Beaulieu Supercar Weekend – August 2016

Growing up, supercars were machines which you read about occasionally in motoring magazines, and expected to see only at the Motor Show. And with annual production levels of Ferrari, Lamborghini, Maserati, Aston Martin and others measured in three digit numbers, it is no surprise that these were really very special and particularly rare cars. During the late 80s and 90s, though, things, started to change, as combined with the steady increase in what even the “man in the street” could afford, there were plenty of people with sufficient wealth to boost production of these special cars. Seeing many of these cars is no longer that unusual event, but even though the cars are more common, they still attract a huge number of enthusiasts, of all ages wherever they appear. And so any event that focuses on the genre is more or less a sure-fire crowd-puller. And there are plenty of them in the UK during the course of a year. One of the largest and best attended takes place at Beaulieu in the grounds of the National Motor Museum. I attended this annual event for the first time in 2015, and despite an extremely wet start to proceedings, enjoyed it sufficiently, that I decided to include it in my 2016 plans. New this year was a decision to extend the event to two days, making it the Supercar Weekend. A two day celebration of the supercar promised not just a collection of these special cars on show and in action on parade runs down a straight road made more interesting with some straw bale chicanes, but a number of additional Tribute Collections, an SUV Super-Garden, as well as the chance to take a look around the Museum itself and the House. The weather was far kinder, with a mix of summer sunshine and some clouds encouraging owners to bring their cars and the crowds to come an visit. Whilst there was probably not so much to see that you would have needed to allocate the whole weekend to this event, there was certainly plenty to interest me from arrival soon after the gates opened until the site closed, hours later. A report on the Museum will be presented separately, so here are the highlights of the event itself.

SUPERCAR DISPLAYS

The supercars were why people would have chosen to come to the event, and so constituted an important part of the displays. And there certainly were lots of them. An official and agreed definition of what constitutes a supercar has never been produced, leaving the organisers, no doubt, with some hard choices on what to include and what not to. Most of the cars in here would, by anyone’s definition, easily qualify, but there were some which would doubtless have at least a few people protesting that these are not true “supercars”. Be that as it may, there can be no doubt as the variety of fabulous machines which were assembled here. They were parked up in three distinct areas. with most in a grassed area to the non-museum side of the demo straight. As pedestrian access to this was right across the road where cars were being put through their paces, you did need to think about where you would be on site as there were periods of time when you could not get from one area to the other.

ALFA ROMEO

It is arguable if Alfa Romeo have ever made a true “supercar” since their fabulous cars of the 1930s (though the recent 8C Competizione probably does count), but a V8 engined coupe with lines like those of this Montreal surely count sufficiently for its inclusion here. The Montreal was introduced as a concept car in 1967 at Expo 67, taking its name from the city where the event was held. Originally, the concept cars were displayed without any model name, but the public took to calling it The Montreal.It was a 2+2 coupe using the 1.6-litre engine of the Alfa Romeo Giulia TI and the short wheelbase chassis of the Alfa Romeo Giulia Sprint GT, with a body designed by Marcello Gandini at Bertone. One of the two concept cars built for Expo 67 is displayed in the Alfa Romeo Historical Museum in Arese, Italy, while the other is in museum storage. Reaction to the concept was sufficiently encouraging that Alfa decided to put the car into production. The result, the Tipo 105.64, was shown at the 1970 Geneva Motor Show and was quite different from the original, using a 2593 cc 90° dry-sump lubricated V8 engine with SPICA (Società Pompe Iniezione Cassani & Affini) fuel injection that produced around 200 PS (197 hp), coupled to a five-speed ZF manual gearbox and a limited-slip differential. This engine was derived from the 2-litre V8 used in the 33 Stradale and in the Tipo 33 sports prototype racer; its redline was set at 7,000 rpm, unheard of for a V8 at that time. The chassis and running gear of the production Montreal were taken from the Giulia GTV coupé and comprised double wishbone suspension with coil springs and dampers at the front and a live axle with limited slip differential at the rear.Since the concept car was already unofficially known as The Montreal, Alfa Romeo kept the model name in production. Stylistically, the most eye catching feature was the car’s front end with four headlamps partly covered by unusual “grilles”, that retract when the lights are switched on. Another stylistic element is the NACA duct on the bonnet. The duct is actually blocked off since its purpose is not to draw air into the engine, but to optically hide the power bulge. The slats behind the doors contain the cabin vents, but apart from that only serve cosmetic purposes. Paolo Martin is credited for the prototype instrument cluster. The Montreal was more expensive to buy than the Jaguar E-Type or the Porsche 911. When launched in the UK it was priced at £5,077, rising to £5,549 in August 1972 and to £6,999 by mid-1976. Production was split between the Alfa Romeo plant in Arese and Carrozzeria Bertone’s plants in Caselle and Grugliasco outside Turin. Alfa Romeo produced the chassis and engine and mechanicals and sent the chassis to Caselle where Bertone fitted the body. After body fitment, the car was sent to Grugliasco to be degreased, partly zinc coated, manually spray painted and have the interior fitted. Finally, the car was returned to Arese to have the engine and mechanicals installed. It is worth noting that because of this production method, there is not necessarily any correspondence between chassis number, engine number and production date. The Montreal remained generally unchanged until it was discontinued in 1977. By then, production had long ceased already as Alfa were struggling to sell their remaining stock. The total number built was around 3900. None of them were sold in Montreal, Quebec since Alfa did not develop a North American version to meet the emission control requirements in the United States & Canada. The car was both complex and unreliable which meant that many cars deteriorated to a point where they were uneconomic to restore. That position has changed in the last couple of years, thankfully, with the market deciding that the car deserves better, and prices have risen to you whereas a good one would have been yours for £20,000 only a couple of years ago, you would now likely have to pay more than double that.

 photo Picture 051_zpsh2x0mkkv.jpg

ARIEL

First seen in public at the British International Motor Show at the NEC in Birmingham in October 1996, the Atom began as a student project by Coventry University transport design student, Niki Smart. Known then as the LSC (Lightweight Sports Car), it was developed at the university in 1996 with input and funding from various automotive industry members, including British Steel and TWR.  Ariel Motor Company boss Simon Saunders was a senior lecturer whose responsibility for the project was primarily as financial manager and design critic for Smart, whom he described as “The best all-round design student I’ve ever seen.”  Since then, an operation was created in Crewkerne, Somerset, and around 100 cars a year are produced there. Each one is made by a single person, who undertakes everything from assembly to final road test before putting his name on the finished product. There have been 7 distinct models, with a wide variety of different engines ranging from a 2 litre Honda VTEC unit in naturally aspirate and supercharged guise, to the ultimate, the 500, with a 3 litre V8 that generates 500 bhp. Visually, the cars look similar at a quick glance, and it takes a real marque expert (which I am not!), to tell them apart. Never intended as an every day car, as their real raison d’etre is as a track machine, owners do take them out on public roads, and in traffic, from time to time. so, given the fact that the journey here would have been a sunny start on largely empty roads, perhaps it was not a surprise to find one parked up here, a 3.5R.

