lip spoiler. The 450SLC 5.0 was produced in order to homologate the SLC for the 1978 World Rally Championship. Starting in 1980, the 350, 450 and 450 SLC 5.0 models (like the 350 and 450 SL) were discontinued in 1980 with the introduction of the 380 and 500 SLC in March 1980. At the same time, the cars received a very mild makeover; the 3-speed automatic was replaced by a four-speed unit, returning to where the R107 started in 1971 with the optional 4 speed automatic 350SL. The 280, 380 and 500 SLC were discontinued in 1981 with the introduction of the W126 series 380 and 500 SEC coupes. A total of 62,888 SLCs had been manufactured over a ten-year period of which just 1,636 were the 450 SLC-5.0 and 1,133 were the 500 SLC. Both these models are sought by collectors today. With the exception of the SL65 AMG Black Series, the SLC remains the only fixed roof Mercedes-Benz coupe based on a roadster rather than a sedan. Following the discontinuation of the SLC in September 1981, the 107 series continued initially as the 280, 380 and 500 SL. At this time, the V8 engines were re-tuned for greater efficiency, lost a few hp and consumed less fuel- this largely due to substantially higher (numerically lower) axle ratios that went from 3.27:1 to 2.47:1 for the 380 SL and from 2.72:1 to 2.27:1 for the 500 SL. From September 1985 the 280 SL was replaced by a new 300 SL, and the 380 SL by a 420 SL; the 500 SL continued and a 560 SL was introduced for certain extra-European markets, notably the USA, Australia and Japan. Also in 1985, the Bosch KE Jetronic was fitted. The KE Jetronic system varied from the earlier, all mechanical system by the introduction of a more modern engine management “computer”, which controlled idle speed, fuel rate, and air/fuel mixture. The final car of the 18 years running 107 series was a 500 SL painted Signal red, built on August 4, 1989; it currently resides in the Mercedes-Benz museum in Stuttgart.

 photo Picture 983_zps2r20ldib.jpg

MERCURY

This would appear to be a customised Mercury, which has been done very nicely (in my opinion).

 photo Picture 913_zpszptptex3.jpg  photo Picture 912_zpsxs6yswyq.jpg  photo Picture 911_zps2pdmbxne.jpg

MERLIN

Marlin is a British sports car manufacturer founded in 1979 in Plymouth as Marlin Engineering and now located in Crediton, Devon, England. The company was founded by Paul Moorhouse, who, after building a series of one off cars for his own use decided to put one into production as a kit car. The first kits were sold in 1979. The first product was the Roadster which remained in the line up until sold, along with the Berlinetta, to Yorkshire Kit Cars (YKC) in 1992 who kept them in production until the owner retired in 2006 and sold them on to Aquila Sports Cars Ltd. In the mid 1990s the company was sold to Terry and Mark Matthews who introduced the Hunter model. In 2016, Marlin bought Avatar Sports Cars to primarily build roadsters.

 photo Picture 314_zps1p2zi4qb.jpg

MG

Successor to the J type was the PA, which was launched in 1934 and ran through to 1936. This 2-door sports car was powered by an updated version of the overhead camshaft, crossflow engine, used in the 1928 Morris Minor and Wolseley 10 and previously fitted in the J-type Midget of 1932 to 1934, driving the rear wheels through a four-speed non-synchromesh gearbox. The chassis was a strengthened and slightly longer version of that used in the J-type with suspension by half-elliptic springs all round with rigid front and rear axles. Steering was initially by a Marles Weller and later a Bishop Cam system. The two-seat car had a wheelbase of 87 inches (2210 mm) and a track of 42 inches (1067 mm). Most cars were open two seaters, but streamlined Airline coupé bodies were also made. The P-type was also available as a four-seater, a car that suffered from a lack of power and poor rear ground clearance. Whereas J, K and L-type MGs differentiated between versions with the use of numbers, with 1 indicating a four-seater (i.e., J1) and 2 a two-seater (i.e., J2), this was not the case with the P-type (or its six-cylinder sister, the N-type Magnette), and there is no clue to the type in the name. The first version, the PA used an 847 cc engine similar to the one on the J-Type, but now with a 3-bearing crankshaft, larger camshaft and twin SU carburettors. It produced 36 bhp at 5,500 rpm. In 1935, a PA open two-seater cost £222. Around 2,000 PAs were made, and it is one of those which is seen here. In late 1936 the PA was replaced by the PB, which had a larger 939cc 43bhp engine and which is distinguished by a grille of vertical slats as opposed to the honeycomb pattern of the PA. 526 examples of the PB were made. This one is a 1935 model PA.

 photo Picture 745_zpslnx0iywk.jpg

Whilst the TC, the first postwar MG and launched in 1945, was quite similar to the pre-war TB, sharing the same 1,250 cc pushrod-OHV engine, it had a slightly higher compression ratio of 7.4:1 giving 54.5 bhp at 5200 rpm. The makers also provided several alternative stages of tuning for “specific purposes”. It was exported to the United States, even though only ever built in right-hand drive. The export version had slightly smaller US specification sealed-beam headlights and larger twin rear lights, as well as turn signals and chrome-plated front and rear bumpers. The body of the TC was approximately 4 inches wider than the TB measured at the rear of the doors to give more cockpit space. The overall car width remained the same resulting in narrower running boards with two tread strips as opposed to the previous three. The tachometer was directly in front of the driver, while the speedometer was on the other side of the dash in front of the passenger. 10,001 TCs were produced, from September 1945 to Nov. 1949, more than any previous MG model. It cost £527 on the home market in 1947.

 photo Picture 319_zpsidbawrwy.jpg

The MGA replaced the long running T Series sports cars and presented a complete styling break from MG’s earlier sports cars. Announced on 26 September 1955, the car was officially launched at the Frankfurt Motor Show. A total of 101,081 units were sold through the end of production in July 1962, the vast majority of the 58.750 cars made were exported. Only 5869 cars were sold on the home market, the lowest percentage of any British car. It was replaced by the MGB. The MGA design dates back to 1951, when MG designer Syd Enever created a streamlined body for George Philips’ TD Le Mans car. The problem with this car was the high seating position of the driver because of the limitations of using the TD chassis. A new chassis was designed with the side members further apart and the floor attached to the bottom rather than the top of the frame sections. A prototype was built and shown to the BMC chairman Leonard Lord. He turned down the idea of producing the new car as he had just signed a deal with Donald Healey to produce Austin-Healey cars two weeks before. Falling sales of the traditional MG models caused a change of heart, and the car, initially to be called the UA-series, was brought back. As it was so different from the older MG models it was called the MGA, the “first of a new line” to quote the contemporary advertising. There was also a new engine available, therefore the car did not have the originally intended XPAG unit but was fitted with the BMC corporate B-Series type allowing a lower bonnet line. The MGA convertible had no exterior door handles, however the coupe did. It was a body-on-frame design and used the straight-4 1489cc “B series” engine from the MG Magnette saloon driving the rear wheels through a 4-speed gearbox. Suspension was independent with coil springs and wishbones at the front and a rigid axle with semi-elliptic springs at the rear. Steering was by rack and pinion. The car was available with either wire-spoked or steel-disc road wheels. The 1489 cc engine fitted with twin H4 type SU Carburettors produced 68 hp at first, but was soon uprated to 72 hp. Lockheed hydraulic drum brakes were used on all wheels. A high-performance Twin-Cam model was added for 1958. It used a high-compression (9.9:1 later 8.3:1) DOHC aluminium cylinder head version of the B-Series engine producing 108 hp. Due to detonation problems, a 100 bhp low-compression version was introduced later. Four-wheel disc brakes by Dunlop were fitted, along with Dunlop peg drive knock-off steel wheels similar to wheels used on racing Jaguars, unique to the Twin-Cam and “DeLuxe” MGA 1600 and 1600 MkII roadsters. These wheels and chassis upgrades were used on a small number of the “DeLuxe” models built after Twin-Cam production came to a halt. Aside from the wheels, the only outside identifier was a “Twin-Cam” logo near the vent aside the bonnet. A careful look at the rear wheel vents would also reveal another feature unique to Twin-Cam and DeLuxe: those 4 wheel Dunlop disc brakes . The temperamental engine was notorious for warranty problems during the course of production, and sales dropped quickly. The engine suffered from detonation and burnt oil.  Most of the problems with the Twin-Cam engine were rectified with the low-compression version, but by then the damage had been done. Many restored Twin-Cams are running more reliably today than they ever did during production. The Twin-Cam was dropped in 1960 after 2,111 had been produced. Production ended in April 1960, but had slowed to a trickle long before. In May 1959 the standard cars also received an updated engine, now at 1588 cc producing 79.5 bhp . At the front disc brakes were fitted, but drums remained in the rear. Externally the car was very similar to the 1500 with differences including: amber or white (depending on market) front turn indicators shared with white parking lamps, separate stop/tail and turn lamps in the rear, and 1600 badging on the boot and the cowl. 31,501 of these were produced in less than three years. A number of 1600 De Luxe versions were produced with leftover special wheels and four-wheel disc brakes of the departed Twin-Cam, or using complete modified Twincam chassis left redundant by the discontinuance of that model. Seventy roadsters and 12 coupés were built. The engine size was increased again to 1622 cc by increasing the bore from 75.4 mm to 76.2 mm for the 1961 Mark II MGA. The cylinder head was also revised with larger valves and re-engineered combustion chambers. Horsepower increased to 90 bhp. It also had a higher ratio 4:1 rear axle, which made for more relaxed high-speed driving. An inset grille and Morris Mini tail lamps appearing horizontally below the deck lid were the most obvious visual changes. 8,198 Mark II roadsters and 521 coupés were built. As with the 1600 De Luxe, there were also some Mark II De Luxe versions; 290 roadsters and 23 coupés were produced.

