Rennsport 20 – November 2020

In a normal year, the number of outdoor car events taking place at the end of October has largely dwindled to next to none, a consequence of the weather, limited hours of daylight and the fact that often the ground that is used is no longer in a state that can take a lot of cars driving over it. 2020, of course, has been anything but a normal year, with a lot of events that were planned for earlier in the season pushed out from the originally planned date to one which the organisers were hoping would still allow them to go ahead. Deprived of many events throughout the usual season, my eye was caught by something called RennSport, a celebration of all things Porsche, which had been held for the first time in 2019 and was due for a repeat in 2020 with a revised date of 1st November instead of the August date that had originally been planned. As October progressed, all the signs of rising infection and death rates suggested that Lockdown 2.0 was imminent, but with a guarantee of a full refund should this happen before the event being covered here would take place, I duly booked a ticket, hopeful of seeing some of the promised rare examples of this much loved German marque.

RennSport is not a Club but rather a “Collective”, a movement joining together like-minded and knowledgeable enthusiasts who own a very specific and highly regarded example of a motorsport Porsche. At the inaugural event in 2019, cars had been shipped in from around Europe, but Covid restrictions made that a bit more difficult for 2020. The event was held at Stowe in Northamptonshire, best known for being the location of a famous Public School. It is set in a vast estate and Rennsport was centred around the old house and some of the grounds just away from the school buildings. There’s a lot of space here, with the event clearly capable of accommodating far more displays cars and indeed public visitors than was possible under 2020 Covid regulations. Those who arrived in a Porsche were invited to park in marque-dedicated area on one side of the House, and those like me who came in some other brand were asked to park a few hundred feet away. There were probably equal numbers of visitors in Porsche and those who were not.

ROAD CARS

So these are the road cars, a mix of those belonging to visitors to the event and a few provided by dealers. I arrived not long after the gates had opened, and this area was well populated, but inevitably it emptied out once the visitors had seen what they wanted of the rest of the event, so later in the day there were far fewer cars to see, however, several of the cars now parked up here were different from those which had been here when I arrived. Although this was not quite a complete display of Porsche road cars – with a conspicuous lack of the front-engined sports cars of the 70s and 80s, the 924/944/968 and the 928 – there was still a really great collection of products made by the famous firm in just over 70 years.

The Porsche story begins with the 356 and there were several examples here. Like its cousin, the Volkswagen Beetle (which Ferdinand Porsche Senior had designed), the 356 was a four-cylinder, air-cooled, rear-engine, rear-wheel-drive car utilising unitised pan and body construction. The chassis was a completely new design as was the 356’s body which was designed by Porsche employee Erwin Komenda, while certain mechanical components including the engine case and some suspension components were based on and initially sourced from Volkswagen. Ferry Porsche described the thinking behind the development of the 356 in an interview with the editor of Panorama, the PCA magazine, in September 1972. “….I had always driven very speedy cars. I had an Alfa Romeo, also a BMW and others. ….By the end of the war I had a Volkswagen Cabriolet with a supercharged engine and that was the basic idea. I saw that if you had enough power in a small car it is nicer to drive than if you have a big car which is also overpowered. And it is more fun. On this basic idea we started the first Porsche prototype. To make the car lighter, to have an engine with more horsepower…that was the first two seater that we built in Carinthia (Gmünd)”. The first 356 was road certified in Austria on June 8, 1948, and was entered in a race in Innsbruck where it won its class. Porsche re-engineered and refined the car with a focus on performance. Fewer and fewer parts were shared between Volkswagen and Porsche as the ’50’s progressed. The early 356 automobile bodies produced at Gmünd were handcrafted in aluminium, but when production moved to Zuffenhausen, Germany in 1950, models produced there were steel-bodied. Looking back, the aluminium bodied cars from that very small company are what we now would refer to as prototypes. Porsche contracted with Reutter to build the steel bodies and eventually bought the Reutter company in 1963. The Reutter company retained the seat manufacturing part of the business and changed its name to Recaro. Little noticed at its inception, mostly by a small number of auto racing enthusiasts, the first 356s sold primarily in Austria and Germany. It took Porsche two years, starting with the first prototype in 1948, to manufacture the first 50 automobiles. By the early 1950s the 356 had gained some renown among enthusiasts on both sides of the Atlantic for its aerodynamics, handling, and excellent build quality. The class win at Le Mans in 1951 was clearly a factor. It was always common for owners to race the car as well as drive them on the streets. They introduced the four-cam racing “Carrera” engine, a totally new design and unique to Porsche sports cars, in late 1954. Increasing success with its racing and road cars brought Porsche orders for over 10,000 units in 1964, and by the time 356 production ended in 1965 approximately 76,000 had been produced. The 356 was built in four distinct series, the original (“pre-A”), followed by the 356 A, 356 B, and then finally the 356 C. To distinguish among the major revisions of the model, 356’s are generally classified into a few major groups. 356 coupés and “cabriolets” (soft-top) built through 1955 are readily identifiable by their split (1948 to 1952) or bent (centre-creased, 1953 to 1955) windscreens. In late 1955 the 356 A appeared, with a curved windshield. The A was the first road going Porsche to offer the Carrera 4 cam engine as an option. In late 1959 the T5 356 B appeared; followed by the redesigned T6 series 356 B in 1962. The final version was the 356 C, little changed from the late T6 B cars but with disc brakes to replace the drums.

Picture_042(78) Picture_041(78) Picture_043(78) Picture_035(79) Picture_046(76)

The 914 was born of a joint need that Porsche had for a replacement for the 912, and Volkswagen’s desire for a new range-topping sports coupe to replace the Karmann Ghia. At the time, the majority of Volkswagen’s developmental work was handled by Porsche, part of a setup that dated back to Porsche’s founding; Volkswagen needed to contract out one last project to Porsche to fulfill the contract, and decided to make this that project. Ferdinand Piëch, who was in charge of research and development at Porsche, was put in charge of the 914 project. Originally intending to sell the vehicle with a flat four-cylinder engine as a Volkswagen and with a flat six-cylinder engine as a Porsche, Porsche decided during development that having Volkswagen and Porsche models sharing the same body would be risky for business in the American market, and convinced Volkswagen to allow them to sell both versions as Porsches in North America. On March 1, 1968, the first 914 prototype was presented. However, development became complicated after the death of Volkswagen’s chairman, Heinz Nordhoff, on April 12, 1968. His successor, Kurt Lotz, was not connected with the Porsche dynasty and the verbal agreement between Volkswagen and Porsche fell apart. In Lotz’s opinion, Volkswagen had all rights to the model, and no incentive to share it with Porsche if they would not share in tooling expenses. With this decision, the price and marketing concept for the 914 had failed before series production had begun. As a result, the price of the chassis went up considerably, and the 914/6 ended up costing only a bit less than the 911T, Porsche’s next lowest price car. The 914/6 sold quite poorly while the much less expensive 914/4 became Porsche’s top seller during its model run, outselling the Porsche 911 by a wide margin with over 118,000 units sold worldwide. Volkswagen versions originally featured an 80 PS fuel-injected 1.7 L flat-4 engine based on the Volkswagen air-cooled engine. Porsche’s 914/6 variant featured a carburettor 110 PS 2.0 litre flat-6 engine from the 1969 911T, placed amidships in front of a version of the 1969 911’s “901” gearbox configured for a mid-engine car. Karmann manufactured the rolling chassis at their plant, completing Volkswagen production in-house or delivering versions to Porsche for their final assembly. 914/6 models used lower gear ratios and high brake gearing in order to try to overcome the greater weight of the 6 cylinder engine along with higher power output. Suspension, brakes, and handling were otherwise the same. A Volkswagen-Porsche joint venture, Volkswagen of America, handled export to the U.S., where both versions were badged and sold as Porsches, except in California, where they were sold in Volkswagen dealerships. The four-cylinder cars were sold as Volkswagen-Porsches at European Volkswagen dealerships. Slow sales and rising costs prompted Porsche to discontinue the 914/6 variant in 1972 after producing 3,351 of them; its place in the lineup was filled by a variant powered by a new 100 PS 2.0 litre, fuel-injected version of Volkswagen’s Type 4 engine in 1973. For 1974, the 1.7 L engine was replaced by a 85 PS 1.8 litre, and the new Bosch L-Jetronic fuel injection system was added to American units to help with emissions control. 914 production ended in 1976. The 2.0 litre flat-4 engine continued to be used in the 912E, which provided an entry-level model until the 924 was introduced.

Picture_037(80) Picture_205(43)