 photo Picture 268_zpsqt85ppyx.jpg  photo Picture 265_zpsg3u5bezh.jpg  photo Picture 301_zpsx4qm20y1.jpg

ASTON MARTIN

Oldest of the Aston Martin models in this part of the event was a DB6, the model launched in 1965 as a replacement for the DB5. The wheelbase was now 4″ longer than before, resulting in an extensive restyle with a more raked windscreen, raised roofline and reshaped rear quarter windows. Opening front quarter lights made a reappearance, but the major change was at the rear where a Kamm tail with spoiler improved the aerodynamics, greatly enhancing stability at high speeds. “The tail lip halves the aerodynamic lift around maximum speed and brings in its train greater headroom and more luggage space”, declared Motor magazine, concluding that the DB6 was one of the finest sports cars it had tested. Famed employee, Tadek Marek, designed the six cylinder engine, which had been enlarged to 3,995cc for the preceding DB5 and remained unchanged. Power output on triple SU carburettors was 282bhp, rising to 325bhp in Vantage specification. Premiered at the 1965 London Motor Show, the DB6 Volante marked the first occasion the evocative ‘Volante’ name had been applied to a soft-top Aston Martin. After 37 Volante convertibles had been completed on the DB5 short wheelbase chassis, the model adopted the longer DB6 chassis in October 1966. A mere 140 DB6 based Volantes were manufactured, and of these only 29 were specified with the more powerful Vantage engine.

 photo Picture 072_zps1jcnc3mh.jpg

Representing the next basic design in Aston Martin’s range were a number of examples of the long-running V8 Coupe and the related open-topped Volante. Aston Martin’s customers had been clamouring for an eight-cylinder car for years, so Aston Martin designed a larger car. The engine was not ready, however, so in 1967 the company released the DBS with the straight-six Vantage engine from the DB6. Two years later, Tadek Marek’s V8 was ready, and Aston released the DBS V8. Though the body and name was shared with the six-cylinder DBS, the V8 sold for much more. The body was a modern reinterpretation of the traditional Aston Martin look, with a squared-off grille and four headlights (though some consider the styling derivative of the early Ford Mustang). Distinguishing features of the V8 model are the larger front air dam and lack of wire wheels, though some six-cylinder DBS cars also used the V8’s alloy wheels. The tail lights were taken from the Hillman Hunter. A road test report of the time noted that the car had gained 250 lb in weight with the fitting of the V8 in place of the previously used six-cylinder unit, despite the manufacturer’s assurance that the engine weighed only 30 lb more than the older straight-six. Other contributions to the weight gain included heavier ventilated brake discs, air conditioning, fatter tyres, a new and stronger ZF gearbox as well as some extra bodywork beneath the front bumper. Marek’s V8 engine displaced 5,340 cc and used Bosch fuel injection. Output was not officially released, but estimates centre around 315 hp. The DBS V8 could hit 60 mph in 5.9 seconds and had a top speed of nearly 160 mph. 402 DBS V8s were built. In April 1972, the DBS V8 became just the Aston Martin V8 as the six-cylinder DBS was dropped, leaving just this car and the six-cylinder Vantage in production. The V8 became known as the AM V8, a model retroactively referred to as the Series 2 V8 to separate it from later models. Visual differences included twin quartz headlights and a mesh grille, a front design which was to last until the end of production in 1989. AM V8 cars, produced from May 1972 through July 1973, used a similar engine to the DBS V8, albeit with Bosch fuel injection rather than the earlier carburettors. Just 288 Series 2 cars were built. Although David Brown had left the company, he had overseen development of this model. The first 34 cars still carried leftover “DBS V8” badging. The car switched back to Weber carburettors for the Series 3 in 1973, ostensibly to help the car pass new stricter emissions standards in California but most likely because Aston Martin was unable to make the Bosch fuel injection system work correctly. These cars are distinguished by a taller bonnet scoop to accommodate four twin-choke (two-barrel) Weber carbs. The car produced 310 hp and could reach 60 mph in 6.1 seconds with an automatic transmission or 5.7 with a manual. Performance suffered with emissions regulations, falling to 288 hp in 1976. The next year, a more powerful “Stage 1” engine with new camshafts and exhaust brought it up to 305 hp. Production of Series 3 cars lasted from 1973 through October 1978, but was halted for all of 1975. 967 examples were produced in this time. While earlier V8 cars have louvers cut into the little panel mounted beneath the rear windshield, the Series 3 and later cars instead have a small lip at the bottom of this panel, just ahead of the leading edge of the bootlid. The “Oscar India” specification was introduced in October 1978 at the Birmingham International Motor Show. Visually, the former scoop on the bonnet gave way to a closed “power bulge”, while a spoiler was integrated into the tail. Most Oscar India cars were equipped with a Chrysler “Torqueflite” three-speed automatic transmission, with wood trim fitted for the first time since the DB2/4 of the 1950s. Just 352 Oscar India models were built from 1978 through 1985. The power of the now de-smogged engines kept dropping on American market cars, down to a low of 245 hp in the early eighties. The convertible “Volante” was introduced in June 1978, but featured the Series 4 bonnet a few months before the coupé received the Oscar India update. The Volante Series 1 weighs 70 kg (155 lb) more than the coupé, due to the necessity of reinforcing the frame. US market cars received much larger bumpers beginning with the 1980 model year, adding weight and somewhat marring the car’s lines. Owners of US-specified cars often modify them to have the slimmer European bumpers. By 1981, the success of the Volante meant that the coupé model was only built on individual demand. The fuel-injected Series 5 cars were introduced in January 1986 at the New York International Auto Show. The compact Weber/Marelli system no longer needed the space of the previous carburettors, so the bonnet bulge was virtually eliminated. 405 Series 5 cars were built before production ceased in 1989. The Volante Series 2 received the same changes; 216 were built.