 photo Picture 321_zpsrjfprwxm.jpg  photo Picture 1022_zpszfez5ajh.jpg  photo Picture 1021_zpscv9medmu.jpg

As one of Britain’s most popular classic cars, it was no surprise to find several examples of the MGB here, with cars from throughout the model’s long life, both in Roadster and MGB GT guise, as well as one of the short-lived V8 engined cars. Launched in October 1962, this car was produced for the next 18 years and it went on to become Britain’s best selling sports car.  When first announced, the MGB was an innovative, modern design, with a monocoque structure instead of the traditional body-on-frame construction used on both the MGA and MG T-types and the MGB’s rival, the Triumph TR series, though components such as the brakes and suspension were developments of the earlier 1955 MGA and the B-Series engine had its origins back in 1947. The lightweight design reduced manufacturing costs while adding to overall vehicle strength, and with a 95hp 3-bearing 1798cc engine under the bonnet, performance was quite respectable with a 0–60 mph time of just over 11 seconds. The car was rather more civilised than its predecessor, with wind-up windows now fitted as standard, and a comfortable driver’s compartment offered plenty of legroom. The roadster was the first of the MGB range to be produced. The body was a pure two-seater but a small rear seat was a rare option at one point. By making better use of space the MGB was able to offer more passenger and luggage accommodation than the earlier MGA while being 3 inches shorter overall. The suspension was also softer, giving a smoother ride, and the larger engine gave a slightly higher top speed. The four-speed gearbox was an uprated version of the one used in the MGA with an optional (electrically activated) overdrive transmission. A five-bearing engine was introduced in 1964 and a number of other modifications crept into the specification. In late 1967, sufficient changes were introduced for the factory to define a Mark II model. Alterations included synchromesh on all 4 gears with revised ratios, an optional Borg-Warner automatic gearbox, a new rear axle, and an alternator in place of the dynamo with a change to a negative earth system. To accommodate the new gearboxes there were significant changes to the sheet metal in the floorpan, and a new flat-topped transmission tunnel. US market cars got a new safety padded dashboard, but the steel item continued for the rest of the world. Rostyle wheels were introduced to replace the previous pressed steel versions in 1969 and reclining seats were standardised. 1970 also saw a new front grille, recessed, in black aluminium. The more traditional-looking polished grille returned in 1973 with a black “honeycomb” insert. Further changes in 1972 were to the interior with a new fascia. To meet impact regulations, in late 1974, the chrome bumpers were replaced with new, steel-reinforced black rubber bumpers, the one at the front incorporating the grille area as well, giving a major restyling to the B’s nose, and a matching rear bumper completed the change. New US headlight height regulations also meant that the headlamps were now too low. Rather than redesign the front of the car, British Leyland raised the car’s suspension by 1-inch. This, in combination with the new, far heavier bumpers resulted in significantly poorer handling. For the 1975 model year only, the front anti-roll bar was deleted as a cost-saving measure (though still available as an option). The damage done by the British Leyland response to US legislation was partially alleviated by revisions to the suspension geometry in 1977, when a rear anti-roll bar was made standard equipment on all models. US emissions regulations also reduced horsepower. In March 1979 British Leyland started the production of black painted limited edition MGB roadsters for the US market, meant for a total of 500 examples. Due to a high demand of the limited edition model, production ended with 6682 examples. The United Kingdom received bronze painted roadsters and a silver GT model limited editions. The production run of home market limited edition MGBs was split between 421 roadsters and 579 GTs. Meanwhile, the fixed-roof MGB GT had been introduced in October 1965, and production continued until 1980, although export to the US ceased in 1974. The MGB GT sported a ground-breaking greenhouse designed by Pininfarina and launched the sporty “hatchback” style. By combining the sloping rear window with the rear deck lid, the B GT offered the utility of a station wagon while retaining the style and shape of a coupe. This new configuration was a 2+2 design with a right-angled rear bench seat and far more luggage space than in the roadster. Relatively few components differed, although the MGB GT did receive different suspension springs and anti-roll bars and a different windscreen which was more easily and inexpensively serviceable. Although acceleration of the GT was slightly slower than that of the roadster, owing to its increased weight, top speed improved by 5 mph to 105 mph because of better aerodynamics. 523,826 examples of the MGB of all model types were built, and although many of these were initially sold new in North America, a lot have been repatriated here.  There were several Roadsters and MGB GT models here.

 photo Picture 191_zps5aueocwn.jpg  photo Picture 887_zpspephzgjz.jpg  photo Picture 283_zpss6rrdzhz.jpg  photo Picture 982_zpsbswtnslq.jpg  photo Picture 981_zpsjbsvuvim.jpg

The MG Metro was launched in May 1982, to more than a few howls of protest from MG purists who decried the fact that it was not a proper sports car. It was, however, a well-considered upgrade on the more prosaic Austin models, and it proved popular from the outset. Styling touches included MG badging, liberal use of red inside – even the seat belts – and different wheel trims. Mechanically there were alterations, too. The changes between the MG engine (taken directly from the Mini Cooper) and the standard 1275 included a modified cylinder head, with larger valves and improved porting, altered cam profile and larger carburettor leading to a 20% increase in BHP to 72 bhp. At the October 1982 Birmingham Motor Show the MG Metro Turbo variant was first shown. With a quoted bhp of 93, 0–60 mph in 8.9 seconds, and top speed of 115 mph (185 km/h) this car had few direct competitors at the time, although the growing demand for “hot hatches” meant that it soon had a host of competitors including the Ford Fiesta XR2, Peugeot 205 GTI and Renault 5 GT Turbo.  This model had a few addition modifications bolted on over the normally aspirated MG model to give an additional 21 bhp. Aside from the turbocharger and exhaust system itself, and what was (at the time) a relatively sophisticated boost delivery and control system, the MG Turbo variant incorporated stiffer suspension (purportedly with engineering input from Lotus), and an uprated crankshaft of nitrided steel and sodium-cooled exhaust valves. Both MG variants were given a “sporty” interior with red seat belts, red carpets and a sports-style steering wheel. The Turbo also benefitted from an LCD boost pressure gauge. The Turbo also received alloy wheels, black wheel arch extensions, blacked out trim, a rear spoiler surrounding the windshield, and prominent “TURBO” decals. While it retained rear drums, the front disc brakes were changed to ventilated units. The later MG variants were emblazoned with the MG logo both inside and out, which only served to fuel claims of badge engineering from some of the more steadfast MG enthusiasts. Others believed that this sentiment was unfounded, particularly in the case of the turbo variant, due to the undeniably increased performance and handling when compared to the non-MG models. From 1983, the MG badge also found its way onto higher performance versions of the Maestro, and shortly afterwards it was adopted for higher performance versions of the Montego. Sadly, there are relatively few survivors.

 photo Picture 747_zpsmfxobynk.jpg

In advance of the all-new MX5 rival that was still some way off production, MG decided to re-enter the open topped sports car market in 1992 when they launched the MGR V8, which combined new body panels with the standard MGB body shell to create an updated MGB model. The suspension was only slightly updated, sharing the leaf spring rear of the MGB. The boot lid and doors were shared with the original car, as were the rear drum brakes. The engine was the 3.9-litre version of the aluminium Rover V8, similar to the one previously used in the MGB GT V8. A limited-slip differential was also fitted. The interior featured veneered burr elm woodwork and Connolly Leather. The engine produced 190 bhp at 4,750 rpm, achieving 0–60 mph in 5.9 seconds, which was fast but largely due to the rear drum brakes and rear leaf springs, the RV8 was not popular with road testers at the time. A large proportion of the limited production went to Japan – 1579 of the 2000 produced. Only 330 RV8s were sold initially in the UK, but several hundred (possibly as many as 700) of these cars were re-imported back to the UK and also Australia between 2000–2010 with a peak number of 485 registered at the DVLA in the UK.

 photo Picture 244_zpsz8hd3wq8.jpg  photo Picture 303_zps17zzi6lb.jpg

There was also an MG TF here.

 photo Picture 289_zpswfjxjoah.jpg

MITSUBISHI

Two of the ten generations of Evo were present here, an VIII and a IX.

 photo Picture 293_zpsuebzwret.jpg  photo Picture 922_zpsf2h9gm62.jpg

MORGAN

A number more Morgan cars were to be found here, including an Aero 8 as well as several of the rest of range with the traditional body styling.

 photo Picture 182_zpsjwar3pcj.jpg  photo Picture 353_zps1yooka7l.jpg  photo Picture 352_zpsc1b26ool.jpg  photo Picture 1015_zpspfq1guag.jpg photo Picture 870_zpss8glvpmj.jpg  photo Picture 1013_zpsk8pdmr0q.jpg  photo Picture 730_zpstbuy4yoe.jpg  photo Picture 744_zpsgmx7mnk9.jpg photo Picture 950_zpswztpzcbl.jpg  photo Picture 980_zps2xpq9zic.jpg  photo Picture 979_zpsucgcbvbl.jpg

