When the weather is bad, you’ve not go to think not just about whether the car meet you had planned to attend will go ahead, and whether you personally want to endure wet or windy conditions (or worse) but also if you do go, will anyone else also decide to attend or not. And so, when the late afternoon weather on the day designated for the August 2023 edition of the monthly “Wheels at Prescott” evening meet showed no signs of improvement, I was very much in two minds as to what to do. I had been working from my mother’s house during the day so was only a couple of miles from Prescott and could thus make a very last minute decision and also reverse by coming straight back if I found y self at a very deserted as well as wet venue. I decided that the best plan was to watch out of the front windows and if I saw anything interesting hat was likely Prescott-bound, then I would head out as well. Sure enough, soon after 50m, the rain did stop and a black car that I did not actually recognise passed the house, so I decided to investigate. I arrived to find only a handful of cars parked up, and as the minutes ticked by not many more arrived. This augured to be the quietest event of the year, sadly, but at least it was now dry, if rather cold and there were a few people to talk to and a Club House in which to seek shelter and comestibles. Here then is the rather short report of this event:
ABARTH
What is known as the Series 4 version of the familiar 595 reached the markets in the middle of 2016. After rumours had circulated all winter following the launch of the facelifted Fiat 500 last year, Abarth finally unveiled the Series 4 at the end of May 2016. Initially, we were told that the cars would not be available in the UK until September, but that came forward somewhat, with dealers all receiving demo cars in June, and the first customers taking delivery in July. Three regular production versions of both the closed car and the open-topped C were initially available, all badged 595, and called Custom, Turismo and Competizione, as before, though numerous limited edition models have since appeared and in most case disappeared. The most significant changes with the Series 4 are visual, with a couple of new colours, including the much asked for Modena Yellow and a different red, called Abarth Red, which replaces both the non-metallic Officina and – slightly surprisingly – the tri-coat pearlescent Cordolo Red. as well as styling changes front and rear. The jury is still out on these, with many, me included, remaining to be convinced. At the front, the new air intake does apparently allow around 15 – 20 % more air in and out, which will be welcome, as these cars do generate quite a lot of heat under the bonnet. Competizione models for the UK retain the old style headlights, as they have Xenon lights as standard, whereas the Custom and Turismo cars have reshaped units. At the back, there are new light clusters and a new rear bumper and diffuser. Inside, the most notable change is the replacement of the Blue & Me system with a more modern uConnect Audio set up, which brings a new colour screen to the dash. Mechanically, there is an additional 5 bhp on the Custom (now 145) and Turismo (now 165 bhp) and the option of a Limited Slip Diff for the Competizione, which is likely to prove a popular option. Details of the interior trim have changed, with a filled-in glovebox like the US market cars have always had, and electric windows switches that are like the US ones, as well as a part Alcantara trim to the steering wheel in Competizione cars. This one belongs to Lin Baker who works at Prescott so it is quite usual to see it here.