 photo Picture 071_zpsyr0wvhur.jpg  photo Picture 011_zpsb8uucydo.jpg

For many years, Aston relied upon a single basic design to constitute their model range, but that changed in 1994 when they presented the DB7. Continuing the model naming sequence abandoned with the end of DB6 production some 24 years earlier, this slightly smaller and cheaper addition to the Aston range was, it is no exaggeration to say, single-handedly responsible for saving this much loved marque from otherwise certain extinction, as it sold in greater volume over its 10 year production life than all Astons previously made, with over 7000 built. Known internally as the NPX project, the DB7 was made mostly with resources from Jaguar and had the financial backing of the Ford Motor Company, owner of Aston Martin from 1988 to 2007. The DB7’s platform was an evolution of the Jaguar XJS’s, though with many changes. The styling started life as the still-born Jaguar F type (XJ41 – coupe / XJ42 – convertible) designed by Keith Helfet. Ford cancelled this car and the general design was grafted onto an XJS platform. The styling received modest changes by Ian Callum so that it looked like an Aston Martin. The first generation Jaguar XK-8 also uses an evolution of the XJ-S/DB7 platform and the cars share a family resemblance, though the Aston Martin was significantly more expensive and rare. The prototype was complete by November 1992, and debuted at the 1993 Geneva Motor Show.  With production of the Virage (soon rechristened “V8” following Vantage styling revisions) continuing at Newport Pagnell, a new factory was acquired at Bloxham, Oxfordshire that had previously been used to produce the Jaguar XJ220, where every DB7 would be built throughout its production run. The DB7 and its relatives were the only Aston Martins produced in Bloxham and the only ones with a steel unit construction inherited from Jaguar . Aston Martin had traditionally used aluminium for the bodies of their cars, and models introduced after the DB7 use aluminium for the chassis as well as for many major body parts. The convertible Volante version was unveiled at the North American International Auto Show in Detroit in 1996. Both versions have a supercharged straight-six engine that produced 335 bhp and 361 lb·ft of torque. The Works Service provided a special Driving Dynamics package, which greatly enhanced performance and handling for drivers who wanted more than what the standard configuration offered. In 1999, the more powerful DB7 V12 Vantage was introduced at the Geneva Motor Show. Its 5.9 litre, 48-valve, V12 engine produced 420 bhp and 400 lb·ft of torque. It has a compression ratio of 10.3:1. Transmissions were available with either a TREMEC T-56 six speed manual or a ZF 5HP30 five speed automatic gearbox. Aston Martin claimed it had a top speed of either 186 mph with the manual gearbox or 165 mph with the automatic gearbox, and would accelerate from 0–60 mph in 4.9 seconds. It is 4,692 mm long, 1,830 mm (72.0 in) wide, 1,243 mm (48.9 in) high, with a weight of 1,800 kg (3,968.3 lb). After the launch of the Vantage, sales of the supercharged straight-6 engine DB7 had reduced considerably and so production was ended by mid-1999. In 2002, a new variant was launched, named V12 GT or V12 GTA when equipped with an automatic transmission. It was essentially an improved version of the Vantage, its V12 engine producing 435 bhp and 410 lb·ft of torque for the manual GT, although the automatic GTA retained the 420 bhp and 400 lb·ft of torque of the standard DB7 Vantage. Additionally, the GT and GTA chassis had substantially updated suspension from the DB7 Vantage models. Aesthetically, compared to the Vantage it has a mesh front grille, vents in the bonnet, a boot spoiler, an aluminium gear lever, optional carbon fibre trim and new wheels. It also has 355 mm (14.0 in) front and 330 mm (13.0 in) rear vented disc brakes made by Brembo. When being tested by Jeremy Clarkson on Top Gear in 2003, he demonstrated the car’s ability to pull away in fourth gear and continue until it hit the rev limiter: the speedometer indicated 135 mph. Production of the GT and GTA was extremely limited, as only 190 GT’s and 112 GTA’s were produced worldwide with 17 of them shipped to the US market, for a total of 302 cars.

 photo Picture 129_zpsqi5mqtkl.jpg  photo Picture 189_zpsfz2wztft.jpg

There were plenty of more recent Aston Martin models here, too, from the current catalogue. These included the about to be superceded DB9 Volante, and a whole collection of its slightly smaller brother the Vantage range with V8 and V12 and V12S here, as well as from the top of the range, examples of the original Vanquish, its replacement the DBS Coupe and the current Vanquish and Volante.

 photo Picture 151_zps4madsrbz.jpg  photo Picture 316_zpsfiby0bkt.jpg  photo Picture 224_zpspmvmveml.jpg  photo Picture 287_zpsciqhgczl.jpg  photo Picture 248_zps7jjer5ty.jpg  photo Picture 068_zpscjoliexl.jpg  photo Picture 188_zpsbcw8zkpc.jpg  photo Picture 247_zpstrostpxm.jpg  photo Picture 235_zpsdki0a0h3.jpg  photo Picture 173_zpsanpdf59y.jpg  photo Picture 118_zpse9rr5kcc.jpg  photo Picture 014_zps5wr72prf.jpg  photo Picture 190_zpskhvg1sat.jpg  photo Picture 234_zpsfo35bcwm.jpg  photo Picture 112_zpscjhze70h.jpg  photo Picture 138_zpsbfozgil3.jpg  photo Picture 016_zpsozffeep3.jpg  photo Picture 303_zpsbrhnw5iz.jpg  photo Picture 279_zpsuugsg8n0.jpg  photo Picture 262_zpspapz4ouo.jpg  photo Picture 092_zpss8ob70wx.jpg

Also present was an example of the only current 4 door model, the Rapide S

 photo Picture 107_zpsgfg4ufpr.jpg 

Perhaps the rarest of the lot, though, was this Cygnet. This was a rebadged variant of the Toyota/Scion iQ marketed by Aston Martin, to help the company comply with the 2012 European Union-imposed fleet average emissions regulations. The Cygnet was initially only marketed in the UK. Sales commenced in January 2011 and the market coverage was expanded to cover other European countries the following year. Sales were not restricted, but demand from existing Aston Martin owners for Cygnet was expected to take priority initially. Aston Martin CEO Ulrich Bez announced shipping expectations of about 4000 per year at a price of about £30,000 – about three times as much as the iQ. Bez claimed that the Cygnet demonstrated the company’s “commitment to innovation and integrity”, whilst respecting the need to “satisfy demands of emissions and space”. The Cygnet featured revisions to the exterior and interior but shared other specifications with the iQ, having a 97 bhp 1.3 litre engine, which produced 110 g of CO2/km and fuel consumption of 58.9 mpg. In September 2013, after just over two years of production, Aston Martin announced that it would stop production, making it the second shortest running production car in the history of Aston Martin after the 2012 Aston Martin Virage, which was only produced for a year. The Cygnet was cancelled due to disastrously low sales, with the car reaching only 150 units in the UK and approximately 300 in total rather than its annual target of 4000.