NISSAN

After the ever softer evolution of the Z car, Nissan reversed the trend with the Z31 model, known as the 300ZX, introduced in late1983.  Designed by Kazumasu Takagi and his team of developers, the 300ZX had improved aerodynamics and increased power when compared to its predecessor, with a drag coefficient of 0.30. It was powered by Japan’s first mass-produced V6 engine instead of an inline 6. According to Nissan, the V6 engine was supposed to re-create the spirit of the original Fairlady 240Z. The Z31 generation featured five engine options, including a pair of 2 litre V6 units which were never available in Europe. Cars sold in the UK all had the 3.0 litre V6 unit. which made 240 hp in turbo form due to a better camshaft profile, also known outside of Europe as the Nismo camshafts. All European turbocharged models received a different front lower spoiler as well, with 84-86 models being unique and 87-89 production having the same spoiler as the USDM 1988 “SS” model. The Z31 body was slightly restyled in 1986 with the addition of side skirts, flared fenders, and sixteen inch wheels (turbo models only). Many black plastic trim pieces were also painted to match the body colour, and the bonnet scoop was removed. The car was given a final makeover in 1987 that included more aerodynamic bumpers, fog lamps within the front air dam, and 9004 bulb-based headlamps that replaced the outdated sealed beam headlights. The 300ZX-titled reflector in the rear was updated to a narrow set of tail lights running the entire width of the car and an LED third brake light on top of the rear hatch. The Z31 continued selling until 1989, more than any other Z-Car at the time. Over 70,000 units were sold in 1985. Cars produced from 1984-1985 are referred to as “Zenki” models, while cars produced from 1987-1989 are known as “Kouki” models. The 1986 models are a special due to sharing some major features from both. They are sometimes referred to as “Chuki” models, but are usually grouped with the Zenki models because of the head and tail lights.

 photo Picture 894_zpssturrqst.jpg

OPEL

The first generation Opel GT debuted as a styling exercise in 1965 at the Paris and Frankfurt motor shows. The production vehicle used mechanical components from the contemporary Opel Kadett B and two-door hard top bodywork by French contractor Brissonneau & Lotz. The styling of the GT was often cited as similar to the 1968 Chevrolet Corvette which went on sale in September 1967. The Opel GT was equipped with a base 1.1 L OHV inline-four engine, which produced 67 hp (SAE) at 6,000 rpm. However, most buyers chose an optional 1.9 L camshaft in head engine, which produced 102 hp (SAE) at 5200 to 5400 rpm. Some of the early 1968 models also came with a slightly higher compression “H” code cylinder head. In 1971, due to emissions regulations, Opel reduced the compression ratio of the 1.9 L engine used in the US and output fell to 83 hp (SAE). There was also a GT/J model, which was a less expensive version of the 1900-engined GT which was sold only in Europe. Standard transmission was a manual four-speed. A three-speed automatic was available with the 1.9 L engine.The Opel GT uses a steel unibody and a conventional front-engined, rear-wheel drive layout. The engine is mounted far back in the chassis to improve weight distribution. Front suspension consists of upper A-arms and a lower transverse leaf spring. A live axle and coil springs are used in the rear. The power-assisted braking system uses discs in the front, drums in the rear. Steering is unassisted. One unusual feature of the Opel GT is the operation of the pop-up headlights. They are manually operated, by way of a large lever along the centre console next to the gearlever. Unlike most pop-up headlights, they both rotate in the same direction (counterclockwise from inside the car) about a longitudinal axis. One standard joke about GT owners was that you can easily spot them due to the heavy muscles on their right arm built up by using the lever to pop up the headlights. Designed by Opel stylist Erhard Schnell, the GT is a fastback, that has neither an externally accessible trunk nor a conventional hatchback. There is a parcel shelf behind the seats that can only be accessed through the main doors. Behind the parcel shelf is a fold-up panel that conceals a spare tyre and jack. The interior of the GT is surprisingly large for a car of its size, owing to its original design process in which the exterior metal was sculpted around an interior model. Headroom and legroom are sufficient for those over 6 feet (1.83 m) tall. During 1968 to 1973, a total of 103,463 cars were sold. The most collectible GTs are probably the first few hundred cars hand-assembled in 1968 and the 1968–1970 models with the 1.1 L engine, which totalled 3,573 cars. Of the later cars, 10,760 were the cheaper model (GT/J), which lacked nearly all chrome parts and offered fewer standard features. In some markets, items like a limited slip differential, front and rear anti-sway bars, heated rear window, and engine bay light were standard, although most cars were shipped without them. In North America, the GT was sold at Buick dealerships. Reasons for ending production were the need to redesign the car to remain competitive with up-and-coming sports models, such as the Datsun 240Z, as well as the termination of Brissonneau and Lotz’ bodybuilding contract. Unusually for the period, here was no Vauxhall equivalent model to the GT sold in the United Kingdom.

 photo Picture 945_zps4jhq33el.jpg  photo Picture 946_zpsczxzdqii.jpg

PEUGEOT

There were a lot more examples of the 205 here, with variants including the popular GTi and CTi, of course, but also a Roland Garros, and some of the less potent models.

 photo Picture 195_zps2bvask7c.jpg  photo Picture 735_zpscasdlyon.jpg  photo Picture 739_zpspfqxw4bo.jpg  photo Picture 267_zpsfwmgatmn.jpg  photo Picture 268_zpszxfhibcz.jpg  photo Picture 961_zpstci8e8mk.jpg  photo Picture 960_zps2kyjy8gr.jpg  photo Picture 879_zpsaddjyuti.jpg photo Picture 877_zps9s23gp4r.jpg  photo Picture 993_zpse5e8he4i.jpg  photo Picture 992_zpsxfrdx4jk.jpg

When it came to replacing the legendary 205, Peugeot decided to come up with a larger (306) and smaller (106) car. It was not long before they produced more sporting versions of them both, and there was a 106 Rallye here. Marketed as having “fewer frills, more thrills”, the Rallye version did not have alloy wheels, central locking or electrically operated windows to keep the weight down to 825 kilograms. There were pre- and post-facelift versions of the 106 Rallye known to enthusiasts as S1 and S2 models, with the latter having a 103bhp 1.6 litre engine instead of the high-revving Rallye-specific 1.3 100bhp engine fitted to pre-facelift cars It had a five-speed manual gearbox. The vehicle could be competitive in racing, but also made a practical family car. All cars had steel wheels, and Rallye decals and seat coverings featuring a 3-colour flash, which again varied between early and late cars. You don’t see them very often these days, as most of them had a hard life from new.

 photo Picture 334_zpsxr3la0mp.jpg  photo Picture 333_zpse7cwpt0i.jpg  photo Picture 892_zps60coympo.jpg

There was also a rather nice 309 GTi 5 door here. The 309, a size larger than the 205 never found quite the same appeal as the smaller car, even though many will claim that in GTi guise, it was actually a better car. It was launched in 1987, eighteen months or so behind the regular models. and was available in both three and five door forms.  Arguably the top of the range, fitted with the 1905 cc XU9 engine, producing 130 PS 128 bhp), though it was later detuned at around the time of the facelift to 122 PS (120 bhp) to conform with 95 octane unleaded and emissions regulations. The GTI came with some features unique to the range, such as the large black boot spoiler, driving lights and fog lights in the front bumper, remote opening rear windows (three door only), and the Speedline 1.9GTI alloys, the first car to be fitted with them. Also benefitted from uprated suspension, tinted glass, a deep front airdam, a leather steering wheel and internally adjustable headlights. Items on the options list included central locking/electric windows (as part of a twinned options pack), a sliding glass sunroof, and metallic/black paint. A late addition to the range and only produced for a limited period was the GTi 16V. It featured the PSA XU engine XU9J4 160 PS (158 bhp) 16V 1.9 alloy engine from the 405 Mi16/Citroën BX 16V. It also included slightly uprated suspension (stiffer rear torsion bars, and wider track width both front and rear). The GTI16 was produced in LHD only, due to clearance issues with the master cylinder in RHD cars. The very high power-to-weight ratio (160PS / 975 kg) resulted in a highly responsive drive, even by modern standards. There are few survivors these days.

 photo Picture 924_zpsmmhwjl8e.jpg  photo Picture 921_zpsed9mbncj.jpg  photo Picture 920_zpsdsw76oru.jpg  photo Picture 919_zpsjucgjnll.jpg

I was quite surprised to find another 304 Cabriolet given that there were two in the Orchard.

 photo Picture 1003_zpszrp5e4hm.jpg  photo Picture 1004_zpsjxskstwc.jpg

PORSCHE

As ever, there were lots of 911 models here, ranging from a couple of 911E cars from the late 60s, through 930 Turbo cars of the 70s and 80s. the much loved 993 and some recent  991 models.

 photo Picture 265_zpseonvkm6w.jpg  photo Picture 266_zpscmqjavnh.jpg  photo Picture 270_zpsjzhlp1bw.jpg  photo Picture 760_zpsmuoriclg.jpg  photo Picture 287_zpsfwpxdew3.jpg  photo Picture 937_zpszgxiefcc.jpg  photo Picture 936_zps8trm9k9p.jpg  photo Picture 901_zpsfnysrgxk.jpg photo Picture 1018_zpsulkcppfl.jpg  photo Picture 291_zpszfsxm0s3.jpg  photo Picture 935_zpsurh4iymh.jpg  photo Picture 357_zpshiqoz7gf.jpg  photo Picture 358_zpsogidoueo.jpg

The front engined models were represented by a 924S and a 928 S2.

 photo Picture 346_zps4g2kt9i1.jpg  photo Picture 332_zpsmymizecq.jpg  photo Picture 331_zpsclqgjyzv.jpg