The 911 traces its roots to sketches drawn by Ferdinand “Butzi” Porsche in 1959. The Porsche 911 was developed as a more powerful, larger and a more comfortable replacement for the 356, the company’s first model. The new car made its public debut at the 1963 Frankfurt Motor Show. The car was developed with the proof-of-concept twin-fan Type 745 flat-six engine, but the car presented at the auto show had a non-operational mockup of the single-fan 901 engine, receiving a working unit in February 1964. It originally was designated as the “Porsche 901” (901 being its internal project number). A total of 82 cars were built as which were badges as 901s.[7] However, French automobile manufacturer Peugeot protested on the grounds that in France it had exclusive rights to car names formed by three numbers with a zero in the middle. Instead of selling the new model with a different name in France, Porsche changed the name to 911. Internally, the cars’ part numbers carried on the prefix 901 for years. Production began in September 1964,[9] with the first 911s exported to the US in February 1965. The first models of the 911 had a rear-mounted 130 hp Type 901/01 flat-6 engine, in the “boxer” configuration like the 356, the engine is air-cooled and displaces 1,991 cc as compared to the 356’s four-cylinder, 1,582 cc unit. The car had four seats although the rear seats were small, thus it is usually called a 2+2 rather than a four-seater (the 356 was also a 2+2). A four or five-speed “Type 901” manual transmission was available. The styling was largely penned by Ferdinand “Butzi” Porsche, son of Ferdinand “Ferry” Porsche. Butzi Porsche initially came up with a notchback design with proper space for seating two rear passengers but Ferry Porsche insisted that the 356’s successor was to use its fastback styling. 7 prototypes were built based on Butzi Porsche’s original design and were internally called the Porsche 754 T7. Erwin Komenda, the leader of the Porsche car body construction department who initially objected, was also involved later in the design. In 1966, Porsche introduced the more powerful 911S with Type 901/02 engine having a power output of 160 PS. Forged aluminum alloy wheels from Fuchsfelge, with a 5-spoke design, were offered for the first time. In motorsport at the same time, the engine was developed into the Type 901/20 and was installed in the mid-engine 904 and 906 with an increased power output of 210 PS, as well as fuel injected Type 901/21 installed in later variants of the 906 and 910 with a power output of 220 PS. In August 1967, the A series went into production with dual brake circuits and widened (5.5J-15) wheels still fitted with Pirelli Cinturato 165HR15 CA67 tyres. and the previously standard gasoline-burning heater became optional. The Targa version was introduced. The Targa had a stainless steel-clad roll bar, as automakers believed that proposed rollover safety requirements by the US National Highway Traffic Safety Administration (NHTSA) would make it difficult for fully open convertibles to meet regulations for sale in the US, an important market for the 911. The name “Targa” came from the Targa Florio sports car road race in Sicily, Italy in which Porsche had several victories until 1973. The last win in the subsequently discontinued event was scored with a 911 Carrera RS against prototypes entered by Ferrari and Alfa Romeo. The road going Targa was equipped with a removable roof panel and a removable plastic rear window (although a fixed glass version was offered from 1968). The 110 PS 911T was also launched in 1967 with Type 901/03 engine. The 130 PS model was renamed the 911L with Type 901/06 engine and ventilated front disc brakes. The brakes had been introduced on the previous 911S. The 911R with 901/22 engine had a limited production (20 in all), as this was a lightweight racing version with thin fibreglass reinforced plastic doors, a magnesium crankcase, twin overhead camshafts, and a power output of 210 PS. A clutchless semi-automatic Sportomatic model, composed of a torque converter, an automatic clutch, and the four-speed transmission was added in Autumn 1967. It was cancelled after the 1980 model year partly because of the elimination of a forward gear to make it a three-speed. The B series went into production in August 1968, replacing the 911L model with 911E with fuel injection. It remained in production until July 1969. The 911E gained 185/70VR15 Pirelli Cinturato CN36. and 6J-15 wheels. The C series was introduced in August 1969 with an enlarged 2.2-litre engine. The wheelbase for all 911 and 912 models was increased from 2,211–2,268 mm (87.0–89.3 in), to help as a remedy to the car’s nervous handling at the limit. The overall length of the car did not change, but the rear wheels were relocated further back. Fuel injection arrived for the 911S (901/10 engine) and for a new middle model, 911E (901/09 engine). The D series was produced from Aug. 1970 to July 1971. The 2.2-litre 911E (C and D series) had lower power output of the 911/01 engine (155 PS) compared to the 911S’s Type 911/02 (180 PS, but 911E was quicker in acceleration up to 160 km/h. The E series for 1972–1973 model years (August 1971 to July 1972 production) consisted of the same models, but with a new, larger 2,341 cc engine. This is known as the “2.4 L” engine, despite its displacement being closer to 2.3 litres. The 911E (Type 911/52 engine) and 911S (Type 911/53) used Bosch mechanical fuel injection (MFI) in all markets. For 1972 the 911T (Type 911/57) was carbureted, except in the US and some Asian markets where the 911T also came with (MFI) mechanical fuel injection (Type 911/51 engine) with power increase over European models (130 hp) to 140 hp commonly known as a 911T/E. With power and torque increase, the 2.4-litre cars also got a newer, stronger transmission, identified by its Porsche type number 915. Derived from the transmission in the 908 race car, the 915 did away with the 901 transmission’s “dog-leg” style first gear arrangement, opting for a traditional H pattern with first gear up to the left, second gear underneath first, etc. The E series had the unusual oil filler behind the right side door, with the dry sump oil tank relocated from behind the right rear wheel to the front of it in an attempt to move the center of gravity slightly forward for better handling. An extra oil filler/inspection flap was located on the rear wing, for this reason it became known as an “Oil Klapper”, “Ölklappe” or “Vierte Tür (4th door)”. The F series (August 1972 to July 1973 production) moved the oil tank back to the original behind-the-wheel location. This change was in response to complaints that gas-station attendants often filled gasoline into the oil tank. In January 1973, US 911Ts were switched to the new K-Jetronic CIS (Continuous Fuel Injection) system from Bosch on Type 911/91 engine. 911S models also gained a small spoiler under the front bumper to improve high-speed stability. The cars weighed 1,050 kg (2,310 lb). The 911 ST was produced in small numbers for racing (the production run for the ST lasted from 1970 to 1971). The cars were available with engines of either 1,987 cc or 2,404 cc, having a power output of 270 PS at 8,000 rpm. Weight was down to 960 kg (2,120 lb). The cars had success at the Daytona 6 Hours, the Sebring 12 Hours, the 1000 km Nürburgring, and the Targa Florio. The G Series cars, with revised bodies and larger impact-absorbing bumpers arrived in the autumn of 1973 and would continue in production with few visual changes but plenty of mechanical ones for a further 16 years.

Picture_034(80) Picture_033(79) Picture_032(81) Picture_017(87) Picture_016(87) Picture_071(76) Picture_036(81) Picture_044(77)

In 1974, Porsche developed the Carrera RS 3.0 with mechanical fuel injection rated at 230 PS. Its price was almost twice that of the 2.7 RS, but it offered racing capability. The chassis was largely similar to that of the 1973 Carrera RSR and the braking system was from the 917 racing car. The use of thinner metal plate panels and a minimalist interior enabled its weight to be reduced to around 900 kg (2,000 lb).

Picture_013(87) Picture_012(87)

The plate on this one would have you believe it might be a RUF, but the internet and the DVLA website suggest it is in fact based on a 1986 911 Carrera 3.2

Picture_014(87)

The car continued to evolve throughout the 1960s and early 1970s, though changes initially were quite small. The SC appeared in the autumn of 1977, proving that any earlier plans there had been to replace the car with the front engined 924 and 928 had been shelved. The SC followed on from the Carrera 3.0 of 1967 and 1977. It had the same 3 litre engine, with a lower compression ratio and detuned to provide 180 PS . The “SC” designation was reintroduced by Porsche for the first time since the 356 SC. No Carrera versions were produced though the 930 Turbo remained at the top of the range. Porsche’s engineers felt that the weight of the extra luxury, safety and emissions equipment on these cars was blunting performance compared to the earlier, lighter cars with the same power output, so in non-US cars, power was increased to 188 PS for 1980, then finally to 204 PS. However, cars sold in the US market retained their lower-compression 180 PS engines throughout. This enabled them to be run on lower-octane fuel. In model year 1980, Porsche offered a Weissach special edition version of the 911 SC, named after the town in Germany where Porsche has their research centre. Designated M439, it was offered in two colours with the turbo whale tail & front chin spoiler, body colour-matched Fuchs alloy wheels and other convenience features as standard. 408 cars were built for North America. In 1982, a Ferry Porsche Edition was made and a total of 200 cars were sold with this cosmetic package. SCs sold in the UK could be specified with the Sport Group Package (UK) which added stiffer suspension, the rear spoiler, front rubber lip and black Fuchs wheels. In 1981 a Cabriolet concept car was shown at the Frankfurt Motor Show. Not only was the car a true convertible, but it also featured four-wheel drive, although this was dropped in the production version. The first 911 Cabriolet debuted in late 1982, as a 1983 model. This was Porsche’s first cabriolet since the 356 of the mid-1960s. It proved very popular with 4,214 sold in its introductory year, despite its premium price relative to the open-top targa. Cabriolet versions of the 911 have been offered ever since. 911 SC sales totalled 58,914 cars before the next iteration, the 3.2 Carrera, which was introduced for the 1984 model year. Coupe models outsold the Targa topped cars by a big margin.

Picture_001(87) Picture_078(75) Picture_075(76) Picture_077(75) Picture_076(76)Picture_057(76) Picture_067(75) Picture_068(75) Picture_069(75) Picture_049(76) Picture_073(76) Picture_215(42) Picture_216(42)

It was only really with the launch in 1989 of the 964 that a truly “new” model would appear. Designed by Benjamin Dimson in 1986, it featured significant styling revisions over previous 911 models, most prominently the more integrated bumpers. The 964 was considered to be 85% new as compared to its predecessor. The first 964s available in 1989 were all wheel drive equipped “Carrera 4” models; Porsche added the rear wheel drive Carrera 2 variant to the range in 1990. Both variants were available as a coupe, Targa or Cabriolet. The 964 Carrera was the last generation sold with the traditional removable Targa roof until the 2011 991. A new naturally aspirated engine called the M64 was used for 964 models, with a flat-6 displacement of 3.6 litres. Porsche substantially revised the suspension, replacing torsion bars with coil springs and shock absorbers. Power steering and ABS brakes were added to the 911 for the first time; both were standard. The exterior bumpers and fog lamps became flush with the car for better aerodynamics. A new electric rear spoiler raised at speeds above 50 mph and lowered down flush with the rear engine lid at lower speeds. A revised interior featured standard dual airbags beginning in 1990 for all North American production cars. A new automatic climate control system provided improved heating and cooling. Revised instrumentation housed a large set of warning lights that were tied into the car’s central warning system, alerting the driver to a possible problem or malfunction.

Picture_066(75)

In 1992, Porsche produced a super-lightweight, rear-wheel-drive only version of the 964 dubbed Carrera RS for the European market. It was based on Porsche’s 911 “Carrera Cup” race car and harked back to the 2.7 and 3.0 RS and RSR models. It featured a revised version of the standard engine, titled M64/03 internally, with an increased power output of 260 bhp and lightweight flywheel coupled to the G50/10 transmission with closer ratios, asymmetrical Limited Slip Differential and steel synchromesh. A track-oriented suspension system with 40 mm (1.6 in) lower ride height, stiffer springs, shocks and adjustable stabiliser bars without power steering (RHD UK cars did have power steering). A stripped-out interior devoid of power windows or seats, rear seats, air conditioning, cruise control, sound deadening or a stereo system (optionally fitted) and new racing-bucket front seats were part of the package. The front boot cover was made of aluminium and the chassis was seam welded. Wheels were made of magnesium and the glass was thinner in the doors and rear window. The Carrera RS is approximately 345 pounds (155 kg) lighter than the Carrera 2 model. Also available were a heavier Touring variant (with sound deadening, power seats (optional), undercarriage protection and power windows) and an N/GT racing variant with a stripped, blank metal interior and a roll cage. They also came with optional lights on the visors. The RS was regarded as somewhat challenging to drive, though as time has gone by, everyone seems to have warmed to it. Many were finished in some very bold colours, like this one was.