 photo Picture 296_zpsd4c4pncl.jpg  photo Picture 295_zpsjyahqas7.jpg  photo Picture 285_zps99vitjpu.jpg  photo Picture 275_zps30g3ltr0.jpg

AUDI

It is nearly 10 years since Audi stunned everyone with their R8 model, and this striking supercar, just now entering a second generation, remains a crowd-puller even now. On display here were a couple of the V10 models and several of the even more desirable open-topped Spyder.

 photo Picture 163_zpszxowo4uq.jpg  photo Picture 145_zps3zfpat1n.jpg  photo Picture 146_zpsfg5emblm.jpg  photo Picture 241_zpsbxzuo9zx.jpg  photo Picture 238_zps4xkdfiyy.jpg  photo Picture 121_zpsqy5pjq5q.jpg  photo Picture 228_zpsw5br0rei.jpg  photo Picture 174_zps89u3xe7q.jpg  photo Picture 175_zpsiiks6ibl.jpg  photo Picture 309_zpshlwo4mfo.jpg  photo Picture 288_zpsjxq7vlmd.jpg

Also with the four rings on the front was this RS7, the most potent of the RS range, with its 4.0 TFSI twin scroll twin turbo V8 engine rated at 553 bhp and 516 lb·ft. The RS7 is full of advanced technology, with a cylinder on demand system which deactivates intake and exhaust valves of 4 cylinders (2, 3, 5 and 8), eight-speed tiptronic transmission with D and S driving modes, quattro with torque vectoring with self-locking centre differential with a high locking rate and oil cooler, polished 20-inch forged wheels in a seven twin-spoke design (with optional 21-inch cast wheels in a choice of three designs), four internally vented diameter brake discs with 15.35 in diameter front discs and black (optional red) painted six-piston calipers (optional 420 mm (16.54 in) carbon fiber ceramic discs with anthracite gray calipers), electronic stabilisation control with Sport and off modes, adaptive air suspension lowering body by 20 mm (optional tauter sport suspension plus with Dynamic Ride Control), optional Dynamic all-wheel steering with continuously variable steering boost and ratio. The RS7 is easy to identify from lesser models in the range with its high-gloss black protective grille with honeycomb structure at the front of the car, add-on parts in matt aluminium, power extending spoiler, two elliptical tailpipe trims, a choice of 10 body colours (including Nardo gray, exclusive finish Daytona gray, matt effect), optional matt aluminium and carbon styling packages. It was unveiled at the 2013 North American Show in Detroit, and probably sells more strongly in the US than in Europe, as that thunderous engine does have a CO2 penalty, efficient though it maybe given the performance on offer. That was no deterrent to Audi from introducing an even more potent version, though, with the RS7 Performance,  along with the RS6 Performance being released in October 2015. This is powered by the same 4.0-litre twin-turbo V8 engine as the standard RS7, but now with 597 bhp and 553 lb·ft. The top speed remains limited to 250 km/h (155.3 mph) as standard, and there are optional Dynamic and Dynamic Plus packages that raise the top speed to 174.0 and 189.5 mph respectively. The RS7 performance will accelerate from 0 to 100 km/h (62.1 mph) in 3.7 seconds and 0 to 200 km/h (124.3 mph) in 12.1 seconds. Despite the improved performance, the fuel economy and CO2 are unchanged from the standard RS6 Avant.  A very desirable car.

 photo Picture 162_zpstwtsnn1c.jpg  photo Picture 160_zpshkhysfwp.jpg

BENTLEY

As well as the standard Continental GTC, there was a GT Coupe Onyx here. The Onyx modifications are focused on appearance, with various bodywork addenda which will doubtless appeal to some, but not, alas, to me.

 photo Picture 240_zpspxx5z17y.jpg  photo Picture 236_zpsapalivyd.jpg  photo Picture 081_zpsjdmseipi.jpg  photo Picture 077_zpszmqh2yfh.jpg  photo Picture 078_zpsaxowpxvh.jpg

BMW

Oldest of the BMW models in the display was an E24 series M635CSi. The first car to bear the 6 Series nomenclature was launched in 1976, as a replacement for the E9 model 3.0 CS and CSL coupés first produced in 1965.  Production started in March 1976 with two models: the 630 CS and 633 CSi. Originally the bodies were manufactured by Karmann, but production was later taken in-house to BMW. In July 1978 a more powerful variant, the 635 CSi, was introduced that featured as standard a special close-ratio 5-speed gearbox and a single piece black rear spoiler. The bigger bore and shorter stroke facilitated max 218 hp at 5200rpm and a better torque curve. For the first year, the 635 CSi was offered in three colours (Polaris, Henna Red, Graphite), and could also be spotted by the front air dam that did not have attached fog lights. These simple cosmetic changes reportedly worked to reduce uplift on the car at high speeds by almost 15% over the non-spoiler body shape. This early model shared suspension components with the inaugural BMW 5-series, the E12. In 1979 the carburettor 630 CS was replaced with the 628 CSi with its fuel injected 2.8 litre engine taken from the BMW 528i. In 1980 the 635 CSi gained the central locking system that is also controlled from the boot. Also, the E24 body style converted from L-jetronic injection to a Bosch Motronic DME. In 1982 (Europe) and 1983 (US), the E24 changed slightly in appearance, with an improved interior and slightly modified exterior. At the same time, the 635 CSi received a new engine, a slightly smaller-bored and longer-stroked 3430 cc six to replace the former 3453 cc engine and became available with a wide-ratio 5-speed manual or an automatic. This slight change was in fact a major change as pre-1982 cars were based on the E12 5-series chassis; after mid-1982, E24s shared the improved E28 5-series chassis. The only parts that remained the same were some of the exterior body panels. E24s produced after June 1987 came with new, ellipsoid headlamps which projects beam more directly onto road surface (newly introduced E32 7-series also sporting them). The sleeker European bumpers were also discontinued. Previous cars had either a European-standard bumper or a larger, reinforced bumper to meet the US standard requiring bumpers to withstand impact at 5 mph (8 km/h) without damage to safety-related components. 1989 was the last year for the E24 with production stopping in April. The E24 was supplanted by the considerably heavier, more complex, and more exclusive 8 Series. BMW Motorsport introduced the M 635 CSi in Europe at the Frankfurt Motor Show in 1983. It is essentially an E24 powered by the powerplant of the BMW M1 – the M88 with 286 PS). Most of the cars were equipped with special metric 415 mm diameter wheels requiring Michelin TRX tyres. A catalysed, lower compression ratio version of the car with the S38 engine (260 PS ) was introduced in the U.S. in 1987. All M6 cars came standard with a 25% rear limited slip differential. U.S. models included additional comforts that were usually optional on models sold in Europe such as Nappa leather power seats and a dedicated rear A/C unit with a centre beverage chiller.  4,088 M 635 CSi cars were built between 1983 and 1988 with 1,767 U.S. M6 built

 photo Picture 075_zpsa6zxrfdz.jpg  photo Picture 080_zpso6ypiggx.jpg

The remaining BMW models here were from the current range: a couple of  i8 and M4 as well as a modified version of the M5 supersaloon.