Older models were present, too, starting with a 356 Coupe. The 356 was created by Ferdinand “Ferry” Porsche (son of Dr. Ing. Ferdinand Porsche, founder of the German company), who founded the Austrian company with his sister, Louise. Like its cousin, the Volkswagen Beetle (which Ferdinand Porsche Senior had designed), the 356 was a four-cylinder, air-cooled, rear-engine, rear-wheel-drive car utilising unitised pan and body construction. The chassis was a completely new design as was the 356’s body which was designed by Porsche employee Erwin Komenda, while certain mechanical components including the engine case and some suspension components were based on and initially sourced from Volkswagen. Ferry Porsche described the thinking behind the development of the 356 in an interview with the editor of Panorama, the PCA magazine, in September 1972. “….I had always driven very speedy cars. I had an Alfa Romeo, also a BMW and others. ….By the end of the war I had a Volkswagen Cabriolet with a supercharged engine and that was the basic idea. I saw that if you had enough power in a small car it is nicer to drive than if you have a big car which is also overpowered. And it is more fun. On this basic idea we started the first Porsche prototype. To make the car lighter, to have an engine with more horsepower…that was the first two seater that we built in Carinthia (Gmünd)”. The first 356 was road certified in Austria on June 8, 1948, and was entered in a race in Innsbruck where it won its class. Porsche re-engineered and refined the car with a focus on performance. Fewer and fewer parts were shared between Volkswagen and Porsche as the ’50’s progressed. The early 356 automobile bodies produced at Gmünd were handcrafted in aluminium, but when production moved to Zuffenhausen, Germany in 1950, models produced there were steel-bodied. Looking back, the aluminium bodied cars from that very small company are what we now would refer to as prototypes. Porsche contracted with Reutter to build the steel bodies and eventually bought the Reutter company in 1963. The Reutter company retained the seat manufacturing part of the business and changed its name to Recaro. Little noticed at its inception, mostly by a small number of auto racing enthusiasts, the first 356s sold primarily in Austria and Germany. It took Porsche two years, starting with the first prototype in 1948, to manufacture the first 50 automobiles. By the early 1950s the 356 had gained some renown among enthusiasts on both sides of the Atlantic for its aerodynamics, handling, and excellent build quality. The class win at Le Mans in 1951 was clearly a factor.  It was always common for owners to race the car as well as drive them on the streets. They introduced the four-cam racing “Carrera” engine, a totally new design and unique to Porsche sports cars, in late 1954. Increasing success with its racing and road cars brought Porsche orders for over 10,000 units in 1964, and by the time 356 production ended in 1965 approximately 76,000 had been produced. The 356 was built in four distinct series, the original (“pre-A”), followed by the 356 A, 356 B, and then finally the 356 C. To distinguish among the major revisions of the model, 356’s are generally classified into a few major groups. 356 coupés and “cabriolets” (soft-top) built through 1955 are readily identifiable by their split (1948 to 1952) or bent (centre-creased, 1953 to 1955) windscreens. In late 1955 the 356 A appeared, with a curved windshield. The A was the first road going Porsche to offer the Carrera 4 cam engine as an option. In late 1959 the T5 356 B appeared; followed by the redesigned T6 series 356 B in 1962. The final version was the 356 C, little changed from the late T6 B cars but with disc brakes to replace the drums.

 photo Picture 1019_zpsj49k0uuk.jpg  photo Picture 1020_zpsxadfbkwk.jpg

There were a couple of replica cars, which were pretty faithful recreations of famous racing Porsche models. These were the 718 RSK Spyder and the 904.

 photo Picture 756_zpswfow4pfs.jpg  photo Picture 755_zpsbibor89q.jpg  photo Picture 909_zpsh14fhtzs.jpg  photo Picture 908_zpsbh0jljyt.jpg  photo Picture 910_zpsbipypnsg.jpg

RELIANT

Reliant’s first Scimitar was a coupé based upon the styling of a Daimler SP250 prototype (renamed the SX250) and the chassis of a Reliant Sabre. It was first displayed in 1964. It was powered by a 2.6-litre Ford straight six from the Ford Zephyr and Zodiac. In order to keep cost down, many components in addition to the engine were existing ones originally designed for competitor models, a point emphasised for buyers of the early Scimitars in which unfolding the sun visor involved knocking the driver’s mirror out of adjustment. In 1966 the SE4A was replaced by the SE4B, with a 3.0litreL V6 Ford “Essex” engine. A year later, in September 1967, the cheaper SE4C was introduced with a 2.5-litre version of the same engine and a reduction of £105 on the ‘recommended retail price’. The engine differed from the one fitted on the Ford Zephyr 6 in that the Reliant engine came with an alternator whereas Ford buyers had to be content with a dynamo. Just over 1000 SE4s were produced.

 photo Picture 308_zpsbzhlm7da.jpg

RENAULT

Further Renault models here were examples of cars also to be seen in the Orchard and these included a second generation Clio 182 in Trophy spec and a Megane RS R26R. This latter was based on the Mégane Renault Sport 230 F1 Team R26, but 123 kg (271 lb) lighter. Weight reduction is achieved via the removal of the rear seats and seat belts, passenger airbag and curtain airbags (the driver’s airbag remains), climate control (air conditioning remains as standard), rear wash/wipe and heated rear window, front fog lamps, headlamp washers, radio/CD player and most of the soundproofing. Other features include a carbon fibre bonnet, polycarbonate tailgate and rear side windows, Sabelt seats with carbon fibre shell and aluminium base, 6-point harnesses, a rear spoiler, optional roll cage and an optional titanium exhaust. New parts include new front springs (14 mm/100 kg), new rear springs (16.2 mm/100 kg), recalibrated shock absorber settings, grooved brake discs, new alloy wheels are fitted with a different offset increasing the track by 4 mm (0.2 in), optional Toyo Proxes R888 225/40R18 tyres (Michelin Pilot Sport 2 235/40R18 standard) and stiffer lower arm bushes. 450 vehicles were made with 230 destined for the UK market. The car went on sale in October 2008 for £22,990, following its unveiling at The 2008 British International Motor Show. It proved a bit too extreme and sales were sufficiently sluggish that quite a few of the cars were returned to France and converted to left hand drive. Now, of course, it is valued as a modern classic.

 photo Picture 292_zpsm86jxhhf.jpg  photo Picture 962_zpswxwusxx8.jpg  photo Picture 959_zpsmgqrgkq5.jpg

RILEY

There were a couple of Riley models here, a Nine Sports and an earlier Tourer.

 photo Picture 243_zpsvyz8cuxh.jpg  photo Picture 354_zps1ajddas8.jpg

ROVER

Last of the cars resulting from the Honda partnership was the Rover 600, a medium sized executive car range that was produced between 1993 and 1999. The Rover 600 exterior was designed by Rover, and was a complete  re-skin of the European Honda Accord, also built in the UK by Honda in Swindon. The core structure and vast majority of the engineering content was sourced from Honda but the vehicles were designed at the same time, with a small Rover team on-site in Japan. Colour and trim derivatives were also used to help separate the Rover from the Honda in the marketplace. It was generally said at the time that the Rover was a far better looking car than the Honda, and indeed many of the pre-launch clinics had given the car very high marks indeed for the elegance of its design. This was an example of partnering in the right way, as mechanically, the 600 relied lots of Honda, with the 1.8, 2.0 and 2.3-litre straight-4 petrol engines were all provided by the Japanese. All these were praised for their refinement and efficiency. The 2.0-litre turbodiesel Rover L-Series engine and turbocharged T-Series engines which joined the range some months after launch were developed by Rover,  evolutions of units already available elsewhere in the Rover model range. The 620ti, the Turbo model, was launched in May 1994 and this was the most exciting car in the range. It had a turbocharged, intercooled, 16-valve, twin-cam 2.0-litre T series engine, a top speed of 143 mph and a 0-60 mph time of 7 seconds, thanks to 197 bhp and 174 lb/ft of  torque. The 620ti also had uprated suspension, dark half-leather upholstery, and a set of six-spoke 16 inch alloy wheels. Autocar magazine had an example on a long term test and found it to be as quick in the mid-range as a Ford Sapphire 2.0i Cosworth following tests at Millbrook Proving Ground. The 600’s interior included wood and chrome trim, as well as relatively high equipment levels, although rear legroom was criticised as rather constrained. The interior was similar to the Japanese-built Honda Ascot Innova, except with a few cosmetic changes. Carpet was also not evident along the bottom trim of the dashboard, although it did feature there on the Innova. The Honda-derived chassis was reported to give a comfortable but unsporting ride.The 600 was available in a number of different trims. All models had power-assisted steering (PAS), electric front windows, remote central locking with alarm and immobiliser and tinted windows. The entry level 618i cars had unpainted bumpers initially which looked very cheap.  The Si had split rear seats, Si Auto and above got a sunroof. SLi trim added electric rear windows and wooden door trim; GSi models received 15″ multispoke alloys and full leather trim. From 1994 all cars had a driver’s airbag. The 623iS had half leather trim and a small lip spoiler on its boot. The ti featured a set of 16″ six spoke alloys with uprated suspension, ‘Torsen’ gearbox and a dark half leather interior. Given the Rover’s equipment, prices were reasonably competitive in the large family car segment and considerably lower than the price of such compact executive cars such as the BMW 3 Series and Audi A4. The car had a mixed time with the press, with initially positive reports turning quite damning quite quickly, for no really discernible reason., The car was well built and proved reliable, even the ones with the British engines! Production ceased in the Spring of 1999; when the car, along with the Rove 800  was replaced with the retro-styled Rover 75 developed under BMW’s stewardship. It was good to see one example here, and in nice condition, as this model is quite a rare sighting these days. Perhaps the tide has turned and the car is now old enough for youngtimer classic status?

 photo Picture 929_zpshuwmrzvr.jpg

SINGER

This is a Singer Chamois, the luxury version of the Hillman Imp which was added to the range in October 1964, in an effort to broaden the appeal of the base car, sales of which fell below expectations right from the start. It was produced until Rootes Group decided to phase out the Singer name in 1970.

 photo Picture 984_zpsia5ce33j.jpg  photo Picture 985_zpsoqkxoech.jpg  photo Picture 978_zps96bwfyyt.jpg  photo Picture 977_zpson5fefkt.jpg