Picture_070(76) Picture_045(76)

Replacing the 964, the 993 models were first seen in October 1993, with production starting a few weeks later. Its arrival marked the end of air-cooled 911 models. The 993 was much improved over, and quite different from its predecessor. According to Porsche, every part of the car was designed from the ground up, including the engine and only 20% of its parts were carried over from the previous generation. Porsche refers to the 993 as “a significant advance, not just from a technical, but also a visual perspective.” Porsche’s engineers devised a new light-alloy subframe with coil and wishbone suspension (an all new multi-link system), putting behind the previous lift-off oversteer and making significant progress with the engine and handling, creating a more civilised car overall providing an improved driving experience. The 993 was also the first 911 to receive a six speed transmission. The 993 had several variants, as its predecessors, varying in body style, engines, drivetrains and included equipment. Power was increased by the addition of the VarioRam system, which added additional power, particularly in the mid-ranges, and also resulted in more throttle noise at higher revs; as a consequence, resulted in a 15% increase in power over its predecessor. The external design of the Porsche 993, penned by English designer Tony Hatter, retained the basic body shell architecture of the 964 and other earlier 911 models, but with revised exterior panels, with much more flared wheel arches, a smoother front and rear bumper design, an enlarged retractable rear wing and teardrop mirrors. A major change was the implementation of all alloy multi-link rear suspension attached to an alloy sub frame, a completely new design derived from the 989, a four-door sedan which never went into production. The system later continued in the 993’s successor, the 996, and required the widening of the rear wheel arches, which gave better stability. The new suspension improved handling, making it more direct, more stable, and helping to reduce the tendency to oversteer if the throttle was lifted during hard cornering, a trait of earlier 911s. It also reduced interior noise and improved ride quality. The 993 was the first generation of the 911 to have a 6-speed manual transmission included as standard; its predecessors had 4 or 5-speed transmissions. In virtually every situation, it was possible to keep the engine at its best torque range above 4,500 rpm. The Carrera, Carrera S, Cabriolet and Targa models (rear wheel drive) were available with a “Tiptronic” 4-speed automatic transmission, first introduced in the 964. From the 1995 model year, Porsche offered the Tiptronic S with additional steering wheel mounted controls and refined software for smoother, quicker shifts. Since the 993’s introduction, the Tiptronic is capable of recognising climbs and descents. The Tiptronic equipped cars suffer as compared to the manual transmission equipped cars in both acceleration and also top speed, but the differences are not much notable. Tiptronic cars also suffered a 55 lb (25 kg) increase in weight. The 993’s optional all wheel drive system was refined over that of the 964. Porsche departed from the 964’s setup consisting of three differentials and revised the system based on the layout from its 959 flagship, replacing the centre differential with a viscous coupling unit. In conjunction with the 993’s redesigned suspension, this system improved handling characteristics in inclement weather and still retained the stability offered by all wheel drive without having to suffer as many compromises as the previous all-wheel-drive system. Its simpler layout also reduced weight, though the four wheel drive Carrera 4 weighs 111 lb (50 kg) more than its rear wheel drive counterpart (at 3,131 lb (1,420 kg) vs. 3,020 lb (1,370 kg)). Other improvements over the 964 include a new dual-flow exhaust system, larger brakes with drilled discs, and a revised power steering. A full range of models arrived before the arrival of the 996 generation in 1998.

Picture_039(78) Picture_040(77)

During the 1990s, Porsche was facing financial troubles and rumours of a proposed takeover were being spread. The signature air-cooled flat-6 of the 911 was reaching the limits of its potential as made evident by the 993. Stricter emissions regulations world wide further forced Porsche to think of a replacement of the air-cooled unit. In order to improve manufacturing processes, Porsche took the aid of leading Japanese car manufacturer Toyota whose consultants would assist in the overhaul of the Zuffenhausen manufacturing facility introducing mass production techniques which would allow Porsche to carry out production processes more efficiently. Porsche had realised that in order to keep the 911 in production, it would need radical changes. This led to the development of the 996. The sharing of development between the new 911 and the entry level Boxster model allowed Porsche to save development costs. This move also resulted in interchangeable parts between the two models bringing down maintenance costs. The Porsche 996 was a new design developed by Pinky Lai under Porsche design chief Harm Lagaay from 1992 to 1994; it was the first 911 that was completely redesigned, and carried over little from its predecessor as Porsche wanted the design team to design a 911 for the next millennium. Featuring an all new body work, interior, and the first water-cooled engine, the 996 replaced the 993 from which only the front suspension, rear multi-link suspension, and a 6-speed manual transmission were retained in revised form. The 996 had a drag coefficient of Cd=0.30 resulting from hours spent in the wind tunnel. The 996 is 185 mm (7 in) longer and 40 mm (2 in) wider than its predecessor. It is also 45% stiffer courtesy of a chassis formed from high-strength steel. Additionally, it is 50 kg (110 lb) lighter despite having additional radiators and coolant. All of the M96 engines offered in the 996 (except for the variants fitted to the Turbo and GT2/GT3 models) are susceptible to the Porsche Intermediate Shaft Bearing issue which can potentially cause serious engine failure if not addressed via a retrofit. The 996 was initially available in a coupé or a cabriolet (Convertible) bodystyle with rear-wheel drive, and later with four-wheel drive, utilising a 3.4 litre flat-6 engine generating a maximum power output of 296 bhp. The 996 had the same front end as the entry-level Boxster. After requests from the Carrera owners about their premium cars looking like a “lower priced car that looked just like theirs did”, Porsche redesigned the headlamps of the Carrera in 2002 similar to the high performance Turbo’s headlamps. The design for the initial “fried egg” shaped headlamps could be traced back to the 1997 911 GT1 race car. In 2000, Porsche introduced the 996 Turbo, equipped with a four-wheel-drive system and a 3.6-litre, twin-turbocharged and intercooled flat-six engine generating a maximum power output of 420 bhp, making the car capable of accelerating from 0–60 mph in 4.2 seconds. An X50 option which included larger turbochargers and intercoolers along with revised engine control software became available from the factory in 2002, increasing power output to 451 bhp. In 2005, Porsche introduced the Turbo S, which had the X50 option included as standard equipment, with the formerly optional Carbon fibre-reinforced Silicon Carbide (C/SiC) composite ceramic brakes (PCCB) also included as standard. In 2000, power output on the base Carrera model was increased to 300 bhp. 2001 marked the final year of production for the base Carrera 4 Coupé in narrow body format. In 2002, the standard Carrera models underwent the above-mentioned facelift. In addition, engine capacity was also increased to 3.6-litres across the range, yielding gains of 15 bhp for the naturally aspirated models. 2002 also marked the start of the production of the 996 based Targa model, with a sliding glass “green house” roof system as introduced on its predecessor. It also features a rear glass hatch which gave the driver access to the storage compartment. Also in 2002, the Carrera 4S model was first introduced. The C4S, as it is called among the enthusiasts, shares the wide-body look of the Turbo as well as the brakes and suspension.

Picture_021(85) Picture_008(88) Picture_007(89) Picture_009(88) Picture_004(89)Picture_024(85) Picture_063(75) Picture_038(80) Picture_209(43) Picture_210(42)Picture_213(42) Picture_217(41)

The 996 was replaced with the 997 in 2005. It retains the 996’s basic profile, with an even lower 0.28 drag coefficient, but draws on the 993 for detailing. In addition, the new headlights revert to the original bug-eye design from the teardrop scheme of the 996. Its interior is also similarly revised, with strong links to the earlier 911 interiors while at the same time looking fresh and modern. The 997 shares less than a third of its parts with the outgoing 996, but is still technically similar to it. Initially, two versions of the 997 were introduced— the rear-wheel-drive Carrera and Carrera S. While the base 997 Carrera had a power output of 321 hp from its 3.6 L Flat 6, a more powerful 3.8 L 350 hp Flat 6 powers the Carrera S. Besides a more powerful engine, the Carrera S also comes standard with 19 inch “Lobster Fork” style wheels, more powerful and larger brakes (with red calipers), lowered suspension with PASM (Porsche Active Suspension Management: dynamically adjustable dampers), Xenon headlamps, and a sports steering wheel. In late 2005, Porsche introduced the all-wheel-drive versions to the 997 lineup. Carrera 4 models (both Carrera 4 and Carrera 4S) were announced as 2006 models. Both Carrera 4 models are wider than their rear-wheel-drive counterparts by 1.76 inches (32 mm) to cover wider rear tyres. The 0–100 km/h (62 mph) acceleration time for the Carrera 4S with the 350 hp engine equipped with a manual transmission was reported at 4.8 seconds. The 0–100 km/h (62 mph) acceleration for the Carrera S with the 350 hp was noted to be as fast as 4.2 seconds in a Motor Trend comparison, and Road & Track has timed it at 3.8 seconds. The 997 lineup includes both 2- and 4-wheel-drive variants, named Carrera and Carrera 4 respectively. The Targas (4 and 4S), released in November 2006, are 4-wheel-drive versions that divide the difference between the coupés and the cabriolets with their dual, sliding glass tops. The 997 received a larger air intake in the front bumper, new headlights, new rear taillights, new clean-sheet design direct fuel injection engines, and the introduction of a dual-clutch gearbox called PDK for the 2009 model year. They were also equipped with Bluetooth support. The change to the 7th generation (991) took place in the middle of the 2012 model year. A 2012 Porsche 911 can either be a 997 or a 991, depending on the month of the production.