HOTCHKISS
The Hotchkiss Anjou was a luxury car offered between 1950 and 1954 by the French automaker Automobiles Hotchkiss. It was an updated version of the 486 and 686/866[2] models which had first appeared in the 1930s and inherited its engines from those cars, although their engines in turn dated back to OHC units introduced in the mid-1920s. The car was launched in autumn 1950, and during the first year 1,787 were produced. In 1951 the company produced a further 2,666. The depressed state of the economy and the government’s punitive taxation policy, especially in respect of larger cars, saw to it that, at least in terms of units produced, 1951 was the car’s best year, however. 815 were produced in 1952 and only 197 in 1953. 1953 was the last year of production, but the company was still advertising new cars for sale at least until the end of 1954, which indicates that their financial problems may well have been exacerbated by the practice of systematically manufacturing more cars than they were selling earlier in the Anjou’s life. The Anjou came with a large limousine-style body significantly modified when compared to its predecessors and characteristic of the times. A small number of two-door coupés were produced as well as a 2-door cabriolet, branded as the Hotchkiss Anthéor. Carrosserie Worblaufen in Switzerland also built two four-door Cabriolets based on the 2050. There was a choice of two engine sizes. Most cars were 1350s, shipped with a four-cylinder OHC 2,312 cc water-cooled unit with one or, at the customer’s option, two carburettors. However, a longer-nosed version allowed space for the larger ohc six-cylinder 3,485 cc water-cooled engine that promoted the car into the stratospheric 20CV taxation class, but increased claimed maximum power from 72/75 hp to 100/125 hp, with a corresponding increase in claimed maximum speed from 130 km/h (81 mph) to 145 km/h (90 mph). Sources for the power output vary, possibly according to whether the engine was fed by one or two carburettors. Both cars were offered with so-called “classic” four-speed manual transmission, and the smaller-engined car was available with an optional electromagnetic Cotal gearbox, which is seen by some as a precursor to more modern automatic transmission systems, and which would also have stood out from the crowd at any time on account of its having featured four forward speeds and four reverse speeds. In addition to the 5,465 Anjous produced, the company built about 40 of the 2-door cabriolet Anthéor models.
MASERATI
I was here in my Maserati Ghibli.
MINI
This car is made to look like a classic Mini Cooper, but with its M plate is newer than the last of the regular factory models and so is undoubtedly a recreation.
PORSCHE
After two years of development, the first model of the fastback coupé to be released was the Cayman S (type 987120). Photographs and technical details were released in May 2005, but the public unveiling took place at the September Frankfurt Motor Show. The S suffix (for Sport or Special) indicated that this was a higher performance version of a then unreleased base model. That model, the Cayman (987110), went on sale in July 2006. The Cayman fastback coupé (project 987c) and the second generation Boxster roadster (project 987) shared the same mid-engine platform and many components, including the front fenders and trunk lid, doors, headlights, taillights, and forward portion of the interior. The design of the Cayman’s body incorporates styling cues from classic Porsches; 356/1, the 550 Coupé and the 904 Coupé. The 987.1 Cayman used the M97.20 and M97.21 engines. Unlike the Boxster, the Cayman has a hatchback for access to luggage areas on top of and in the back of the engine cover. The entire rear section rear-wards of the side doors of the Cayman is made from stainless steel. The suspension design is fundamentally the same as that of the Boxster with revised settings due to the stiffer chassis with the car’s fixed roof. The 3.4-litre flat-6 boxer engine (M97.21) in the first generation Cayman S was derived from the 3.2-litre (M96.26) that was used in the Boxster S, with cylinder heads from the 997 S’s 3.8-litre engine (M97.01), which have the VarioCam Plus inlet valve timing and lift system. A less powerful but more fuel efficient version, the 2.7-litre M97.20, powered the base model. The use of these engines exclusively in Caymans ended in the 2007 model year when Porsche upgraded the Boxster (987310) and Boxster S (987320). A 5-speed manual transaxle is standard on the Cayman (G87.01), while a 6-speed manual (Getrag 466) was the standard transmission for the S model (G87.21) and an option on the base model (A87.20). An electronically controlled 5-speed automatic transaxle (Tiptronic) was also available on the S (A87.21) and the non-S version (A87.02) (The 2009 models replaced this option with a seven-speed “PDK”, Porsche’s dual clutch transmission. Other options include active shock absorbers (ThyssenKrupp Bilstein GmbH’s DampTronic, rebadged as PASM by Porsche), ceramic disc brakes (PCCB), xenon headlights (Hella’s Bi-Xenon) and an electronically controlled sport mode (Sport Chrono Package). The first generation Cayman ceased production in November 2011
ROLLS ROYCE
This is a 1933 20/25 Park Ward Sportsman Coupe. The introduction of a smaller Rolls-Royce – the 20hp – in 1922 enabled the company to cater for the increasingly important owner-driver market that appreciated the quality of Rolls-Royce engineering but did not need a car as large as a 40/50hp Ghost or Phantom. The ‘Twenty’ proved eminently suited to town use, yet could cope admirably with Continental touring when called upon. Its successor, the 20/25hp, introduced in 1929, updated the concept with significant improvements, featuring an enlarged (from 3,127 to 3,669cc) and more-powerful cross-flow version of the Twenty’s six-cylinder, overhead-valve engine. The latter’s increased power allowed the bespoke coachbuilders greater freedom in their efforts to satisfy a discerning clientele that demanded ever larger and more opulent designs. Produced concurrently with the Phantom II, the 20/25 benefitted from many of the larger model’s improvements, such as synchromesh gears and centralised chassis lubrication, becoming the best-selling Rolls-Royce of the inter-war period. The Rolls-Royce 20/25hp was, of course, an exclusively coachbuilt automobile and most of the great British coachbuilding firms offered designs, many of them unique, on the 20/25hp chassis.