SUBARU

There was a further Impreza here, a P1 version of the first generation car. To counter the grey imports of high-performance Japanese variants, Subaru UK commissioned Prodrive to produce a limited edition of 1,000 two-door cars in Sonic Blue, called the WRX “P1”. Released in March 2000, they were taken from the STI Type R lines and used for the P1. The car was the only coupé version of the WRX STI GC chassis to receive ABS. In order to allow for ABS, the DCCD was dropped. Engine output was boosted to 276 bhp and the suspension optimised for British roads. Options were available from Subaru consisting of four-piston front brake calipers, electric Recaro seats, 18-inch wheels and a P1 stamped backbox. The P1, or Prodrive One, is echoed in the name of the Prodrive P2 concept car.

 photo Picture 339_zps7gv9kam6.jpg  photo Picture 282_zpstfxftfoe.jpg  photo Picture 281_zps9gnrp8nq.jpg

It was not a surprise to find an SVX in the car park, as this particular car belongs to the venue’s commentator Chris Drewett, and I’d both seen and heard him in action earlier in the day. The Subaru Alcyone SVX, also known outside of its home market Japan as the Subaru SVX, is a two-door grand tourer coupé. Produced from 1991 to December 1996, it was FHI’s first attempt to enter the luxury/performance car market. Its intention was to combine two seemingly contradictory elements—comfort and performance. The name “Alcyone” (pronounced “al-SIGH-uh-nee”) refers to the brightest star in the Pleiades star cluster, on which the Subaru logo is based. The Subaru Alcyone SVX made its debut, as a concept car, at the 1989 Tokyo Auto Show.  Italian automobile designer Giorgetto Giugiaro of ItalDesign designed the slippery, sleek bodywork, incorporating design themes from his other concepts, such as the Ford Maya and the Oldsmobile Gabr. Subaru decided to put the concept vehicle into production and retain its most distinguishing design element, the unconventional window-within-a-window. Subaru called this an “aircraft-inspired glass-to-glass canopy,” which was adapted from the previous model Subaru Alcyone with an additional extension of glass covering the A-pillar. The decision to release this car for production gave the public the first opportunity to buy a “concept car” as conceived. The suffix “SVX” is an acronym for “Subaru Vehicle X”. In contrast to the boxy, angular XT, the SVX had curvy lines designed by Giugiaro and the unusual two-piece power side windows. The windows are split about two-thirds of the way from the bottom, with the division being parallel to the upper curve of the door frame. These half-windows are generally seen on exotic vehicles with “scissor”, “gull-wing”, or “butterfly” doors, such as the Lamborghini Countach, De Lorean DMC-12 (another Giugiaro design), and the McLaren F1. The SVX’s aerodynamic shape allowed it to maintain the low drag coefficient of Cd=0.29, previously established by the XT coupe it replaced. European market cars had a slightly lower wind resistance of Cd=0.285, thanks to a larger undertray. From 1991 to 1992, Subaru displayed the Amadeus, a prototype shooting brake variation on the SVX, in both two- and four-door versions, which was considered for production.[5] Ultimately the Amadeus was not produced. Unlike the previous model, which had been available with either a turbocharged flat-four (as XT) or a naturally aspirated flat-six (as XT6), the SVX debuted with and remained available with only one engine, the EG33 model 3.3-liter boxer horizontally opposed flat-six. This engine was the largest engine produced by Subaru for its passenger cars until the introduction of the 3.6-litre EZ36 engine in the 2008 Subaru Tribeca. The previous generation Subaru Alcyone had a turbocharged the four-cylinder engine, but the larger EG33 was more powerful and so a turbo was not installed. Internally, the engine is essentially a six-cylinder variant of the EJ22 found in the first-generation Japanese market Legacy and Impreza. The new 3.3-litre variant was equipped with dual overhead camshafts and four valves per cylinder, and had an increased compression ratio of 10.1:1, bringing horsepower up to 231 hp at 5,400 rpm with 309 newton metres (228 lb⋅ft) of torque at 4,400 rpm. Fuel delivery was accomplished with sequential multi-port fuel injection with dual-spray injectors. Engine ignition used platinum spark plugs and a computerized management system with “limp home feature”, which included over-rev protection, as well as monitors for fuel injection and ignition. Later Japanese S-Four badged versions had the improved 250 hp versions of this engine. Some later Japanese models also came with upgraded 17in BBS alloy wheels instead of the 16in wheels most cars have. The exhaust system consisted of head pipes from each bank of cylinders with their own pre-catalytic converters, which entered a dual-inlet / single outlet main catalytic converter. A single 2.5-inch (64 mm) exhaust pipe exited the main converter and went into a resonator, and onto the main, transverse, single-inlet muffler with twin exhaust tips in the bumper. All versions of the SVX sold were equipped with automatic transmissions, as a manual transmission capable of handling the horsepower and torque of the EG33 engine was not produced by Subaru at the time. Depending on the country, Subaru had two versions of their all-wheel drive system for the automatic transmission, called ACT-4 or VTD. The first system, called ACT-4 (active torque split) by Subaru, was the same setup commonly found on other Subaru models of the period, and used a variable clutch pack center differential using a 90/10 power split ratio front to rear, which could transfer up to a 50/50 power split ratio for maximum traction if the front wheels started to slip. This AWD system was offered throughout the entire production run, and was used in vehicles manufactured for sale in the US, Canada, Germany, France and Switzerland. A sportier continuous traction delivery system, called VTD (variable torque distribution) by Subaru, was used in vehicles for sale in Japan, the UK, the Benelux region, Sweden, Australia, Spain, Austria and Brazil. The VTD AWD system is a permanent AWD due to its 36/64 split. Early SVX transmissions are plagued with problems including a defective torque converter clutch which disintegrates and clogs early radiators (both changed in 1993), and systemic high clutch failures due to lower than spec pump pressure, fluid evacuation, and clutch balance pressure. Several major revisions were made, all of which are included by late 1994 production. Shortly after the SVX ended production Subaru transitioned to a completely redesigned 4 speed unit. The Japanese-spec “SVX L” received four-wheel steering in 1991 and 1992 (model code “CXD” of which 1,905 were built). The VTD equipped versions received the “CXW” chassis code. In an attempt to lower the price for the US market, a front-wheel drive (“CXV”) was offered in 1994 and 1995 but sales were less than stellar. Total sales of the SVX numbered 14,257 in the United States and a total of 24,379 worldwide. 2,478 SVXs were sold in Europe (with 854 headed directly to Germany and 60 to France). Roughly 7,000 of all SVXs sold were right-hand drive models. Included in this number were the 249 vehicles sold in Australia, at a cost between approx. A$73,000 to A$83,000. 5,884 units remained in Japan. As an investment, Subaru actually lost $3,000 on every Subaru SVX sold, for a total loss of around $75,000,000 on this project.

 photo Picture 703_zpshisioink.jpg  photo Picture 762_zpsauxdbzp1.jpg  photo Picture 761_zpsw8jcub6l.jpg

From the current range comes the Levorg, a practical all-wheel drive family sized estate car, saddled with a CVT gearbox and a name that is rather unfortunate. It sells in tiny numbers despite its profile being raised by its inclusion in the Touring Car championship.

 photo Picture 947_zpsff2qeneo.jpg

SUNBEAM

The first Sunbeam to bear the Alpine name was an open-topped version of the Sunbeam-Talbot 90 sports saloon, named after the model’s success in rallying, especially the Monte Carlo rally, launched in 1953. Kenneth Howes and Jeff Crompton were tasked with doing a complete redesign in 1956, with the goal of producing a dedicated sports car aimed principally at the US market to compete with the MGs and Triumphs that were very popular.  Ken Howes contributed some 80 per cent of the overall design work, which bears more than incidental resemblance to the early Ford Thunderbird, hardly a surprise, as Howe had worked at Ford before joining Rootes. The Alpine was produced in four subsequent revisions until 1968. Total production numbered around 70,000. Production stopped shortly after the Chrysler takeover of the Rootes Group. Styled by the Loewy Studios for the Rootes Group, the “Series” Alpine started production in late 1959. One of the original prototypes still survives and was raced by British Touring car champion Bernard Unett. The car made extensive use of components from other Rootes Group vehicles and was built on a modified floorpan from the Hillman Husky estate car. The Series I used a 1,494 cc engine with dual downdraft carburettors, a soft top that could be hidden by special integral covers and the first available wind-up side windows offered in a British sports car of that time. The running gear came mainly from the Sunbeam Rapier, but with front disc brakes replacing the saloon car’s drums. An overdrive unit and wire wheels were optional. The suspension was independent at the front using coil springs and at the rear had a live axle and semi-elliptic springing. The Girling-manufactured brakes used 9.5 in discs at the front and 9 in drums at the rear.  An open car with overdrive was tested by The Motor in 1959. It had a top speed of 99.5 mph and could accelerate from 0–60 mph in 13.6 seconds. A fuel consumption of 31.4 mpg was recorded. The test car cost £1031 including taxes. 11,904 examples of the series I were produced. The Series II of 1962 featured an enlarged 1,592 cc engine producing 80 bhp and revised rear suspension, but there were few other changes. When it was replaced in 1963, 19,956 had been made. The Series III was produced in open and removable hardtop versions. On the hardtop version the top could be removed and the soft-top was stored behind the small rear seat; also the 1592 cc engine was less powerful. To provide more room in the boot, twin fuel tanks in the rear wings were fitted. Quarter light were fitted to the windows. Between 1963 and 1964, 5863 were made. For the Series IV, made in 1964 and 1965, there was no longer a lower-output engine option; the convertible and hardtop versions shared the same 82 bhp engine with single Solex carburettor. A new rear styling was introduced with the fins largely removed. Automatic transmission with floor-mounted control became an option, but was unpopular. From autumn 1964 a new manual gearbox with synchromesh on first gear was adopted in line with its use in other Rootes cars. A total of 12,406 were made. The final version was the Series V, produced between 1965–68 which had the new five-bearing 1,725 cc engine with twin Zenith-Stromberg semi-downdraught carburettors producing 93 bhp. There was no longer an automatic transmission option. 19,122 were made. The car also formed the basis for the V8 engined Tiger, and you tend to see those more often than the regular Series V Alpines that was seen here.