Picture_006(88) Picture_003(88) Picture_002(88) Picture_005(88) Picture_028(82) Picture_026(82) Picture_025(85) Picture_048(76) Picture_064(75) Picture_056(78) Picture_212(42) Picture_211(42) Picture_206(43) Picture_061(75)

The 997 GT3 RS was first announced in early 2006 as a homologation version of the GT3 RSR racing car for competition events like Sebring and the 24 Hours of Le Mans. The drivetrain of the RS is based on the 911 GT3, except for the addition of a lightweight flywheel and closer gear ratios for further improved response under acceleration. Unlike the GT3, the RS is built on the body and chassis of the 911 Carrera 4 and Turbo, and accordingly has a wider rear track for better cornering characteristics on the track. Visually, the RS is distinguished by its distinctive colour scheme – bright orange or green with black accents, which traces its roots to the iconic Carrera RS of 1973. The plastic rear deck lid is topped by a wide carbon-fibre rear wing. The front airdam has been fitted with an aero splitter to improve front downforce and provide more cooling air through the radiator. The European version of the RS is fitted with lightweight plexiglass rear windows and a factory-installed roll cage. Production of the first generation 997 GT3 RS ended in 2009, with worldwide production estimated to be under 2,000 vehicles. In August 2009, Porsche announced the second generation of the 997 GT3 RS with an enlarged 3.8-litre engine having a power output of 450 PS (444 hp), a modified suspension, dynamic engine mounts, new titanium sport exhaust, and modified lightweight bodywork. In April 2011, Porsche announced the third generation of the 997 GT3 RS with an enlarged 4.0-litre engine having a power output of 500 PS (493 hp), Porsche designed the GT3 RS 4.0 using lightweight components such as bucket seats, carbon-fibre bonnet and front wings, and poly carbonate plastic rear windows for weight reduction, while using suspension components from the racing version. Other characteristics include low centre of gravity, a large rear wing and an aerodynamically optimised body. The lateral front air deflection vanes, a first on a production Porsche, increase downforce on the front axle. Aided by a steeply inclined rear wing, aerodynamic forces exert an additional 190 kg, enhancing the 911 GT3 RS 4.0’s grip to the tarmac. The GT3 RS 4.0 weighs 1,360 kg.

Picture_030(81) Picture_031(81) Picture_029(82) Picture_018(88) Picture_047(76)Picture_059(76) Picture_060(75)

991: The 991 introduced in 2012 is an entirely new platform, only the third since the original 911. Porsche revealed basic information on the new Carrera and Carrera S models on 23 August 2011. The Carrera is powered by a 350 hp 3.4-litre engine. The Carrera S features a 3.8-litre engine rated at 400 hp. A Power Kit (option X51) is available for the Carrera S, increasing power output to 430 hp. The new 991’s overall length grows by 56 mm (2.2 in) and wheelbase grows by 99 mm (3.9 in) (now 96.5 in.) Overhangs are trimmed and the rear axle moves rearward at roughly 76 mm (3 in) towards the engine (made possible by new 3-shaft transmissions whose output flanges are moved closer to the engine). There is a wider front track (51 mm (2 in) wider for the Carrera S). The design team for the 991 was headed by Michael Mauer. At the front, the new 991 has wide-set headlights that are more three-dimensional. The front fender peaks are a bit more prominent, and wedgy directionals now appear to float above the intakes for the twin coolant radiators. The stretched rear 3/4 view has changed the most, with a slightly more voluminous form and thin taillights capped with the protruding lip of the bodywork. The biggest and main change in the interior is the center console, inspired by the Carrera GT and adopted by the Panamera. The 991 is the first 911 to use a predominantly aluminium construction. This means that even though the car is larger than the outgoing model, it is still up to 50 kilograms (110 lb) lighter. The reduced weight and increased power means that both the Carrera and Carrera S are appreciably faster than the outgoing models. The 0–60 mph acceleration time for the manual transmission cars are 4.6 seconds for the Carrera and 4.3 seconds for the Carrera S. When equipped with the PDK transmission, the two 991 models can accelerate from 0–97 km/h in 4.4 seconds and 4.1 seconds. With the optional sports chrono package, available for the cars with the PDK transmission, the 991 Carrera can accelerate from 0–97 km/h in as little as 4.2 seconds and the Carrera S can do the same in 3.9 seconds. Apart from the reworked PDK transmission, the new 991 is also equipped with an industry-first 7-speed manual transmission. On vehicles produced in late 2012 (2013 model year) Rev Matching is available on the 7-speed manual transmission when equipped with the Sport Chrono package. Rev-Matching is a new feature with the manual transmission that blips the throttle during downshifts (if in Sport Plus mode). Also, the 7th gear cannot be engaged unless the car is already in 5th or 6th gear. One of Porsche’s primary objectives with the new model was to improve fuel economy as well as increase performance. In order to meet these objectives, Porsche introduced a number of new technologies in the 911. One of the most controversial of these is the introduction of electromechanical power steering instead of the previous hydraulic steering. This steering helps reduce fuel consumption, but some enthusiasts feel that the precise steering feedback for which the 911 is famous is reduced with the new system.[citation needed] The cars also feature an engine stop/start system that turns the engine off at red lights, as well as a coasting system that allows the engine to idle while maintaining speed on downhill gradients on highways. This allows for up to a 16% reduction in fuel consumption and emissions over the outgoing models. The new cars also have a number of technologies aimed at improving handling. The cars include a torque vectoring system (standard on the Carrera S and optional on the Carrera) which brakes the inner wheel of the car when going into turns. This helps the car to turn in quicker and with more precision. The cars also feature hydraulic engine mounts (which help reduce the inertia of the engine when going into turns) as part of the optional sports chrono package. Active suspension management is standard on the Carrera S and optional on the Carrera. This helps improve ride quality on straights while stiffening the suspension during aggressive driving. The new 991 is also equipped with a new feature called Porsche Dynamic Chassis Control (PDCC). Porsche claims that this new feature alone has shaved 4 seconds off the standard car’s lap time around the Nürburgring. PDCC helps the car corner flat and is said to improve high-speed directional stability and outright lateral body control, but according to several reviews, the car is more prone to understeer when equipped with this new technology. In January 2013, Porsche introduced the all-wheel-drive variants of the Carrera models. The ‘4’ and ‘4S’ models are distinguishable by wider tyres, marginally wider rear body-work and a red-reflector strip that sits in between the tail-lights. In terms of technology, the 4 and 4S models are equipped with an all-new variable all-wheel-drive system that sends power to the front wheels only when needed, giving the driver a sense of being in a rear-wheel-drive 911. In May 2013, Porsche announced changes to the model year 2014 911 Turbo and Turbo S models, increasing their power to 513 hp on the ‘Turbo’, and 552 hp on the ‘Turbo S’, giving them a 0–97 km/h acceleration time of 3.2 and 2.9 seconds, respectively. A rear-wheel steering system has also been incorporated on the Turbo models that steers the rear wheels in the opposite direction at low speeds or the same direction at high speeds to improve handling. During low-speed manoeuvres, this has the virtual effect of shortening the wheelbase, while at high speeds, it is virtually extending the wheelbase for higher driving stability and agility. In January 2014, Porsche introduced the new model year 2015 Targa 4 and Targa 4S models. These new models come equipped with an all-new roof technology with the original Targa design, now with an all-electric cabriolet roof along with the B-pillar and the glass ‘dome’ at the rear. In September 2015, Porsche introduced the second generation of 991 Carrera models at the Frankfurt Motor Show. Both Carrera and Carrera S models break with previous tradition by featuring a 3.0-litre turbocharged 6-cylinder boxer engine, marking the first time that a forced induction engine has been fitted to the base models within the 911 range

Picture_022(85) Picture_023(85)

991 Carrera T: This was announced in October 2017. The 911 Carrera T (Touring), offered the base Carrera drivetrain but with shorter rear axle ratio, mechanical differential lock, PASM Sport lowered suspension, Sport Chrono package and sports exhaust as standard. Additional features include a reduced sound insulation, light-weight glass side/rear windows, Sport-Tex seats, a shortened shift lever, deletion of the rear seats and communication system (with their re-addition available as a no-cost option), Carrera S wheels, as well as optional rear-wheel steering, PDK transmission and bucket seats.

Picture_058(76)

All three generations of the Boxster and the related Cayman were also here, though not in the numbers you might expect.

Picture_065(75) Picture_027(82) Picture_015(87) Picture_020(87) Picture_051(77) Picture_054(76) Picture_019(87) Picture_072(76) Picture_062(75) Picture_207(43)

Much rumoured for some time, the Cayman GT4 was officially launched at the 2015 Geneva Show, positioned to sit between the Cayman GTS and the 911 GT3. By the time of the official unveiling, the car was supposedly sold out many times over, though more recently it has become apparent that at least some Porsche dealers have been holding onto cars claiming that the first purchaser changed their mind, and then offering them to those who did not get one of the allocation a year ago, at vastly inflated prices. If true, this is very sharp practice indeed, but seems to be the sort to tricks that are becoming increasingly common as enthusiasts are being fleeced in the name of extra profit. For a starting price of around £65,000 in the UK, the lucky customer would get a car which used used a stiffened and strengthened Cayman bodyshell as a starting point, but lowered by 30mm . Porsche say that in fitting as many GT parts as possible, they did not make it out of a Cayman GTS, but rather they produced an entry-level mid-engined GT3 car. That sounds like PR spin to me, as of course the car does use an awful lot of parts from the regular Cayman. However, plenty is changed, too. There is a reworked version of the Carrera S’s 3.8-litre flat six engine, producing 380bhp at 7400rpm and 310lb ft at 4750-6000rpm, hooked up to a modified version of the Cayman GTS’s six-speed manual gearbox. A PDK dual-clutch automatic was considered but rejected, meaning the Cayman GT4 is manual only. This is enough to mean that the 0-62mph sprint takes 4.4sec and the top speed is 183mph, with combined fuel economy of 27.4mpg and CO2 emissions rated at 238g/km. The front axle and suspension are borrowed from the 911 GT3 and the rear axle and forged aluminium double wishbone suspension are completely new. Dampers are taken from the 911 GT3. The electric steering system from the 911 GT3 does make it onto the Cayman GT4 but is given new software. Stopping power is provided by standard steel brakes, or optional carbon-ceramics from the 911 GT3. The forged 20in alloy wheels were new and are shod with Michelin Pilot Sport Cup 2 tyres. The rear 295/30 ZR20 tyres are bespoke, but the front 245/35 ZR20s were borrowed from the 911 GT3 as they were “a perfect match”. design-wise, the goal was to create a “zero lift car”, but thanks to the extensive aerodynamic and cooling package on the car – which includes a front splitter, a larger front grille and increased frontal air intakes, side air intakes, not one but two rear spoilers and a fully functional diffuser – the Cayman GT4 produces as much downforce at speed (100kg) as the 911 GT3. Every single part on the Cayman GT4 has a functional use. Other design features include “cool” black glass on the front and rear lights, blackened twin central exhausts and quality stitching on the twin lightweight bucket seats, taken from the 918 Spyder, as small details adding to that ‘want factor’.Despite all the extra equipment, the Cayman GT4 weighs no more than a Cayman GTS, tipping the scales at 1340kg dry. You could delete items such as the sat-nav and air-con to save weight, but few customers did, just as with the 911 GT3 RS were just 2% of buyers deleted the air-con. Inside, the steering wheel was new. The sports seats were trimmed in both leather and Alcantara. Standard equipment included bi-xenon headlights, a sports exhaust system, a Sport Chrono Package with dynamic engine mounts, the Porsche Torque Vectoring system, a mechanical limited-slip differential at the rear and the Porsche Stability Management system. On the options list were items such as carbonfibre-reinforced, plastic-backed seats for the two-seat interior. These weigh just 15kg each and were inspired by the 918 Spyder. A customised version of the Sport Chrono Package was offered, as is a Club Sport Package. Initially it was declared that production would be very limited, but Porsche soon relented and far more were built than had originally been declared.