ROVER
Whilst the 3 litre P5 model may have been thought of as a replacement for the top end of the long running P4 Rovers, it was really this car, the P6 model, first seen in October 1963 which was its true successor. Very different from the long-running 60/75/80/90/95/100/105/110 models, this car took some of its inspiration, it is claimed, from the Citroen DS as well as lessons learned from Rover’s Jet Turbine program of the 1950s and early 60s. It was a “clean sheet” design, carrying nothing over, and was advanced for the time with a de Dion tube suspension at the rear, four-wheel disc brakes (inboard on the rear), and a fully synchromesh transmission. The unibody design featured non-stressed panels bolted to a unit frame. The de Dion set-up was unique in that the “tube” was in two parts that could telescope, thereby avoiding the need for sliding splines in the drive shafts, with consequent stiction under drive or braking torque, while still keeping the wheels vertical and parallel in relation to the body. The Rover 2000 won industry awards for safety when it was introduced and included a carefully designed “safety” interior. One innovative feature was the prism of glass on the top of the front side lights. This allowed the driver to see the front corner of the car in low light conditions, and also confirmed that they were operative. One unique feature of the Rover 2000 was the design of the front suspension system, in which a bell crank (an L-shaped rotating bracket trailing the upper hub carrier joint) conveyed the vertical motion of the wheel to a fore-and-aft-horizontally mounted spring fastened to the rear wall of the engine compartment. A single hydraulically damped arm was mounted on the firewall for the steering. The front suspension was designed to allow as much width for the engine compartment as possible so that Rover’s Gas Turbine engine could be fitted. In the event, the engine was never used for the production vehicle, but the engine compartment width helped the accommodation of the V8 engine adopted years after the car’s initial launch for the 2000. The luggage compartment was limited in terms of usable space, because of the “base unit” construction, complex rear suspension and, in series II vehicles, the battery location. Lack of luggage space (and hence the need to re-locate the spare tyre) led to innovative options for spare tyre provision including boot lid mountings and optional Dunlop Denovo run-flat technology. The car’s primary competitor on the domestic UK market was the Triumph 2000, also released in October 1963, just one week after the Rover, and in continental Europe, it contended in the same sector as the Citroen DS which, like the initial Rover offering, was offered only with a four-cylinder engine – a deficiency which in the Rover was resolved, four years after its launch, when Rover’s compact V8 was engineered to fit into the engine bay. The Rover 2000 interior was not as spacious as those of its Triumph and Citroen rivals, especially in the back, where its sculpted two-person rear seat implied that Rover customers wishing to accommodate three in the back of a Rover should opt for the larger and older Rover 3 Litre. The first P6 used a 1,978 cc engine designed specifically for the car, which put out around 104 bhp. That was not enough to live up to the sports saloon ambitions, so Rover later developed a twin SU carburettor version with a re-designed top end and marketed the revised specification vehicles as the 2000 TC. The 2000 TC was launched in March 1966 for export markets in North America and continental Europe, relenting and making it available to UK buyers later that