 photo Picture 020_zpsgl89kwhk.jpg  photo Picture 294_zpsdavlxhdk.jpg  photo Picture 293_zpsijzr9d7d.jpg  photo Picture 096_zpswkayzomf.jpg  photo Picture 274_zpshgknvmnr.jpg  photo Picture 243_zpsrqrby9xp.jpg  photo Picture 233_zps4zbfhrbm.jpg

BUICK

 photo Picture 047_zpsnuxonyxb.jpg

CATERHAM

Thanks to their light weight, many of the diminutive Caterham models, especially more recent ones, can deliver performance that will match that of lots of supercars, at least until aerodynamics take over, so it was no surprise to find an R300 model here. It is over 40 years since the company acquired the rights to build this car during which there has been a story of continual development, a four decade process of honing Colin Chapman’s original design, which is now 60 years old. Since 1973, when Graham Nearn’s Caterham cars took over the rights and manufacture of the fly-weight sportscars, it’s grown more power, better engines, more sophistication in both suspension and powertrains, as well – in some cases – as more space inside and certainly more creature comforts, all while preserving the original character. Caterham completed 42 of the heavier and not that well thought of Series 4 cars before deciding to concentrate on the classic Series 3 design, with a simple space frame chassis clothed in aluminium and glassfibre. At the time of the S3, the power unit was from Ford, with the Crossflow unit developing 84 bhp in GT form with a twin choke carburettor, though twin Webers were never far away. Sevens had started out with Ford side valve power, before the 948cc BMC A Series unit found its way into the car, followed by Ford’s new 1340cc and 1498cc engines, before the head redesign put the intake and the exhaust on opposite sides. When Ford discontinued the Kent engine in 1976, it caused something of a difficulty for Caterham, as this also meant the end of the Twin Cam and the BDR engines, of which Caterham had bought 500 in preceding years, and whilst the final pushrod engines came from South Africa, eventually the supply ran out and a new supplier was needed. At first the firm turned to Vauxhall’s 2 litre unit for the higher powered cars but when the found out that Rover were developing a new and sophisticated twin cam engine, which turned out to be the K Series unit, a deal was struck and the first K Series engined Caterhams appeared in 1991, once the multi-point injection version was available (the single point would have required a bonnet bulge which Caterham did not want). To get round the relative lack of torque, Caterham developed their own close ratio 6 speed gearbox which was lighter than the Ford unit they had been using, and which could cope with larger capacity and more powerful K Series units as Rover made them available. Caterham continued to develop the car throughout the 190s, starting to make their own steering racks among other changes. By the time the K Series and the 240 bhp Vauxhall engines in the HPC car came along, the interior had become plusher with a long cockpit option and a wider variant, the SV. There were now proper bucket seats instead of those with a plywood backrest and in 1996 the handbrake moved from under the dash to the transmission tunnel. This required extra tubing in the chassis, which made it 80% stiffer. The front suspension had gained a proper top wishbone and separate anti-roll bar, but the biggest change came with the adoption of de Dion rear suspension. The move was occasioned by a need to keep the rear wheels linked and parallel to each other, yet still as simple as possible, though the engineers harboured a desire for a fully independent rear end, which finally came about with the CSR version in 2004. This change improved the ride massively on bumpy roads and makes the car feel more planted. The collapse of Rover in 2005 meant the end for the K Series, so there was a switch back to Ford power, using the Sigma engine, which happily fits under the bonnet – something that few modern engines do as they are now often simply too tall. Adding more power is a law of diminishing returns with a Caterham, thanks to the aerodynamics, though there are now an array of different power outputs offered, but the most recent change was a new entry level model, which uses a 660cc Suzuki turbo triple, with a live axle and a similar power to weight ratio to the classic single carb Ford powered models of 30 years ago. However, these days you can get carpets, leather seats and full weather gear if you upgrade to an S pack. Caterham plan to continue to develop the car for as long as they can. To date they have built around 16,000 examples, and it is said that were you to gather 100 models together, you would not find two the same, even though, colour apart, many cars looks very similar at a quick glance.

 photo Picture 097_zpsdvg9n5kl.jpg

CHEVROLET

American does not really produce “supercars”, preferring the term “muscle cars”, though that term really applies to a series of models that were produced in the 1960s and early 1970s, when ever more powerful engines were put under the bonnet of what looked like regular large saloon and coupe cars. The closest they get to the supercar, perhaps are cars like these Chevrolets, with examples of the Corvette Convertible C6 and HardTop representing one chapter of an over 60 year history of a car which started out somewhat lacking in power, but which now rivals Porsche 911 and Ferrari for performance and driving characteristics.

 photo Picture 225_zps0u6zrb07.jpg  photo Picture 100_zpsuupp1wex.jpg

Also here was the rather desirable “retro-styled” Camaro SS Coupe that you can buy here – in left hand drive form. It’s a fun car, but good luck with the fuel bills!