Picture_010(88) Picture_011(88) Picture_074(77) Picture_055(78)

Of course a lot of Porsche sales in the twentyfirst century come from sporting as opposed to sports cars. There were examples of the Panamera, Cayenne and Macan here.

Picture_208(43) Picture_214(42)

Latest addition to the range is the all-electric Taycan, sales of which started earlier in the year.

Picture_052(77) Picture_050(77) Picture_053(76)

DISPLAY CARS

After going through the house, there was full access to the display cars, many of which were spread out on the lawn, far enough apart to facilitate social distancing among those who wanted a close look at them, and then I discovered that were yet more cars parked on hard standing down to one side of the buildings, heading towards the school. Each was labelled so any special features and race history of the car was made clear.

This 911 3.0 RSR competed in the Tour de France in 1975. 76 and 78.

Picture_081(74) Picture_080(76) Picture_079(76)

The 993 Carrera RS which was a lightweight variant of the Carrera. It features a naturally aspirated 3.8 liter engine generating a maximum power output of 300 PS 1014 were builtachieved by the use of lightweight forged pistons, dual oil coolers, big intake valves, Varioram variable-length intake manifold, a modified Bosch Motronic engine management system and lightened rocker arms. The 6-speed G50/31 manual gearbox with a short shifter used on the Carrera RS had modified gear ratios for the first three gears. The larger 322 mm cross drilled and ventilated discs brakes front and aft with four piston calipers were shared with the 911 Turbo and limited slip differential was included as standard equipment. The exterior is easily distinguishable from a normal Carrera by a large fixed rear wing, small front flaps and 3-piece 18 in aluminium wheels. The headlight washers were deleted for weight saving reasons. A seam welded body shell with an aluminum bonnet supported with a single strut was used along with thinner glass. On the interior, the rear seats were removed, and special racing seats along with spartan door cards were installed. Sound proofing was also reduced to a minimum. The suspension system used Bilstein dampers and the ride height was lowered for improved handling. Adjustable front and rear anti-roll bars and an under-bonnet strut-brace further increased handling. The final weight of the car amounted to be 1,280 kg (2,822 lb). The Carrera RS Clubsport (also referred to as the RSR or RSCS in some countries) was a track-oriented iteration of the Carrera RS with relatively limited road usability. The Clubsport came equipped with a welded roll cage. Certain comfort features such as carpets, power windows, air conditioning and radio were deleted. Exterior wise, it sports a larger rear wing and a deeper chin spoiler than the standard RS. The Carrera RS was produced in model years 1995 and 1996. It was street legal in European and many other countries around the world, but was not approved for export to the United States. Production amounted to 1,014 cars including 213 Clubsport variants.

Picture_083(74) Picture_085(73) Picture_084(72) Picture_082(75)

This Porsche 911 Safari 3.0 SC Tribute is currently being developed for a Trans–Siberian Grand Tour by the owner.

Picture_088(69) Picture_086(72) Picture_087(71)

This is a genuine 911 Carrera RS and has had the same owner since 1986

Picture_089(70) Picture_090(71) Picture_091(70)

993 Carrera RS Clubsport: Dating from 1995, there were just 100 of these cars, This one is finished in fabulous Speed Yellow

Picture_094(69) Picture_095(69) Picture_093(69) Picture_092(70)

996 GT3 Cup: The 996 GT3 Cup served as the basis for the upcoming 996 GT3 road car, featuring a 3.6 litre (bore×stroke: 100mm×76.4mm) boxer engine on based on the GT1 block rated at 360 PS at 7,200 rpm and 360 Nm (266 lb/ft) at 6,250 rpm, with a redline of 8,000 rpm, mated to a six-speed manual transmission. For the 1999 season the engine output was increased to 370 PS and 370 Nm (273 lb/ft) at 6,250 rpm. The fuel cell holds 64 litres of fuel and the car weighs in at 1,140 kg (2,513 lb). Slick tyres supplied by Pirelli measured 245/645-18 front to 305/645-18 rear, brake disks measured 330 mm and ABS was standard. The car can accelerate from 0-100 km/h (62 mph) in four seconds and has a top speed of 286 km/h (178 mph). For the 2001 season the GT3 Cup received modified aerodynamics including an enlarged rear wing and improved cooling.

Picture_097(69) Picture_096(69)

Another 911 Carrera RS Touring Edition, this one is in Italian spec.

Picture_099(69) Picture_100(70) Picture_098(69)

991.2 GT3 Touring: Following the roots of the 2016 911R, a touring version of the GT3 was introduced that removes the rear wing and replaces it with the modified retractable rear spoiler from the Carrera GTS (with a Gurney flap and 20-degree deployment angle) to give a more smooth and flowing aesthetic image, though it extends further upwards to provide extra downforce. The spoiler deploys at 121 km/h (75 mph) and retracts at 80 km/h (50 mph). It can also be manually deployed by the press of a button. The downforce is 104 kg (230 lb) less than the standard GT3 at top speed. Top speed is also reduced at 315 km/h (196 mph). The Touring is only available with a manual transmission, features leather versus Alcantara, and cannot be specified with the Clubsport package available with the normal GT3. Other options and features remain the same as the GT3. The suspension settings are said to be identical to the standard GT3 as is the engine. However, the air intake replaces the normal GT3’s box paper air filters with a conic high flow BMC air filters and adds membrane on the two air filter chambers under the gurney flap that are the reasons of the sound differences between the normal GT3 and the GT3 Touring. The touring, unlike the 911R is not produced in limited numbers, therefore, discouraging high price speculation. This car once belonged to Chris Rea.

Picture_104(67) Picture_103(68) Picture_101(68) Picture_102(67)

1973 911 Safari RS – one of 3 Safari Rally cars, it completed from 1973 to 1975

Picture_106(66)

959: Development of the 959 (originally called the Gruppe B) started in 1981, shortly after the company’s then-new Managing Director, Peter Schutz, took his office. Porsche’s chief engineer at the time, Helmuth Bott, approached Schutz with some ideas about the Porsche 911, or more aptly, a new one. Bott knew that the company needed a sports car that they could continue to rely on for years to come and that could be developed as time went on. Curious as to how much they could do with the rear-engined 911, Bott convinced Schutz that development tests should take place, and even proposed researching a new all wheel drive system. Schutz agreed, and gave the project the green light. Bott also knew through experience that a racing program usually helped to accelerate the development of new models. Seeing Group B rally racing as the perfect arena to test the new development mule and its all wheel drive system, Bott again went to Schutz and got the approval to develop a car, based on his development mule, for competition in Group B. The powerplant is a sequential twin-turbocharged DOHC flat-six engine equipped with 4 valves per cylinder, fuel fed by Bosch Motronic 2.1 fuel injection with air-cooled cylinders and water-cooled heads, with a total displacement of 2,849 cc. It was coupled to a unique manual transmission offering five forward speeds plus a “gelände” (terrain) off-road gear, as well as reverse. The engine was largely based on the 4-camshaft 24-valve powerplant used in the Porsche 956 and 962 race cars. These components allowed Porsche to extract 450 PS (444 bhp) at 6,500 rpm and 500 Nm (369 lb/ft) of torque at 5,000 rpm from the compact and efficient power unit. The use of sequential twin turbochargers rather than the more usual identical turbochargers for each of the two cylinder banks allowed for smooth delivery of power across the engine speed band, in contrast to the abrupt on-off power characteristic that distinguished Porsche’s other turbocharged engines of the period. The engine was used virtually unchanged in the 959 road car as well. To create a rugged, lightweight shell, Porsche adopted an aluminium and Aramid (Kevlar) composite for the body panels and chassis construction along with a Nomex floor, instead of the steel floor normally used on their production cars. Porsche also developed the car’s aerodynamics, which were designed to increase stability, as was the automatic ride-height adjustment that became available on the road car (961 race cars had a fixed suspension system). Its drag coefficient was as low as 0.31 and aerodynamic lift was eliminated completely. The 959 also featured Porsche-Steuer Kupplung (PSK) all-wheel-drive system. Capable of dynamically changing the torque distribution between the rear and front wheels in both normal and slip conditions, the PSK system gave the 959 the adaptability it needed both as a race car and as a “super” street car. Under hard acceleration, PSK could send as much as 80% of the available power to the rear wheels, helping make the most of the rear-traction bias that occurs at such times. It could also vary the power bias depending on road surface and grip changes, helping maintain traction at all times. The dashboard featured gauges displaying the amount of rear differential slip as well as transmitted power to the front axle. The magnesium alloy wheels were unique, being hollow inside to form a sealed chamber contiguous with the tyre and equipped with a built-in tyre pressure monitoring system. The 959 was actually produced at Karosserie Baur, not at the Porsche factory in Zuffenhausen, on an assembly line with Porsche inspectors overseeing the finished bodies. Most of Porsche’s special order interior leather work was also done by the workers at Baur. The 1983 Frankfurt Motor Show was chosen for the unveiling of the Porsche Group B prototype. Even in the closing hours of October 9, finishing touches were being applied to the car to go on display the next morning. After the first two prototypes, the bodywork was modified to include air vents in the front and rear wheel housings, as well as intake holes behind the doors. The first prototype receiving those modifications was code named “F3”, and was destroyed in the first crash test. The road version of the 959 debuted at the 1985 Frankfurt Motor Show as a 1986 model, but numerous issues delayed production by more than a year. The car was manufactured in two levels of trim, “Sport” and “Komfort”, corresponding to the trim with more creature comforts and a more track focused trim. First customer deliveries of the 959 street variant began in 1987, and the car debuted at a cost of DM431,550 (US$225,000) each, still less than half what it cost Porsche to build each car. Production ended in 1988 with 292 cars completed. In total, 337 cars were built, including 37 prototypes and pre-production models. Dating from 1992, this one of last 8 cars built