year. This engine generated around 124 bhp. The standard specification engines continued in production in vehicles designated as 2000 SC models. These featured the original single SU. More performance was to come. Rover saw Buick’s compact 3528 cc V8 unit that they had been looking at developing as the means of differentiating the P6 from its chief rival, the Triumph 2000. They purchased the rights to the innovative aluminium engine, and, once improved for production by Rover’s own engineers, it became an instant hit. The Rover V8 engine, as it became known, outlived its original host, the P5B, by more than thirty years. The 3500 was introduced in April 1968, one year after the Rover company was purchased by Triumph’s owner, Leyland and continued to be offered until 1977. The light metal V8 engine weighed the same as the four-cylinder unit of the Rover 2000, and the more powerful car’s maximum speed of 114 mph as well as its 10.5-second acceleration time from 0–60 mph were considered impressive, and usefully faster than most of the cars with which, on the UK market, the car competed on price and specifications. It was necessary to modify the under-bonnet space to squeeze the V8 engine into the P6 engine bay: the front suspension cross-member had to be relocated forward, while a more visible change was an extra air intake beneath the front bumper to accommodate the larger radiator. There was no longer space under the bonnet for the car’s battery, which in the 3500 retreated to a position on the right side of the boot. Nevertheless, the overall length and width of the body were unchanged when compared with the smaller-engined original P6. Having invested heavily in the car’s engine and running gear, the manufacturer left most other aspects of the car unchanged. However, the new Rover 3500 could be readily distinguished from the 2000 thanks to various prominent V8 badges on the outside and beneath the radio. The 3500 was also delivered with a black vinyl covering on the C-pillar, although this decoration later appeared also on four-cylinder cars. A 3-speed Borg Warner 35 automatic was the only transmission until the 1971 addition of a four-speed manual 3500S model, fitted with a modified version of the gearbox used in the 2000/2200. The letter “S” did not denote “Sport”, it was chosen because it stood for something specific on those cars: “Synchromesh”. However it is important to note that the 3500S was noticeably quicker than the automatic version of this car with a 0-60mph time of 9 seconds, compared with 10.1 for the standard car. Moreover, due to the fuel-guzzling nature of automatic gearboxes of this era, the manual car’s official cycle was 24mpg compared to the automatic’s 22mpg. The Series II, or Mark II as it was actually named by Rover, was launched in 1970. All variants carried the battery in the boot and had new exterior fixtures such as a plastic front air intake (to replace the alloy version), new bonnet pressings (with V8 blips even for the 4-cylinder-engined cars) and new rear lights. The interior of the 3500 and 2000TC versions was updated with new instrumentation with circular gauges and rotary switches. The old-style instrumentation with a linear speedometer and toggle switches continued on the 2000SC versions. The final changes to the P6 came in the autumn of 1973 when the 2200 SC and 2200 TC replaced the 2000 SC and TC. These cars used an enlarged 2,205 cc version of the 2000 engine, which increased power outputs to 98 and 115 bhp respectively as well as offering improved torque. The P6 was replaced by the SD1 Rover, a completely different sort of car indeed, after 322,302 cars had been built.