 photo Picture 938_zpswct1ihwo.jpg

TOYOTA

This is a second generation MR2, the version many think of as the best of the three series of Toyota’s mid-engined sports cars. It had a long production life, running from 1989 for 10 years. Rust has claimed many of them now, though.

 photo Picture 190_zpsgcmmvmfg.jpg

A very much more powerful Japanese classic is the fourth and so far, last generation of Supra, known as the A80, work on which began in February 1989 under various teams for design, product planning, and engineering. By the middle of 1990, a final A80 design concept from Toyota Technical Centre Aichi was approved and frozen for production in late 1990. The first test mules were hand-built in A70 bodies during late 1990, followed by the first A80 prototypes being hand-assembled in 1991. Again using subframe, suspension,and drivetrain assemblies from the Z30 Soarer (Lexus SC300/400), test model pre-production started in December 1992 with 20 models, and official mass production began in April 1993.  This redesign saw Toyota placing great emphasis on a more serious high-performance car. The new Supra was completely redesigned, with rounded body styling and featured two new engines: a naturally aspirated Toyota 2JZ-GE producing 220 hp at 5800 rpm and 210 lb·ft at 4800 rpm of torque and a twin turbocharged Toyota 2JZ-GTE making 276 hp and 318 lb·ft of torque for the Japanese version. The styling, while modern, does seem to borrow some elements from Toyota’s first grand touring sports car, the Toyota 2000GT. For the export model (America/Europe) Toyota upgraded the Supra turbo’s engine which increased the power output to 320 hp at 5600 rpm and 315 lb·ft at 4000 rpm. The turbocharged variant could achieve 0–60 mph in as low as 4.6 seconds and 1/4-mile in 13.1 seconds at 109 mph. The turbo version was tested to reach over 285 km/h (177 mph), but the cars were restricted to just 180 km/h (112 mph) in Japan and 250 km/h (155 mph) elsewhere. The twin turbos operated in sequential mode, not parallel. Initially, all of the exhaust is routed to the first turbine for reduced lag. This resulted in boost and enhanced torque as early as 1800 rpm, where it already produced 300 lb·ft of torque. At 3500 rpm, some of the exhaust is routed to the second turbine for a “pre-boost” mode, although none of the compressor output is used by the engine at this point. At 4000 rpm, the second turbo’s output is used to augment the first turbo’s output. Compared to the parallel mode, sequential mode turbos provide quicker low RPM response and increased high RPM boost. This high RPM boost was also aided with technology originally present in the 7M-GE in the form of the Acoustic Control Induction System (ACIS) which is a way of managing the air compression pulses within the intake piping as to increase power. For this generation, the Supra received a new 6-speed Getrag/Toyota V160 gearbox on the turbo models while the naturally aspirated models made do with a 5-speed manual W58, revised from the previous version. Each model was offered with a 4-speed automatic with manual shifting mode. All vehicles were equipped with 5-spoke aluminium alloy wheels, the naturally aspirated model had 16″ rims and the turbo models were 17″. The difference in wheel size was to accommodate the larger brakes equipped as standard onto the turbo model, but in Japan were optional extras. Both models had a space saver spare tire on a steel rim to save both space and weight. Toyota took measures to reduce the weight of this new model. Aluminium was used for the hood, targa top (when fitted), front crossmember, oil and transmission pans, and the suspension upper A-arms. Other measures included hollow carpet fibres, magnesium-alloy steering wheel, plastic gas tank and lid, gas injected rear spoiler, and a single pipe exhaust. Despite having more features such as dual airbags, traction control, larger brakes, wheels, tyres, and an additional turbo, the car was at least 200 lb lighter than its predecessor. The base model with a manual transmission had a curb weight of 3,210 lb (1,460 kg). The Sport Roof added 40 lb while the automatic transmission added 55 lb. It had a 51:49 (front:rear) weight distribution. The turbo model weighed 3,450 lb (1,560 kg) for the manual, automatic added another 10 lb (4.5 kg). Weight distribution was 53% front/47% rear. The Supra was heavier than the spartan Mazda RX-7 and all aluminium bodied Acura/Honda NSX, but it was lighter than the Mitsubishi 3000GT VR-4. The Supra soon became something of a legend, establishing itself as an effective platform for drifting in Japan, and for roadracing, with several top 20 and top 10 One Lap of America finishes in the SSGT1 class. Despite its curb weight, in 1994 the A80 managed remarkable skidpad ratings of 0.95 lateral g’s (200 ft) and 0.98 lateral g’s (300 ft), and the car has proved popular even as it ages in the UK, with several “grey market” cars having been brought here over the years.

 photo Picture 900_zpsqj3rgzy0.jpg

TRIBUTE AUTOMOTIVE

This is an MX250 GTO, based, as the name might lead you to guess on a Mazda MX5, with styling designed to evoke (but no more than that!) the legendary Ferrari 250 GTO. The kit is made from GRP and is a straight forward replacement of body panels and addition of cover panels to a Mk I Mazda MX5 bodyshell. The kit can also be fitted to the MX5 Mk2 with some modifications to the kit panels. The conversion retains the full monocoque bodyshell, running gear, doors and glass of the base vehicle.

 photo Picture 343_zpsvnchglrp.jpg

TRIUMPH

Launched in 1955, the TR3 was an evolution of the TR2 and not a brand new model. It  was powered by a 1991 cc straight-4 OHV engine initially producing 95 bhp, an increase of 5 hp over the TR2 thanks to the larger SU-H6 carburettors fitted. This was later increased to 100 bhp at 5000 rpm by the addition of a “high port” cylinder head and enlarged manifold. The four-speed manual gearbox could be supplemented by an overdrive unit on the top three ratios, electrically operated and controlled by a switch on the dashboard. In 1956 the front brakes were changed from drums to discs, the TR3 thus becoming the first British series production car to be so fitted. The TR3 was updated in 1957, with various changes of which the full width radiator grille is the easiest recognition point  and the facelifted model is commonly referred to as the Triumph “TR3A”, though unlike the later TR4 series,  where the “A” suffix was adopted, the cars were not badged as such and the “TR3A” name was not used officially, Other updates included exterior door handles, a lockable boot handle and the car came with a full tool kit as standard (this was an option on the TR3). The total production run of the “TR3A” was 58,236. This makes it the third best-selling TR after the TR6 and TR7. The TR3A was so successful that the original panel moulds eventually wore out and had to be replaced. In 1959 a slightly modified version came out that had raised stampings under the bonnet and boot hinges and under the door handles, as well as a redesigned rear floor section. In addition, the windscreen was attached with bolts rather than the Dzus connectors used on the early “A” models. Partly because it was produced for less time, the original TR3 sold 13,377 examples, of which 1286 were sold within the UK; the rest being exported mainly to the USA.

 photo Picture 889_zpscfzvslxh.jpg  photo Picture 322_zps7u7xeqbf.jpg  photo Picture 888_zpsvsikzx9w.jpg

Successor to the TR3a, and code named “Zest” during development, the TR4 was based on the chassis and drivetrain of the previous TR sports cars, but with a modern Michelotti styled body. The TR 4 engine was carried over from the earlier TR2/3 models, but the displacement was increased from 1991cc to 2138 cc by increasing the bore size. Gradual improvements in the manifolds and cylinder head allowed for some improvements culminating in the TR4A model. The 1991 cc engine became a no-cost option for those cars destined to race in the under-two-litre classes of the day. Some cars were fitted with vane-type superchargers, as the three main bearing engine was liable to crankshaft failure if revved beyond 6,500 rpm; superchargers allowed a TR4 to produce much more horse-power and torque at relatively modest revolutions. The standard engine produced 105 bhp but, supercharged and otherwise performance-tuned, a 2.2-litre I4 version could produce in excess of 200 bhp at the flywheel. The TR4, in common with its predecessors, was fitted with a wet-sleeve engine, so that for competition use the engine’s cubic capacity could be changed by swapping the cylinder liners and pistons, allowing a competitor to race under different capacity rules (i.e. below or above 2 litres for example). Other key improvements over the TR3 included a wider track front and rear, slightly larger standard engine displacement, full synchromesh on all forward gears, and rack and pinion steering. In addition, the optional Laycock de Normanville electrically operated overdrive Laycock Overdrive could now be selected for 2nd and 3rd gear as well as 4th, effectively providing the TR4 with a seven-speed manual close ratio gearbox. The TR4 was originally fitted with 15×4.5″ disc wheels. Optional 48-lace wire wheels could be ordered painted the same colour as the car’s bodywork (rare), stove-enamelled (matte silver with chrome spinners, most common) or in matte or polished chrome finishes (originally rare, but now more commonly fitted). The most typical tyre originally fitted was 590-15 bias ply or optional radial tires. In the US at one point, American Racing alloy (magnesium and aluminium) wheels were offered as an option, in 15×5.5″ or 15×6″ size. Tyres were a problem for original owners who opted for 60-spoke wire wheels, as the correct size radial-ply tyre for the factory rims was 155-15, an odd-sized tyre at the time only available from Michelin at considerable expense. Some original TR4 sales literature says the original radial size was 165-15. The much more common 185-15 radials were too wide to be fitted safely. As a result, many owners had new and wider rims fitted and their wheels re-laced. The new TR4 body style did away with the classical cutaway door design of the previous TRs to allow for wind-down windows (in place of less convenient side-curtains), and the angular rear allowed a boot with considerable capacity for a sports car. Advanced features included the use of adjustable fascia ventilation, and the option of a unique hard top that consisted of a fixed glass rear window with an integral rollbar and a detachable, steel centre panel (aluminium for the first 500 units). This was the first such roof system on a production car and preceded by 5 years the Porsche 911/912 Targa, which has since become a generic name for this style of top. On the TR4 the rigid roof panel was replaceable with an easily folded and stowed vinyl insert and supporting frame called a Surrey Top. The entire hard top assembly is often mistakenly referred to as a Surrey Top. In original factory parts catalogues the rigid top and backlight assembly is listed as the Hard Top kit. The vinyl insert and frame are offered separately as a Surrey Top. Features such as wind-down windows were seen as a necessary step forward to meet competition and achieve good sales in the important US market, where the vast majority of TR4s were eventually sold. Dealers had concerns that buyers might not fully appreciate the new amenities, therefore a special short run of TR3As (commonly called TR3Bs) was produced in 1961 and ’62. The TR4 proved very successful and continued the rugged, “hairy-chested” image that the previous TRs had enjoyed.  40,253 cars were built during production years. Most were sold new to the US, but plenty have returned, and it is estimated that there are not far short of 900 examples of the model in the UK at present.