Picture_137(51) Picture_135(52) Picture_108(66) Picture_107(67)

Carrera GT: Synonymous with Porsche’s endurance racing programme and Le Mans in particular, where they have triumphed some 17 times, the design of the Porsche Carrera GT is firmly rooted in its motorsport lineage. After success in 1998 at the famous 24-hour race, a team of engineers started work on a new mid-engined V-10 model utilising advanced technologies and materials. However, the project was soon put on hold as the company decided to focus its energies in a different direction with the introduction of a new SUV and the development of the Porsche Cayenne. Fortunately, the Carrera GT project was kept alive, and a prototype was shown at the 2000 Paris Auto Show. Response to the car was enthusiastic prompting Porsche to commit to a limited production run of 1,500 cars. By the end of production in 2006, only 1,270 cars were built, making it rarer still. With its 5.7 litre, dry sump V-10 engine (producing around 612 brake horsepower) sitting low in the carbon-fibre chassis, the Carrera GT weighed in at 1,380kg and was capable of 0-60 mph in 3.5 seconds with a top speed of 205 mph. Open the driver’s door and you are immediately aware that this is a totally focussed, seriously fast Porsche with the sense of function only just lightened by the Beechwood gear knob – a nod to the famous Porsche 917 and its racing past. Fewer than 100 of the 1270 cars built were painted in Fayence Yellow.

Picture_113(63) Picture_109(66) Picture_112(63) Picture_111(65) Picture_110(66)Picture_141(51) Picture_140(50) Picture_136(52)

This is a small scale replica of the legendary 917K. Powered by a 9 hp 230 cc engine, this half-scale replica is capable of speeds of up to 28 mph, and it boasts rack-and-pinion steering and a hydraulic brake. They are available in Gulf Blue and Orange, Salzburg Red and White or Martini White and Blue, and only a few will be built each year making them very collectible.

Picture_115(62) Picture_114(63)

1973 Carrera RS: This is one of the legendary Carrera RS 2.7 cars. RS stands for Rennsport in German, meaning race sport. The Carrera name was reintroduced from the 356 Carrera which had itself been named after Porsche’s class victories in the Carrera Panamericana races in Mexico in the 1950s. The RS was developed to meet motorsport homologation requirements. Compared to a standard 911S, the Carrera 2.7 RS had a larger engine (2,687 cc) developing 210 PS with Bosch (Kugelfischer) mechanical fuel injection, revised and stiffened suspension, a “ducktail” rear spoiler, larger brakes, wider rear wheels and rear fenders, to fit 185/70VR15 & 215/60VR15 Pirelli Cinturato CN36 tyres. In RS Touring form it weighed 1,075 kg (2,370 lb), in Sport Lightweight form it was about 100 kg (220 lb) lighter, the saving coming from thin gauge steel used for parts of the body shell and also the use of thinner glass. In total, 1,580 units were made, though a lot have cars have since been converted to “look-a-likes”.

Picture_105(66)

Carrera RS 3.0: Details were scarce on this model which was among those displayed by Collectingcars.com

Picture_116(62) Picture_117(62)

997 GT3 RS 4.0: In April 2011, Porsche announced the third generation of the 997 GT3 RS with an enlarged 4.0-litre engine having a power output of 500 PS (493 hp), Porsche designed the GT3 RS 4.0 using lightweight components such as bucket seats, carbon-fibre bonnet and front wings, and poly carbonate plastic rear windows for weight reduction, while using suspension components from the racing version. Other characteristics include low centre of gravity, a large rear wing and an aerodynamically optimised body. The lateral front air deflection vanes, a first on a production Porsche, increase downforce on the front axle. Aided by a steeply inclined rear wing, aerodynamic forces exert an additional 190 kg, enhancing the 911 GT3 RS 4.0’s grip to the tarmac. The GT3 RS 4.0 weighs 1,360 kg.

Picture_118(62) Picture_120(61) Picture_119(62) Picture_125(56)

The Audi RS2 Avant, usually known as Audi 80 RS2, was a limited edition, high-performance Audi five-door, five-seat estate car manufactured from March 1994 to July 1995. Collaboratively designed as a joint venture between Audi AG and Porsche and built on Audi’s 80 Avant, designated internally as P1 (instead of B4/8C that it was based on). It was Audi’s first “RS” vehicle, and the first of their high-performance Avants. It was powered by a modified version of their 2,226 cc inline 5 DOHC 4 valves/cylinder 20 valves total turbocharged petrol engine. This produced 315 PS (311 bhp) @ 6,500 rpm and 410 Nm (302 lb/ft) @ 3000 rpm of torque. Although much of the car’s underpinnings were manufactured by Audi, assembly was handled by Porsche at their Rossle-Bau plant in Zuffenhausen, Germany, which had become available after discontinuation of the Mercedes-Benz 500E, which Porsche had manufactured there under contract. The Rossle-Bau plant also produced the famous Porsche 959. Like the rest of the vehicle, the RS2’s five-cylinder engine was based on a unit that Audi already produced, although Porsche considerably modified the engine; the standard KKK turbocharger was switched for a larger unit, along with a heavy-duty intercooler and higher flow fuel injectors, a newly designed camshaft, a more efficient induction system, and a low-pressure exhaust system replaced the standard fare; a specially modified URS4/URS6 Bosch-supplied engine management system (ECU) controlled the engine. With so much power available, the RS2 could accelerate from 0 to 100 km/h (62 mph) in 4.8 seconds, and achieve a maximum speed of 262 km/h (163 mph) (electronically restricted), despite weighing over 1,600 kg (3,500 lb). In a road test conducted in 1995, British car magazine Autocar timed the RS2 from 0 to 30 mph at just 1.5 seconds, which they confirmed was faster than both the McLaren F1 road car, and also Jacques Villeneuve’s Formula One car of that time. Even by more modern standards, its performance is exceptional; it could accelerate on-par with the 5th generation Chevrolet Corvette (C5) and a 996 generation Porsche 911. The top speed was 166 mph (267 km/h). A six-speed manual gearbox was the only transmission choice. Audi’s Torsen-based ‘trademark’ quattro permanent four-wheel drive system was standard. Front and rear final drive units contained a conventional ‘open’ differential, and have a ratio of 4.111, although the rear also has an electro-mechanical diff lock. Porsche-designed braking and suspension systems replaced the standard Audi 80 equipment, however, the Bosch Anti-lock braking system (ABS) was retained. There were upgraded brakes, with large radially ventilated disc brakes, and Brembo four-opposed piston fixed calipers. 40 millimetres (1.6 in) lower than a standard 80 Avant, the suspension and braking upgrades combined to give the RS2 the handling and braking capabilities of a high-end sports car; 7.0Jx17 inch Porsche ‘Cup’ wheels, and high-performance 245/40 ZR17 Dunlop tyres were standard as well. In fact, the braking system wore Porsche-badged Brembo calipers, and both the wheels and side mirrors were identical in design to those of the 964 Turbo. Additionally, the word “PORSCHE” is inscribed in the RS2 emblem affixed to the rear tailgate and front grille. A three-spoke leather steering wheel, Recaro sports-bucket seats (available in full leather or a leather/suede combination), and console materials in either wood or carbon fibre trim rounded out the vehicle’s interior changes. Audi’s proprietary Safety Restraint System, procon-ten remained from its donor vehicle. Approximately 2200 RS2s were to be built initially, but due to demand the total was 2891 cars built. Of these, only 180 were right hand drive cars built for the UK, New Zealand and South African markets.

Picture_122(60) Picture_123(58)

993 Turbo: The 993 Turbo coupé was introduced in 1995. It featured a new twin-turbocharged engine displacing 3.6 litres and generating a maximum power output of 402 hp. Air-to-air intercoolers, electronic engine management, redesigned cylinder heads and other modified engine internals completed the new engine. The 993 Turbo was the first 911 Turbo with all wheel drive, taken from the 959 flagship model. The Turbo’s bodywork differs from the Carrera by widened rear wheel arches (approximately 6 cm), redesigned front and rear bumper mouldings, and a fixed “whale tail” rear wing housing the intercoolers. New 18 in (460 mm) alloy wheels with hollow spokes were standard. The 993 Turbo was one of the first production cars in the world to have OBDII diagnostics system (the 3.8-litre and GT versions didn’t have that system, and the normally aspirated 993 variants didn’t get it until 1996 model year). The successors of the 993 Turbo since have had water-cooled heads. The car also had brakes that were larger than those on the base Carrera model. Throughout the production run of the Turbo, there were two distinct differences: the 1996 and the later model year cars. The 1997 and 1998 cars had the following differences from the 1996 cars: Stronger transmission input shafts (a known weakness due to the combination of immense power and AWD system); An ECU that was able to be flashed and modified (the 1996 model’s ECU was not modifiable); With the addition of a Porsche child seat, the passenger airbag was cut off; Motion sensors for the alarm that were integrated into the map light above the rear view mirror; Standard wheel centre caps that had “turbo” embedded on them (the 1996 version had Porsche crests). The Porsche 993 Turbo is featured in Need For Speed: High Stakes as the flagship car of the game as well as in Need for Speed: Porsche Unleashed. During the second to the last year of production of the 993 (1997), Porsche offered the 993 Turbo S which was manufactured by Porsche Exclusiv department. The Turbo S is a high-specification Turbo including a power upgrade to 450 hp (DIN) for the American market) achieved by larger Triple K K-24 turbochargers, an additional oil cooler and a modified Motronic engine management system. The inclusion of extras including carbon fibre decoration in the interior makes it different from the earlier lightweight, spartan 964 Turbo S. The 993 Turbo S is recognized by yellow brake calipers, a slightly larger rear wing, a quad-pipe exhaust system, a front spoiler with brake cooling ducts (on European market cars), carbon fibre door sills with ‘Turbo S’ badging and air scoops behind the doors. This was the last of the air-cooled 911 Turbos. The curb weight of the car amounted to 1,500 kg (3,307 lb). Performance figures include a 0–60 mph acceleration time of 3.6 seconds, 0–100 mph acceleration time of 8.9 seconds and a top speed of 296.6 km/h (184.3 mph).