SAAB
The second or ‘new’ generation Saab 900 (also referred to as the GM900 or NG900 among enthusiasts) was built on GM’s GM2900 platform as a replacement for the “classic” first-generation Saab 900. This all-new 900 was produced in 1994 through 1998 model years. In mid-1998 it received over 1100 individual improvements (although some were actually introduced on the 1998 model 900), and was renamed the Saab 9-3 (in most markets; in the US the new model was introduced in 1999). Variants included 900i (4-cylinder, non-turbo), S (4-cylinder, non-turbo in the USA; sometimes turbo in other markets) and SE (4-cylinder turbo or V6) models in three-door, five-door and convertible body styles. For 1997 and 1998 only, there was also a Saab 900 Talladega, after a record-breaking endurance test in 1996, on the Talladega Superspeedway. Trim levels in “S” and “SE” models varied greatly in the models although in general SE models included Automatic Climate Control (ACC), leather interiors, wood-trimmed dashboards, and 16″ wheels. Depending on market, the NG900 was available with a choice of 2.0 L or 2.3 L Saab 16-valve DOHC engines (Saab engine codes B204 and B234) in naturally aspirated or turbocharged form (2.0 L only), as well as a 2.5 L version of GM’s European 54° V6 engine. Engine management for the turbos was by Saab Trionic 5 with Direct Ignition (SDI) and Automatic Performance Control (APC), and for non-turbos by Bosch Motronic fuel injection. A distributor-operated ignition system was provided for naturally aspirated engines in some markets. In contrast to the ‘classic’ Saab 900 with its longitudinally mounted engine and front-hinged hood (bonnet), the NG900 had a more-common transversely mounted engine with rear-hinged bonnet. The ‘Sensonic’ clutch variant (available on Turbo models only) provided a manual gear lever as in a standard manual transmission car but omitted the clutch pedal in favour of electronics which could control the clutch faster than an average driver, essentially turning it into a clutchless manual transmission. When the driver started to move the gearshift, a computer-controlled microprocessor would drive an electric motor, in turn, operating a hydraulic actuator connected to the clutch master cylinder, which used hydraulic fluid, and controlled the clutch automatically. With the car in gear but stationary, the clutch was released only when the throttle was applied. If neither brake nor gas pedal was depressed, a warning tone sounded and a message flashed on the on-board display, and if no action was taken after 7 seconds, the engine was shut off. Printed in error, a “Hill Start” function for Sensonic-equipped cars (as described in the owner’s manual under “Rolling”) was intended to assist in getting underway on hills to prevent rolling forwards or backwards. However, this feature was not implemented on any production unit. The ‘Sensonic’ clutch ceased production when the 900 model was replaced in 1998. The convertible variant was introduced in 1995 (1994 is a continuation of the C900 line). Convertibles were produced at the Valmet plant in Finland. Convertibles were available in both “S” and “SE” trim levels.
TVR
The Chimaera was originally intended to replace the Griffith but sufficient demand for both of the models led TVR continuing them. In 1994, TVR introduced the Chimaera 500, a high performance derivative of the Chimaera. The BorgWarner T5 manual transmission replaced the Rover LT77 unit on the rest of the range. A new alternator, power steering and a single Vee belt were fitted to improve reliability. The 4.3 litre engine option was replaced by the 4.0 litre High Compression option. The Chimaera was mildly updated in 1996. Updates included a rear bumper shared with the Cerbera, push button doors with the buttons located under the wing mirrors, a boot lid shared with the Cerbera and the replacement of the front mesh grille with a horizontal bar. The GKN differential was also replaced by a BTR unit. A 4.5 litre model was added to the lineup in 1997. It was originally intended to be fitted with the AJP8 V8 engine but due to the engine not being ready on time, a bored version of the Rover V8 was used instead. In 1998, the rear light styling and the number plate mounting angle was updated while the base 4.0 litre model was discontinued. In 2001, the Chimaera was again facelifted and now featured the Griffith’s headlights as well as seats from the Cerbera. The Chimaera was succeeded by the Tamora in 2002
There is one final “Wheels at Prescott” event to come in 2023, before the concept pauses those darker winter evenings. but I won’t be able to attend, as I shall be elsewhere in the world on vacation. So this marked the conclusion of my 2023 Wheels at Prescott season. It’s a shame that of the 5 events I’ve attended, 2 of them have been seriously challenged by the weather, but that is the reality of the unpredictable British climate. And even when it did its level best to ruin things, I was still pleased to have made the effort to attend, as a pleasant evening still ensued. Let’s hope that 2024 sees better weather and bigger turn-outs.