 photo Picture 280_zpsyzf7lz78.jpg  photo Picture 305_zps05v7zkgs.jpg

DELOREAN

Probably among the slowest of vehicles on display here, the DeLoreans, as ever, attracted significant interest throughout the day. It is now over 35 years since this striking Northern Ireland built car entered production, but it still pulls the crowds, thanks in no small part, I am sure, to the gullwing doors, and its starring role in “Back to the Future”.  The DeLorean story goes back to October 1976, when the first prototype was completed by American automotive chief engineer William T. Collins, formerly chief engineer at Pontiac. Originally, the car was intended to have a centrally-mounted Wankel rotary engine. The engine selection was reconsidered when Comotor production ended, and the favoured engine became Ford’s “Cologne V6.” Eventually the French/Swedish PRV (Peugeot-Renault-Volvo) fuel injected V6 was selected. Also the engine location moved from the mid-engined location in the prototype to a rear-engined installation in the production car. The chassis was initially planned to be produced from a new and untested manufacturing technology known as elastic reservoir moulding (ERM), which would lighten the car while presumably lowering its production costs. This new technology, for which DeLorean had purchased patent rights, was eventually found to be unsuitable. These and other changes to the original concept led to considerable schedule pressures. The entire car was deemed to require almost complete re-engineering, which was turned over to engineer Colin Chapman, founder and owner of Lotus Cars. Chapman replaced most of the unproven material and manufacturing techniques with those then employed by Lotus, like the steel backbone chassis. DeLorean required $175 million to develop and build the motor company. Convincing Hollywood celebrities such as Johnny Carson and Sammy Davis, Jr. to invest in the firm, DeLorean eventually built the DMC-12 in a factory in Dunmurry, Northern Ireland, a neighbourhood a few miles from Belfast city centre. Construction on the factory began in October 1978, and although production of the DMC-12 was scheduled to start in 1979, engineering problems and budget overruns delayed production until early 1981. By that time, the unemployment rate was high in Northern Ireland and local residents lined up to apply for jobs at the factory. The workers were largely inexperienced, but were paid premium wages and supplied with the best equipment available. Most quality issues were solved by 1982 and the cars were sold from dealers with a one-year, 12,000-mile warranty and an available five-year, 50,000-mile service contract. The DeLorean Motor Company went bankrupt in late 1982 following John DeLorean’s arrest in October of that year on drug trafficking charges. He was later found not guilty, but it was too late for the DMC-12 to remain in production. Approximately 100 partially assembled DMCs on the production line were completed by Consolidated International (now known as Big Lots). The remaining parts from the factory stock, the parts from the US Warranty Parts Centre, as well as parts from the original suppliers that had not yet been delivered to the factory were all shipped to Columbus, Ohio in 1983–1984. A company called KAPAC sold these parts to retail and wholesale customers via mail order. In 1997, DeLorean Motor Company of Texas acquired this inventory. There had also been a long-standing rumour that the body stamping dies were dumped into the ocean to prevent later manufacture. Evidence later emerged that the dies were used as anchors for nets at a fish farm in Ards Bay, Connemara, Ireland. About 9,200 DMC-12s were produced between January 1981 and December 1982. Almost a fifth of these were produced in October 1981. About a thousand 1982 models were produced between February and May 1982, and all of these cars had the VINs changed after purchase by Consolidated to make them appear as 1983 models. The survival rate of the cars is good.

 photo Picture 012_zpsrbcgdkqe.jpg  photo Picture 321_zpsqz97dzjx.jpg  photo Picture 322_zpsnnfazjnl.jpg

DODGE

There have been three generations of Dodge Viper RT/10, and two of them were present here, the first and rawest example of the model, as well as the latest Viper SRT/10.

 photo Picture 253_zpsrsc4hesy.jpg  photo Picture 252_zpsvmr3jwn7.jpg  photo Picture 317_zps2xd0u2ko.jpg  photo Picture 098_zpslfxe8o2t.jpg  photo Picture 304_zpswxtrdujt.jpg  photo Picture 284_zpstokuuy4v.jpg  photo Picture 106_zpsybupwtxj.jpg  photo Picture 105_zpsy19p5spk.jpg  photo Picture 104_zpsr5t4jd7a.jpg

FERRARI

Needless to say there were lots of Ferrari models here, with both variety and quantity here. There were none of the earlier cars here, from the days when Ferrari was only producing small quantities of cars, with the oldest model present being a 308 GTS, a model dating from the late 1970s. Launched at the Paris Motor Show in 1975 as a direct replacement for the Dino 246, and designed by Pininfarina with sweeping curves and aggressive lines, the 308 GTB and later targa-topped 308 GTS have gone on to become one of the most recognised Ferraris of all time. Fitted with a 2.9 litre DOHC V8 engine fed by four Webber 40DCNF Carburettors, the power output of 255bhp was sufficient to propel the 308 from 0 to 60mph in 6.5 seconds and on to a top speed of 159 mph. Tougher emissions standards in the 1980s challenged Ferrari more than many other marques. In 1980, fuel injection was adopted for the first time on the 308 GTB and GTS models, and power dropped quite noticeably fro 240 bhp to 214bhp. Two years later, at the 1982 Paris Motor Show, Ferrari launched the 308 quattrovalvole, in GTB and GTS form. The main change from the 308 GTBi/GTSi it succeeded were the 4-valves per cylinder—hence its name, which pushed output back up to 240 hp restoring some of the performance lost to the emission control equipment. The new model could be recognised by the addition of a slim louvred panel in the front lid to aid radiator exhaust air exit, power operated mirrors carrying a small enamel Ferrari badge, a redesigned radiator grille with rectangular driving lights on each side, and rectangular (in place of round) side repeaters. The interior also received some minor updates, such as a satin black three spoke steering wheel with triangular centre; cloth seat centres became available as an option to the standard full leather. Available included metallic paint, a deep front spoiler, air conditioning, wider wheels, 16-inch Speedline wheels with Pirelli P7 tyres, and a satin black roof aerofoil (standard on Japanese market models). Apart from the 32-valve cylinder heads, the V8 engine was essentially of the same design as that used in the 308 GTSi model. The gear and final drive ratios were altered to suit the revised characteristics of the four valves per cylinder engine. One other significant benefit of the QV four valve heads was the replacement of the non-QV models sodium valves which have been known to fail at the joint between the head and the stem. Bosch K-Jetronic fuel injection and Marelli Digiplex electronic ignition were carried over from the GTBi/GTSi. The car was produced in this form until the launch of the 328 models in the autumn of 1985 which had larger 3.2 litre engines and a number of styling changes. 308 GTB models are becoming increasingly sought after, with prices rising steadily and quite steeply.