 photo Picture 986_zpsmempmeht.jpg

The next bodystyle appeared on the TR6, the first Triumph for some time not to have been styled by Michelotti. By the mid 1960s, money was tight, so when it came to replacing the TR4 and TR5 models, Triumph were forced into trying to minimise the costs of the redesign, which meant that they kept the central section of the old car, but came up with new bodywork with the front and back ends were squared off, reportedly based on a consultancy contract involving Karmann. The resulting design, which did look modern when it was unveiled in January 1969 has what is referred to as a Kamm tail, which was very common during 1970s era of cars and a feature on most Triumphs of the era. All TR6 models featured inline six-cylinder engines. For the US market the engine was carburetted, as had been the case for the US-only TR250 engine. Like the TR5, the TR6 was fuel-injected for other world markets including the United Kingdom, hence the TR6PI (petrol-injection) designation. The Lucas mechanical fuel injection system helped the home-market TR6 produce 150 bhp at model introduction. Later, the non-US TR6 variant was detuned to 125 bhp for it to be easier to drive, while the US variant continued to be carburetted with a mere 104 hp. Sadly, the Lucas injection system proved somewhat troublesome, somewhat denting the appeal of the car. The TR6 featured a four-speed manual transmission. An optional overdrive unit was a desirable feature because it gave drivers close gearing for aggressive driving with an electrically switched overdrive which could operate on second, third, and fourth gears on early models and third and fourth on later models because of constant gearbox failures in second at high revs. Both provided “long legs” for open motorways. TR6 also featured semi-trailing arm independent rear suspension, rack and pinion steering, 15-inch wheels and tyres, pile carpet on floors and trunk/boot, bucket seats, and a full complement of instrumentation. Braking was accomplished by disc brakes at the front and drum brakes at the rear. A factory steel hardtop was optional, requiring two people to fit it. TR6 construction was fundamentally old-fashioned: the body was bolted onto a frame instead of the two being integrated into a unibody structure; the TR6 dashboard was wooden (plywood with veneer). Other factory options included a rear anti-roll bar and a limited-slip differential. Some say that the car is one of Leyland’s best achievements, but a number of issues were present and remain because of poor design. As well as the fuel injection problems, other issues include a low level radiator top-up bottle and a poor hand-brake. As is the case with other cars of the era, the TR6 can suffer from rust issues, although surviving examples tend to be well-cared for. The TR6 can be prone to overheating. Many owners fit an aftermarket electric radiator fan to supplement or replace the original engine-driven fan. Also the Leyland factory option of an oil cooler existed. Despite the reliability woes, the car proved popular, selling in greater quantity than any previous TR, with 94,619 of them produced before production ended in mid 1976. Of these, 86,249 were exported and only 8,370 were sold in the UK. A significant number have since been re-imported, as there are nearly 3000 of these much loved classics on the road and a further 1300 on SORN, helped by the fact that parts and services to support ownership of a TR6 are readily available and a number of classic car owners’ clubs cater for the model.

 photo Picture 192_zpsueioufhw.jpg  photo Picture 279_zps7xvfetuh.jpg  photo Picture 278_zpsh6ua58oc.jpg  photo Picture 309_zpskewenrjp.jpg photo Picture 737_zpspcqvnnkj.jpg  photo Picture 907_zpsmmozq2dz.jpg  photo Picture 970_zpscjgbxpub.jpg

Largest Triumph model here was the Stag. Envisioned as a luxury sports car, this car was designed to compete directly with the Mercedes-Benz SL. It started as a styling experiment, cut and shaped from a 1963–4 Triumph 2000 pre-production saloon, which had also been styled by Michelotti, and loaned to him by Harry Webster, Director of Engineering at Triumph. Their agreement was that if Webster liked the design, Triumph could use the prototype as the basis of a new Triumph model. Harry Webster, who was a long time friend of Giovanni Michelotti, whom he called “Micho”, loved the design and took the prototype back to England. The end result, a two-door drop head (convertible), had little in common with the styling of its progenitor 2000, but retained the suspension and drive line. Triumph liked the Michelotti design so much that they propagated the styling lines of the Stag into the new Mark 2 2000/2500 saloon and estate. The initial Stag design was based around the saloon’s 2.5-litre six cylinder engine, but Harry Webster intended the Stag, large saloons and estate cars to use a new Triumph-designed overhead cam 2.5-litre fuel injected  V8. Under the direction of Harry Webster’s successor, Spen King in 1968, the new Triumph OHC 2.5 PI V8 was enlarged to 2997 cc to increase torque. To meet emission standards in the USA, a key target market, the troublesome mechanical fuel injection was dropped in favour of dual Zenith-Stromberg 175 CDSE carburettors. A key aim of Triumph’s engineering strategy at the time was to create a family of engines of different size around a common crankshaft. This would enable the production of power plants of capacity between 1.5 and 4 litres, sharing many parts, and hence offering economies of manufacturing scale and of mechanic training. A number of iterations of this design went into production, notably a slant four-cylinder engine used in the later Triumph Dolomite and Triumph TR7, and a variant manufactured by StanPart that was initially used in the Saab 99. The Stag’s V8 was the first of these engines into production. Sometimes described as two four-cylinder engines Siamesed together, it is more correct to say that the later four-cylinder versions were half a Stag engine. It has sometimes been alleged that Triumph were instructed to use the proven all-aluminium Rover V8, originally designed by Buick, but claimed that it would not fit. Although there was a factory attempt by Triumph to fit a Rover engine, which was pronounced unsuccessful, the decision to go with the Triumph V8 was probably driven more by the wider engineering strategy and by the fact that the Buick’s different weight and torque characteristics would have entailed substantial re-engineering of the Stag when it was almost ready to go on sale. Furthermore Rover, also owned by British Leyland, could not necessarily have supplied the numbers of V8 engines to match the anticipated production of the Stag anyway. As in the Triumph 2000 model line, unitary construction was employed, as was fully independent suspension – MacPherson struts in front, semi-trailing arms at the rear. Braking was by front disc and rear drum brakes, while steering was power-assisted rack and pinion.  Although other bodystyles were envisaged, these never made production, so all  Stags were four-seater convertible coupés. For structural rigidity – and to meet new American rollover standards of the time – the Stag required a B-pillar “roll bar” hoop connected to the windscreen frame by a T-bar. A removable hardtop was a popular factory option for the early Stags, and was later supplied as a standard fitment. The car was launched one year late in 1970, to a warm welcome at the various international auto shows. Sadly, it rapidly acquired a reputation for mechanical unreliability, usually in the form of overheating. These problems arose from a variety of causes, all of which are now well understood, and for which solutions have been identified, but at the time, they really hurt the reputation and hence sales of the car. They ranged from late changes to the engine which gave rise to design features that were questionable from an engineering perspective, the choice of materials which necessitated the use of antifreeze all year round, the engine’s use of long, simplex roller link chains, which would first stretch and then often fail inside fewer than 25,000 miles; the arrangement of the cylinder head fixing studs, half of which were vertical and the other half at an angle causing sideways forces which caused premature failure of the cylinder head gaskets. and poor quality production from a plant troubled with industrial unrest and poor quality control. At the time, British Leyland never provided a budget sufficient to correct the few design shortcomings of the Triumph 3.0 litre OHC V8, and the dealers did not help matters. The Stag was always a relatively rare car. British Leyland had around 2,500 UK dealers when the Stag was on sale and a total of around 19,000 were sold in the UK. Thus the average dealer sold only seven or eight Stags during the car’s whole production run, or roughly one car per year. This meant that few dealers saw defective Stags often enough to recognise and diagnose the cause of the various problems. Many owners simply replaced the engine altogether, often with the Rover V8, Ford Essex V6, or even the Triumph 6-cylinder engine around which the car was originally designed. Perhaps thanks to such a reputation for its unreliable engine, only 25,877 cars were produced between 1970 and 1977. Of this number, 6780 were export models, of which 2871 went to the United States. The majority of cars were fitted with a Borg-Warner 3-speed automatic transmission. The other choice was a derivative of the ancient Triumph TR2 gearbox which had been modified and improved over the years for use in the TR series of sports cars. Other than the choice of transmissions there were very few factory-installed options. On early cars buyers could choose to have the car fitted with just the soft-top, just the hard-top (with the hood storage compartment empty) or with both. Later cars were supplied with both roofs. Three wheel styles were offered. The standard fitments were steel wheels with Rostyle “tin-plate” trims. Five-spoke alloy wheels were an option, as were a set of traditional steel spoke wheels with “knock-off”‘ hubcaps. The latter were more commonly found on Stags sold in North America on Federal Specification vehicles. Electric windows, power steering and power-assisted brakes were standard. Options included air conditioning, a luggage rack, uprated Koni shock absorbers, floor mats and Lucas Square Eight fog lamps, and a range of aftermarket products, most of which were dealer installed as optional accessories could also be fitted. Rather unusually for a 4-seat touring car, the accessory list included a sump protector plate that was never produced. This was probably included as a slightly “gimmicky” tribute to Triumph’s rallying successes. Nowadays, the Stag is seen in a very different light, with lots of very enthusiastic and knowledgeable owners who enjoy the good points of this attractive looking car and who revel in the fact that the market has not yet boosted prices into the unaffordable category, as one day will surely happen.