Picture_121(60) Picture_124(57)

991.2 GT3 Club Sport: This Porsche 991.2 GT3 Clubsport featured in the launch film of the 992 series

Picture_126(56) Picture_127(56) Picture_128(54) Picture_134(51)

This Porsche 911 S/T is the lightest 911 ever built, and was made specifically for the 1970 Tour de France where it finished third overall in the hands of Gérard Larrousse

Picture_131(52) Picture_130(52) Picture_129(52)

911 GT2 RS MR – Monthey Racing

Picture_132(51) Picture_133(52)

996 Cup: This 2002 car was raced in the SCCA Speed World Challenge by Randy Pobst, taking four victories in the 2002 season

Picture_142(50) Picture_139(50) Picture_138(50)

Here was another 1973 911 Carrera RS

Picture_145(50) Picture_146(49) Picture_144(50) Picture_143(50)

This 993 Carrera RS is in Japanese Spec.

Picture_151(49) Picture_150(49) Picture_149(49) Picture_148(49) Picture_147(49)

997 RSR: First introduced in 2006, the 997 RSR was built to comply with the Automobile Club de l’Ouest, the FIA-GT and IMSA as well as VLN regulations. Based on the 997 GT3, the RSR features a 3.8-litre flat-6 engine with two 30.3 mm air restrictors as compared to the 3.6-litre engine of its predecessor with 29 mm restrictors. The increase in displacement was achieved through the enlargement of the bore to 102.7 mm with the unchanged stroke of 76.4 mm. With the mandatory air restrictors, the engine is rated at 455 PS at 8,500 rpm and 435 Nm (321 lb/ft) of torque. The engine has a red-line of 9,000 rpm due to the increase in capacity and the corresponding reprogramming of the electronics. The new positioning of the mid-front radiator and the use of side radiators – shared with the Carrera GT – contribute to the thermal health of the engine. The 997 RSR used the 6-speed sequential manual transmission of 996 RSR for the 2006 season. For the 2007 season, a new 6-speed sequential manual transmission was added which was shared with the RS Spyder. The bodyshell with the welded-in safety cage is ten percent stiffer than the 996 RSR. Distinctive wheel arches widen the body by 50 mm (2 in) on each side. The relocation of the supplementary oil tank, power steering components and battery to the front improve weight distribution. The front and rear lids, the front mudguards, the rear section, the doors as well as the front and rear panelling and wing are made of carbon fibre. Polycarbonate rear and side windows further aid in weight reduction. The newly-developed aerodynamic package improves aerodynamic efficiency by a total of around seven percent over the 996 RSR. In compliance with the FIA and A.C.O. regulations the new GT3 RSR features a flat underbody. The RSR featured ZF-Sachs shock absorbers which have Through-Rod-System with considerably lower chamber pressure and hence generate less friction than conventional dampers. As a result, they offer a significantly improved response characteristic. The improved axles featured new anti-rollbars, an adjustable upper link and an optimised lower link. In 2007 Porsche added front air louvers that channel air into the radiators and exit through the bonnet. For 2011 Porsche added splitters to the front and increased the tyre diameter to cope with the understeer problem engine power output was also increased to 460 PS. The 997 GT3 RSR has scored many class victories around the world, including first-place finishes at the 2011 and 2013 Petit Le Mans. The 997 GT3 RSR set a Nürburgring Nordschleife lap time record for non-turbocharged cars at 7:07 while driven by Sabine Schmitz.

Picture_154(49) Picture_153(49) Picture_152(49)

Carrera RS 3.0

Picture_162(49) Picture_156(49) Picture_155(49) Picture_163(49) Picture_164(49)

550 RS:  Inspired by the Porsche 356, and some spyder prototypes built and raced by Walter Glöckler starting in 1951, the factory decided to build a car designed for use in auto racing. The model Porsche 550 Spyder was introduced at the 1953 Paris Auto Show. The 550 was very low to the ground, in order to be efficient for racing. In fact, former German Formula One racer Hans Herrmann drove it under closed railroad crossing gates during the 1954 Mille Miglia. The first three hand built prototypes came in a coupé with a removable hardtop. The first (550-03) raced as a roadster at the Nurburgring Eifel Race in May 1953 winning its first race. Over the next couple of years, the Werks Porsche team evolved and raced the 550 with outstanding success and was recognized wherever it appeared. The Werks cars were provided with differently painted tail fins to aid recognition from the pits. Hans Herrmann’s particularly famous ‘red-tail’ car No 41 went from victory to victory. Porsche was the first car manufacturer to get race sponsorship which was through Fletcher Aviation, who Porsche was working with to design a light aircraft engine and then later adding Telefunken and Castrol. For such a limited number of 90 prototype and customer builds, the 550 Spyder was always in a winning position, usually finishing in the top three results in its class. The beauty of the 550 was that it could be driven to the track, raced and then driven home, which showed the flexibility of being both a road and track car. Each Spyder was individually designed and customised to be raced and although from the pits it was difficult to identify the sometimes six 550s in the race, the aid of colouring tail spears along the rear wheel fenders, enabled the teams to see their cars. The racing Spyders were predominantly silver in colour, similar to the factory colour of the Mercedes, but there were other splashes of blue, red, yellow and green in the tail spears making up the Porsche palette on the circuit. Each Spyder was assigned a number for the race and had gumballs positioned on doors, front and rear, to be seen from any angle. On some 550s owned by privateers, a crude hand written number scrawled in house paint usually served the purpose. Cars with high numbers assigned such as 351, raced in the 1000 mile Mille Miglia, where the number represented the start time of 3.51am. On most occasions, numbers on each Spyder would change for each race entered, which today helps identify each 550 by chassis number and driver in period black and white photos. The later 1956 evolution version of the model, the 550A, which had a lighter and more rigid spaceframe chassis, gave Porsche its first overall win in a major sports car racing event, the 1956 Targa Florio. Its successor from 1957 onwards, the Porsche 718, commonly known as the RSK was even more successful. The Spyder variations continued through the early 1960s, the RS 60 and RS 61. A descendant of the Porsche 550 is generally considered to be the Porsche Boxster S 550 Spyder; the Spyder name was effectively resurrected with the RS Spyder Le Mans Prototype. This is the fourth car made and was delivered new to Max Hoffmann in the US.

Picture_161(49) Picture_159(49) Picture_160(49) Picture_157(49) Picture_158(49)

Initially I thought that this was the extent of the display, but noticing a number of people walking away from the display lawn towards the school buildings rather than returning through the House, I decided to explore a bit further and found a whole lot more Porsche cars parked up.

991 GT3 Cup: Porsche introduced the 991 GT3 Cup for the 2013 Porsche Supercup season, based on the 991 GT3. Like the 991 GT3 road car, its improvements over the 997 model include revised aerodynamics, an improved rollcage, new wheels and a revised chassis. The direct-injection 3.8-litre flat six is rated at 338 kW (453 hp) at 8500 rpm and drives the rear wheels through a mechanical limited slip differential. The transmission includes a paddle-shift, race-bred, pneumatically-activated six speed developed specifically for the track. It uses lightweight materials in its construction, and a stripped-out cabin complete with a full roll cage, racing seat and all the safety gear required for competition, weighing 1,175 kg (2,590 lb). This car was driven by Dan Cammish to 8 wins and 2 second places in the Carrera Cup GB, also winning the support race at Le Mans in 2017

Picture_165(48) Picture_166(48)

356B Carrera 2: this one has a race derived 1996cc engine generating 130 bhp. It is 1 of just 278 examples built.