 photo Picture 030_zpsefsusdvm.jpg

Launched in May 1994 as an evolution of the Ferrari 348, just about everything was changed, and improved for the F355, seen here in Berlinetta formats.  Design emphasis for the F355 was placed on significantly improved performance, but driveability across a wider range of speeds and in different environments such as low-speed city traffic was also addressed, as the Honda NS-X had proved that you could make a supercar that could be lived with every day. Apart from the displacement increase from 3.4 to 3.5 litres, the major difference between the V8 engine in the 348 and F355 was the introduction of a 5-valve cylinder head. This new head design allowed for better intake permeability and resulted in an engine that was considerably more powerful, producing 375 hp. The longitudinal 90° V8 engine was bored 2mm over the 348’s engine, resulting in the small increase in displacement. The F355 had a Motronic system controlling the electronic fuel injection and ignition systems, with a single spark plug per cylinder, resulting in an unusual 5 valves per cylinder configuration. This was reflected in the name, which did not follow the formula from the previous decades of engine capacity in litres followed by number of cylinders such as the  246 = 2.4 litres and 6 cylinders and the 308 of 3.0 litres and  8 cylinders. For the F355, Ferrari used engine capacity followed by the number of valves per cylinder (355 = 3.5 litres engine capacity and 5 valves per cylinder) to bring the performance advances introduced by a 5 valve per cylinder configuration into the forefront. 5. The frame was a steel monocoque with tubular steel rear sub-frame with front and rear suspensions using independent, unequal-length wishbones, coil springs over gas-filled telescopic shock absorbers with electronic control servos and anti-roll bars. The car allows selection between two damper settings, “Comfort” and “Sport”. Ferrari fitted all road-going F355 models with Pirelli tyres, 225/40ZR 18 in front and 265/40 ZR 18 in the rear. Although the F355 was equipped with power-assisted steering (intended to improve low-speed driveability relative to the outgoing 348), this could optionally be replaced with a manual steering rack setup by special order. Aerodynamic designs for the car included over 1,300 hours of wind tunnel analysis. The car incorporates a Nolder profile on the upper portion of the tail, and a fairing on the underbody that generates downforce when the car is at speed. These changes not only made the car faster but also much better to drive, restoring Ferrari to the top of the tree among its rivals. At launch, two models were available: the coupe Berlinetta and the targa topped GTS, which was identical to the Berlinetta apart from the fact that the removable “targa-style” hard top roof could be stored behind the seats. The F355 would prove to be last in the series of mid-engined Ferraris with the Flying Buttress rear window, a lineage going back to the 1965 Dino 206 GT, unveiled at the Paris Auto Show. The Spider (convertible) version came later in the year. In 1997 the Formula One style paddle gear shift electrohydraulic manual transmission was introduced with the Ferrari 355 F1 adding £6,000 to the dealer asking price. This system promised faster gearchanges and allowed the driver to keep both hands on the steering wheel, It proved to be very popular and was the beginning of the end for the manual-transmission Ferrari.  Ferrari produced 4,871 road-going Berlinetta models, of which 3,829 were 6-speed and 1,042 were F1 transmissions. The Spider proved to be the second-most popular F355 model, with a total production of 3,717 units, of which 2,664 were produced with the 6-speed transmission and another 1,053 produced with the F1 transmission.  A total of 2,577 GTS models were produced, with 2,048 delivered with the 6-speed transmission and another 529 with the F1 transmission. This was the last GTS targa style model produced by Ferrari. This made a total production run of 11,273 units making the F355 the most-produced Ferrari at the time, though this sales record would be surpassed by the next generation 360 and later, the F430.

 photo Picture 033_zpsmwxocdcy.jpg

It was with the 360 Modena that sales of Ferrari models really took off, with unprecedented volumes of the car being sold. The 360 Modena was launched in 1999,  named after the town of Modena, the birthplace of Enzo Ferrari. A major innovation in this all new model came from Ferrari’s partnership with Alcoa which resulted in an entirely new all-aluminium space-frame chassis that was 40% stiffer than the F355 which had utilised steel. The design was 28% lighter despite a 10% increase in overall dimensions. Along with a lightweight frame the new Pininfarina body styling deviated from traditions of the previous decade’s sharp angles and flip-up headlights. The new V8 engine, common to all versions, was of 3.6 litre capacity with a flat plane crankshaft, titanium connecting rods and generates 400 bhp  Despite what looks like on paper modest gains in reality the power to weight ratio was significantly improved on over the F355, this was due to the combination of both a lighter car and more power. The 0 to 100 km/h acceleration performance improved from 4.6 to 4.3 seconds. The first model to be rolled out was the 360 Modena, available as a manual, or an F1 electrohydraulic manual. Next up was an open car. The 360 was designed with a Spider variant in mind; since removing the roof of a coupe reduces the torsional rigidity, the 360 was built for strength in other areas. Ferrari designers strengthened the sills, stiffened the front of the floorpan and redesigned the windscreen frame. The rear bulkhead had to be stiffened to cut out engine noise from the cabin. The convertible’s necessary dynamic rigidity is provided by additional side reinforcements and a cross brace in front of the engine. Passenger safety is ensured by a strengthened windscreen frame and roll bars. The 360 Spider displays a curvilinear waistline. The fairings imply the start of a roof, and stable roll bars are embedded in these elevations. Due to use of light aluminium construction throughout, the Spider weighs in only 60 kg heavier than the coupé. As with the Modena version, its 3.6 litre V8 with 400 bhp is on display under a glass cover. The engine — confined in space by the convertible’s top’s storage area — acquires additional air supply through especially large side grills. The intake manifolds were moved toward the centre of the engine between the air supply conduits in the Spider engine compartment, as opposed to lying apart as with the Modena. In terms of performance, the 0-60 mph time was slightly slower at 4.4 seconds due to the slight weight increase, and the top speed was reduced from 189 to 180 mph. Despite the car’s mid-mounted V8 engine, the electrically operated top is able to stow into the compartment when not in use. The convertible top was available in black, blue, grey and beige. The transformation from a closed top to an open-air convertible is a two-stage folding-action that has been dubbed “a stunning 20 second mechanical symphony”. The interior of the Spider is identical to that of the coupé. Sales of the Spider initially overtook those of the Coupe, but parity was restored when the third variant was launched, the Challenge Stradale, the finale model before replacement. It was essentially a lightened, factory tuned version of the Modena with many of the Modena’s optional extras becoming standard. Carbon seats, racing exhaust, carbon engine bay, and so on. Famously at the time Ferrari claimed it dropped up to 110 kg over the stock Modena helping to improve its handling. Many other chassis optimisations were carried out too such as stiffer titanium springs (lowering unsprung weight), stiffer bushings and an updated rear anti roll bar (the same anti-roll bar as used on the 430 Scuderia) along with a remapped active suspension computer. Changes also included larger 19″ BBS wheels, the use of carbon fibre for the frames of the seats and mirrors, titanium springs which were also 20% stiffer, and Carbon fibre-reinforced Silicon Carbide (C/SiC) ceramic composite disc brakes. A variety of options allowed for further weight reductions, including replacing the leather interior with fabric, removal of the power windows and mirrors, and deletion of the stereo. Lexan side windows were available in Europe only but everywhere else got the Lexan rear cover. It was officially introduced in March 2003 at the Geneva International Motor Show and went into production shortly thereafter. The CS can be compared to Porsche’s GT3 RS model in design approach and many magazines have placed them head-to-head in road tests. A single 360 Barchetta was produced as a special wedding present from Ferrari to former Ferrari president Luca di Montezemolo. In total, there were 8,800 Modenas and 7,565 Spiders produced. Seen here were both the regular 360 Modena models and the open-topped Spider cars.