 photo Picture 923_zpsuuciw9bq.jpg  photo Picture 340_zps7wvjusou.jpg  photo Picture 347_zpsnxqn2u0d.jpg  photo Picture 1002_zpsgiu0ta5z.jpg photo Picture 895_zpscqptkrdf.jpg  photo Picture 906_zpsxgvfkncb.jpg

TVR

There were a number more TVR models here, to complement the ones seen in the Orchard, including some models which were not represented there. These included a pair of the Taimar model from the late70s. The TVR M Series cars were built between 1972 and 1979, replacing the Vixen and Tuscan models. The styling showed a clear resemblance to the models that the M replaced, with the centre section of the car being carried forward and conceptually, the cars were little different, with a front mid-engine, rear-wheel drive layout and body-on-frame construction. The bodies themselves were built from glass-reinforced plastic (GRP). The engines were bought in, sourced from Triumph and Ford, which resulted in a number of different models being made. These included the 1600M, 2500M, 3000M, 3000S, and Taimar, as well as turbocharged versions of the 3000M, 3000S, and Taimar. The first model to start production was the 2500M in March 1972, after being built as a prototype in 1971, which had the 2500cc engine from the Triumph 2.5PI and TR6 under the bonnet. Ford engined 1600M and 3000M models followed later. The American market was financially very important to TVR, and Gerry Sagerman oversaw import and distribution of the cars within the United States from his facility on Long Island. Approximately thirty dealers sold TVRs in the eastern part of the country. John Wadman handled distribution of the cars in Canada through his business, JAG Auto Enterprises.. A small number of 5.0 litre Ford V8-powered cars were finished or converted by the TVR North America importer; these were sold as the 5000M. A total of 2,465 M Series cars were built over the nine years of production. Because of the hand-built and low-volume nature of TVR production, there are many small and often-undocumented variations between cars of the same model that arise due to component availability and minor changes in the build process. The M Series was regarded by contemporary reviewers as being loud and fast and having excellent roadholding. This came at the expense of unusual ergonomics, and heating and ventilation systems that were sometimes problematic. The first major alteration to the M Series body was the hatchback Taimar, introduced at the October 1976 British International Motor Show and using the same mechanicals as the 3000M. The name was inspired by the name of Martin’s friend’s girlfriend, Tayma. The opening hatchback alleviated the previous difficulty of manoeuvering luggage over the seats to stow it in the cargo area, and the hatch itself was opened electrically via a solenoid-actuated latch triggered by a button on the driver’s doorjamb. Over its three-year production, a total of 395 normally aspirated Taimars were built. The final body style for the M Series, an open roadster, arrived in 1978 as the TVR 3000S (marketed in some places as the “Convertible”, and referred to at least once as the “Taimar Roadster”.) Like the Taimar, the 3000S was mechanically identical to the 3000M; the body, however, had undergone significant changes. Only the nose of the car was the same as the previous coupes, as the windscreen, doors, and rear end had all been reworked. The redesign of the doors precluded the possibility of using wind-up windows, so sliding sidecurtains were instead fitted. These could be removed entirely and stowed in the boot, which, for the first time on a TVR, was a separate compartment with its own lid. The boot lid was operated electrically in a manner similar to the Taimar’s hatch. Its design was not finalised by the time the first cars entered production, so the first several cars (including the prototype) were built with no cutout for boot access. The final styling tweaks and the production of moulds for the fibreglass were done by Topolec Ltd. of Norfolk. The styling of the 3000S was revived in a somewhat modernised form later, with the 1987 introduction of the TVR S Series (although the S Series shared almost no components with the M Series cars.) The windscreen and convertible top had been adapted from those used on the Jensen-Healey roadster. Because Jensen Motors had ceased operation in 1976, the windscreen and sidecurtain designs were done by a company named Jensen Special Products, which was run by former Jensen employees. The design for the convertible top was finalised by Car Hood Company in Coventry. One of the minor undocumented variations found on M Series cars is the presence of a map light built into the upper windscreen surround of the 3000S. It appears to have been included only on a very small number of cars built near the end of the production run. When production of the 3000S ended (with 258 cars built), it cost £8,730. Reportedly, 67 of these cars were in a left-hand drive configuration, and 49 were exported to North America.

 photo Picture 277_zpsf7pu7ktq.jpg  photo Picture 276_zpsl4nwk8nt.jpg  photo Picture 849_zpsiwvlnkgj.jpg  photo Picture 239_zpsxj6j8vxe.jpg  photo Picture 401_zpslu8dtbxr.jpg

After producing the wedge-shaped Tasmin and its family of V8 powered 350i, 390SE and 450SE models, TVR’s next car took something of a retro look, with the S Series which was announced at the 1986 British International Motor Show, initially as a concept. Due to a massive positive response, the car went into production in less than 12 months, with 250 pre-manufacture orders. This was Peter Wheeler’s first major development since buying the company from Martin Lilley, and the turning point in TVR’s fortunes, which had struggled with the “Wedge” based cars that had been introduced in 1980 to replace the long running M Series models. With styling which looked more like these popular M Series cars, the first  S Series cars used Ford’s Cologne V6 in 2.8 litre 160 hp and for the later S2 to S4 had the later 2.9 litre 170 hp unit.  TVR made frequent updates to the cars, moving from those retrospectively called the S1 to S2 and later S3 and S4 in short succession. The S3 and S4 received longer doors, although some late S2’s were also thus equipped. Vehicle models ending with “C” were used to denote vehicles which were fitted with a catalytic converter. Only the S3 and S4 were fitted with catalysts. The Cat was only introduced to the UK in August 1992, at “K” registration, but catalysed cars were produced before that,  intended for export to markets with tighter emissions standards. Just as they had done with the “wedges”, TVR found more excitement by putting the Rover V8 engine under the bonnet of the car in lieu of the Ford unit, though the two models were offered in parallel. The V8S used a 4.0 litre fuel-injected Rover V8 engine, with gas-flowed cylinder heads, higher lift camshaft, compression ratio upped to 10:5:1, revised manifold, new chip for the engine management system and a limited slip differential. The result was 240 bhp at 5250 rpm and 270 lb/ft of torque at 3000 rpm. The V8S had a number of cosmetic differences over the V6. The bonnet had a large hump – created to house the Italian specification supercharger but carried over to all V8S models. The V8S had a small vent facing the windscreen, whereas S1 to S3 models face forward. Very late S3 and S4 models had no hump at all. As with all TVR’s there is no specific point in time when they changed styles, probably when they ran out! The suspension track was slightly wider on the V8S achieved with revised wishbones at the front and revised trailing arms at the rear. Disc brakes are fitted all round. The standard specification of the V8S included ½ hide leather interior, walnut trim, mohair hood, OZ alloy wheels, driving lamps, electric windows and door mirrors. 0-60 mph could be achieved in 4.9 seconds and 0-100 mph in 12.9 seconds. It was faster than an Aston Martin Virage, a Ferrari Testarossa, Lotus Esprit Turbo SE and Porsche Carrera 2 the supercars of the early 1990s. Between 1986 and 1994 2,604 S Series cars were made; 410 of these were of the V8S variety.

 photo Picture 326_zpsjrepizw3.jpg  photo Picture 325_zpsmjwih8rr.jpg

There were further examples of the Chimaera and the T350C.

 photo Picture 307_zpsk0pxuisl.jpg  photo Picture 956_zpsadkfgas6.jpg  photo Picture 944_zpsduedlup9.jpg  photo Picture 893_zps7yuf8xio.jpg photo Picture 966_zps6qxerrhy.jpg  photo Picture 995_zpsograu7sa.jpg  photo Picture 954_zpshdzxj1uc.jpg  photo Picture 305_zps2nw4jdbj.jpg  photo Picture 306_zpsptrrdsgb.jpg  photo Picture 330_zpsck3yufub.jpg  photo Picture 329_zps9ch92uto.jpg

VOLKSWAGEN

A couple of examples of the current Golf R caught my eye.

 photo Picture 285_zpslctmsmn9.jpg  photo Picture 902_zps7yqcxifm.jpg

WOLSELEY

And finally, a two-seater 1932 Wolseley Hornet Daytona Special. The Hornet features 2-seater bodywork by the renowned Eustace Watkins of London. With a six cylinder, 1300cc OHC engine, this fast and furious is of the type that flew around Brooklands in the early 1930s.

 photo Picture 733_zpsipzou3nh.jpg

This was a most enjoyable event indeed. The decision to change the scope and include Italian cars as well as retaining the French ones was an inspired one, as it added a new dimension to an event, which although popular, was beginning to suffer a little from a lack of too much that was new compared to the previous year. The La Vita Rossa aspect certainly injected that fresh feeling to the weekend. That the weather was kind all weekend was a bonus, and I was able to enjoy the company of many good friends, and see lots of lovely cars both on display and in action. No wonder this is a highlight still of my year.

 

Leave a Reply

Your email address will not be published. Required fields are marked *