Picture_170(47) Picture_169(48) Picture_168(48)

997.2 GT3

Picture_167(48)

991.1 GT3 RS: The RS version of the 991 GT3 was launched at the 2015 Geneva Motor Show, and featured in first drive articles in the press a few weeks later, with cars reaching the UK in the summer and another series of universally positive articles duly appearing. It had very big shoes to fill, as the 997 GT3 RS model was rated by everyone lucky enough to get behind the wheel, where the combination of extra power and reduced weight made it even better to drive than the standard non-RS version of the car. A slightly different approach was taken here, with the result weighing just 10kg less than the GT3. It is based on the extra wide body of the 991 Turbo. Compared to the 991 GT3, the front wings are now equipped with louvres above the wheels and the rear wings now include Turbo-like intakes, rather than an intake below the rear wing. The roof is made from magnesium a bonnet, whilst the front wings, rear deck and rear spoiler all in carbonfibre-reinforced plastic (CFRP), the rear apron is in a new polyurethane-carbonfibre polymer and polycarbonate glazing is used for the side and rear windows. The wider body allows the RS’s axle tracks to grow, to the point where the rear track is some 72mm wider than that of a standard 3.4-litre Carrera and the tyres are the widest yet to be fitted to a road-going 911. A long-throw crankshaft made of extra-pure tempered steel delivers the 4mm of added piston stroke necessary to take the GT3’s 3.8-litre flat six out to 3996cc . The engine also uses a new induction system, breathing through the lateral air intakes of the Turbo’s body rather than through the rear deck cover like every other 911. This gives more ram-air effect for the engine and makes more power available at high speeds. It results in an output of 500 bhp and 339 lb/ft of torque. A titanium exhaust also saves weight. The suspension has been updated and retuned, with more rigid ball-jointed mountings and helper springs fitted at the rear, while Porsche’s optional carbon-ceramic brakes get a new outer friction layer. Which is to say nothing of the RS’s biggest advancement over any other 911: downforce. The rear wing makes up to 220kg of it, while the front spoiler and body profile generates up to 110kg. In both respects, that’s double the downforce of the old 997 GT3 RS 4.0. The transmission is PDK only. The result is a 0-62 mph time of just 3.3 seconds, some 0.6 seconds quicker than the 997 GT3 RS 4.0 and 0-124 mph (0-200kmh) in 10.9 seconds. The 991 GT3 RS also comes with functions such as declutching by “paddle neutral” — comparable to pressing the clutch with a conventional manual gearbox –- and Pit Speed limiter button. As with the 991 GT3, there is rear-axle steering and Porsche Torque Vectoring Plus with fully variable rear axle differential lock. The Nürburgring Nordschleife time is 7 minutes and 20 seconds. The interior includes full bucket seats (based on the carbon seats of the 918 Spyder), carbon-fibre inserts, lightweight door handles and the Club Sport Package as standard (a bolted-on roll cage behind the front seats, preparation for a battery master switch, and a six-point safety harness for the driver and fire extinguisher with mounting bracket). Needless to say, the car was an instant sell out, even at a starting price of £131,296.

Picture_171(48)

993 RSR

Picture_172(48) Picture_173(48)

This 911 S/T was produced as an upgrade from a Group 4 car by Jo Siffert

Picture_174(47) Picture_175(48) Picture_176(48)

911 RSR

Picture_198(42) Picture_199(43) Picture_200(44) Picture_201(43)

993 GT2 Club Sport: this is a partciularly rare car, one of just 21 such built.

Picture_180(46) Picture_181(46) Picture_182(45)

904: Officially we should call this car the GTS, as Porsche had the same naming conflict with Peugeot over this as they did with the 911 (which they had originally planned to call 901, of course), but the reality is that everyone knows this elegant machine as the 904GTS. Although on the rare occasions that you see one, it tends to look like a road car, the 904GTS owes its existence to the race track. After having withdrawn from Formula One at the end of the 1962 season, Porsche focused again on sportscar racing. The 904 debuted late in 1963, for the 1964 racing season, as a successor to the 718, which had been introduced in 1957. Porsche designed the GTS variant to compete in the FIA-GT class at various international racing events. The street-legal version, as seen here, debuted in 1964 in order to comply with Group 3 Appendix J homologation regulations requiring a certain number of road-going variants be sold by the factory. Porsche produced 106 904s at four or five a day with a list price of US$7245. Orders far exceeded the one hundred car requirement to satisfy homologation rules and more cars could readily have been sold. The 904’s mid-engine layout was inherited from the 718 RSK. It was powered by the 1,966 cc Type 587/3,] four-cam flat four-cylinder engine producing 198 hp, “probably the most complex four-cylinder” ever. It drove a five-speed transmission. Begun as the Type 547, its development began in 1953, when the previous VW-based 1,100 cc flat-four, used in the contemporary 356 hit the limit of its potential. Porsche realised it needed something all-new. The brainchild of Dr. Ernst Fuhrmann, later Technical Director, it was hoped to achieve an “unheard of” 70 hp per litre, relying on hemispherical combustion chambers and two-choke Weber carburettors to generate 112 hp from the 1,500 cc four-cam engine. The 1.5 litre weighed 310 lb dry, eventually producing 180 hp. A complex design that proved “very taxing” to build and assemble, but very durable, it was used in 34 different models, including 550 Spyders, 356 Carreras, and F2/1s. The 904 was the first Porsche to use a ladder chassis and fibreglass body, appearing more like specialist racing cars than the modified sports cars typical at the time, and was painted white. The fibreglass body was bonded to its steel chassis for extra rigidity, and achieved a drag coefficient of 0.34. While many German race cars had used unpainted aluminium bodies since the famous 1934 Silver Arrows, most 904s were painted silver, the modern German national racing colour. Unusually for Porsche, the two-seater bodies were provided by contractors, which would later become standard practice among race car builders. The 904’s fibreglass body was made by spraying chopped fibreglass into a mould, the amount sprayed often varied in thickness over the shape of the car and as a result the weight of the various cars was somewhat inconsistent; some were heavier than others. Race-prepared four-cylinder 904s weighed in at approximately 1,443 pounds (655 kg) and the low weight gave the 904 the ability to accelerate to 60 mph from a standstill in less than six seconds (using the standard rear gear, which would be typical at Sebring) and to reach a top speed of 160 mph. Frontal area was only 14 sq ft. The Porsche 904 rode on coil springs (the first Porsche not to use trailing arm front and swing-axle rear suspension. To satisfy demand, twenty 1965 models were produced, some featuring a variant of the 911’s flat six,. These were known as the 904/6. Porsche also built a few factory race cars with a flat eight-cylinder power plant derived from the 1962 804 F1 car, the 225 hp 1,962 cc Type 771, but these had a “disturbing habit” of making their flywheels explode. These cars were known as the 904/8. A number of modern replica versions have been produced.

Picture_185(45) Picture_183(46) Picture_184(46) Picture_186(45)

This is another 997 GT3 RS 4.0 and is very rarely seen painted in black

Picture_187(45)

996 RS/R: this is one of 91 cars made and it competed in the Daytona 24 Hours, Sebring 12 Hours, Le Mans 1000 KM and the Spanish GT Championship

Picture_190(44) Picture_188(45) Picture_189(45)

911 Carrera RS

Picture_191(44) Picture_192(44)

Whilst in this part of the event, I caught sight of another Carrera GT which was leaving the site.

Picture_193(44) Picture_194(44)

996 GT3 RS: In 2003, Porsche introduced the Porsche 911 GT3 RS, an even more track-focused version of the 996 GT3. RS is short for the German RennSport, literally “racing sport” in English. The “RS” moniker, and the characteristic lightweight blue or red wheels and “GT3 RS” side stickers link the 996 GT3 RS to historically important Porsches such as the Carrera 2.7 RS of the early 1970s. The 996 GT3 RS is lighter than the 996 GT3 thanks to a polycarbonate rear window, carbon fibre hood and rear wing. Porsche Ceramic Composite Brake (PCCB) Carbon fibre-reinforced Silicon Carbide (C/SiC) ceramic composite brakes, which are also more heat and fade resistant than the cast iron units fitted as standard, were optional. The 996 GT3 RS has a slightly different engine specification to the 996 GT3. The cylinder heads of the 996 GT3 RS have reshaped intake and exhaust ports for race homologation. Porsche claim the same 381 hp (284 kW) power output as the standard GT3 but Porsche’s control dyno showed a jump to nearly 400 hp The RS also has progressive springs rather than linear. The dampers are uprated and are between 10 and 15 percent stiffer than the 996 GT3 in bounce and rebound. The wheel carriers are totally redesigned to maximize the improved dynamic camber control. The suspension top mounts can be turned 120 degrees to a cup car position. Both front and rear control arms are adjustable. The RS is 3 mm (0.1 in) lower than the 996 GT3. The rear wing delivers 35 kg (77 lb) of downforce at 201 km/h (125 mph). The RS has ram air ducts on the engine bay which force air into the intake with 18 mb of pressure at 301 km/h (187 mph) and this is enough to create an excess power output of 15 hp. This additional power output cannot be homologated since the official engine output figures are certified on a dynamometer. Automobile magazines claim the 996 GT3 RS can accelerate from 0 – 60 mph in about 4.3 seconds, maintains over 1.0g on the skidpad, and has a top speed of around 306 km/h (190 mph). The RS completed a lap of the Nürburgring 7:43, four seconds faster than the 996 GT2, the top-of-the-line 996 variant of the time. The 996 GT3 RS had a production run from 2003 to 2005 and 680 were built. Only 140 right hand drive cars were built by Porsche and 113 of those were officially imported into the UK.

Picture_197(44) Picture_195(44) Picture_196(44)

997 GT3 RS

Picture_179(46) Picture_178(47) Picture_177(47)

And finally there was a Singer 4.0: Singer Vehicle Design is an American company that modifies Porsche 911s. It was founded by Rob Dickinson, former frontman of the English rock band Catherine Wheel. The company is based in Los Angeles, California. The name Singer Vehicle Design pays homage to noted Porsche engineer Norbert Singer as well as acknowledging Dickinson’s previous career as a vocalist. The company’s motto is “everything is important”, a reference to their design philosophy in which no aspect of the car is overlooked and even the smallest details are enhanced. The company’s main product is a “re-imagined” 911, which is a heavily modified coupe or Targa Porsche 964. Much of the bodywork is replaced with carbon fibre body panels and the engine is reworked by engine manufacturers such as Cosworth, Ed Pink Racing Engines and Williams to produce significantly more power. The long hood of the Porsche 911 classic replaces the shorter hood of the Porsche 964. Relocated fuel filler and oil filler caps are a nod to historic Porsche race cars. The tachometer is coloured in Singer Orange and displays values up to 11, a reference to the up to 11 meme (though engine redline is 7,900 RPM). The price of a 911 re-imagined by Singer starts at over $475,000 and can reach $1.8 million. Examples have sold at auction for well over $1M. Many of the components are bespoke and/or motorsports-grade.

Picture_203(43) Picture_202(43) Picture_204(43)

Lockdown 2.0 did indeed arrive, but not until just after this event, so, as I predicted whilst I was there, this did indeed turn out to be the last event of 2020 for me. Even though some of the cars that had originally been invited to attend had no longer been able to do so, thanks to restrictions across Europe, the fact that this event did go ahead and was an impressive gathering of a number of rare race and road-going cars was commendable. Rennsport plans to run again in 2021, though as with everything envisaged for the coming months, it is far from clear at present whether or when it will actually happen. For the Porsche lover, it is worth keeping an eye out for what will surely be a good day out. It certainly was in 2020.

Leave a Reply

Your email address will not be published. Required fields are marked *