 photo Picture 005_zpslqzldwqy.jpg  photo Picture 027_zpswqgykvht.jpg  photo Picture 035_zpsuc0p9we9.jpg

There were also plenty of example of the Ferrari F430 here, the successor to the Ferrari 360. This car debuted at the 2004 Paris Motor Show. Designed by Pininfarina, under the guidance of Frank Stephenson, the body styling of the F430 was revised from its predecessor, the Ferrari 360, to improve its aerodynamic efficiency. Although the drag coefficient remained the same, downforce was greatly enhanced. Despite sharing the same basic Alcoa Aluminium chassis, roof line, doors and glass, the car looked significantly different from the 360. A great deal of Ferrari heritage was included in the exterior design. At the rear, the Enzo’s tail lights and interior vents were added. The car’s name was etched into the Testarossa-styled driver’s side mirror. The large oval openings in the front bumper are reminiscent of Ferrari racing models from the 60s, specifically the 156 “sharknose” Formula One car and 250 TR61 Le Mans cars of Phil Hill. Designed with soft-top-convertible. The F430 featured a 4.3 litre V8 petrol engine of the “Ferrari-Maserati” F136 family. This new power plant was a significant departure for Ferrari, as all previous Ferrari V8’s were descendants of the Dino racing program of the 1950s. This fifty-year development cycle came to an end with the entirely new unit. The engine’s output was 490 hp at 8500 rpm and 465 N·m (343 lb/ft) of torque at 5250 rpm, 80% of which was available below 3500rpm. Despite a 20% increase in displacement, engine weight grew by only 4 kg and engine dimensions were decreased, for easier packaging. The connecting rods, pistons and crankshaft were all entirely new, while the four-valve cylinder head, valves and intake trumpets were copied directly from Formula 1 engines, for ideal volumetric efficiency. The F430 has a top speed in excess of 196 mph and could accelerate from 0 to 100 km/h in 3.9 seconds, 0.6 seconds quicker than the old model. The brakes on the F430 were designed in close cooperation with Brembo (who did the calipers and discs) and Bosch (who did the electronics package),resulting in a new cast-iron alloy for the discs. The new alloy includes molybdenum which has better heat dissipation performance. The F430 was also available with the optional Carbon fibre-reinforced Silicon Carbide (C/SiC) ceramic composite brake package. Ferrari claims the carbon ceramic brakes will not fade even after 300-360 laps at their test track. The F430 featured the E-Diff, a computer-controlled limited slip active differential which can vary the distribution of torque based on inputs such as steering angle and lateral acceleration. Other notable features include the first application of Ferrari’s manettino steering wheel-mounted control knob. Drivers can select from five different settings which modify the vehicle’s ESC system, “Skyhook” electronic suspension, transmission behaviour, throttle response, and E-Diff. The feature is similar to Land Rover’s “Terrain Response” system. The Ferrari F430 was also released with exclusive Goodyear Eagle F1 GSD3 EMT tyres, which have a V-shaped tread design, run-flat capability, and OneTRED technology. The F430 Spider, Ferrari’s 21st road going convertible, made its world premiere at the 2005 Geneva Motor Show. The car was designed by Pininfarina with aerodynamic simulation programs also used for Formula 1 cars. The roof panel automatically folds away inside a space above the engine bay. The conversion from a closed top to an open-air convertible is a two-stage folding-action. The interior of the Spider is identical to that of the coupé. Serving as the successor to the Challenge Stradale, the 430 Scuderia was unveiled by Michael Schumacher at the 2007 Frankfurt Auto Show. Aimed to compete with cars like the Porsche RS-models and the Lamborghini Gallardo Superleggera it was lighter by 100 kg/220 lb and more powerful (510 PS) than the standard F430. Increased power came from a revised intake, exhaust, and an ion-sensing knock-detection system that allows for a higher compression ratio. Thus the weight-to-power ratio was reduced from 2.96 kg/hp to 2.5 kg/hp. In addition to the weight saving measures, the Scuderia semi-automatic transmission gained improved “Superfast”, known as “Superfast2”, software for faster 60 millisecond shift-times. A new traction control system combined the F1-Trac traction and stability control with the E-Diff electronic differential. The Ferrari 430 Scuderia accelerates from 0-100 km/h in 3.6 seconds, with a top speed of 202 miles per hour. Ferrari claimed that around their test track, Fiorano Circuit, it matched the Ferrari Enzo, and the Ferrari F430’s successor, the Ferrari 458. To commemorate Ferrari’s 16th victory in the Formula 1 Constructor’s World Championship in 2008, Ferrari unveiled the Scuderia Spider 16M at World Finals in Mugello. It is effectively a convertible version of the 430 Scuderia. The engine produces 510 PS at 8500 rpm. The car has a dry weight of 1,340 kg, making it 80 kg lighter than the F430 Spider, at a curb weight of 1,440 kg (3,175 lb). The chassis was stiffened to cope with the extra performance available and the car featured many carbon fibre parts as standard. Specially lightened front and rear bumpers (compared to the 430 Scuderia) were a further sign of the efforts Ferrari was putting into this convertible track car for the road. Unique 5-spoke forged wheels were produced for the 16M’s launch and helped to considerably reduce unsprung weight with larger front brakes and calipers added for extra stopping power (also featured on 430 Scuderia). It accelerates from 0-100 km/h in 3.7 seconds, with a top speed of 315 km/h (196 mph). 499 vehicles were released beginning early 2009 and all were pre-sold to select clients. As well as a 16M, there were many Coupe and Spider F430s on show here.

 photo Picture 009_zpsrfk8z1pl.jpg  photo Picture 010_zpspjhid90i.jpg  photo Picture 433_zpsgfh3w1wk.jpg  photo Picture 024_zpss89mvoiu.jpg  photo Picture 034_zpsolrlfite.jpg  photo Picture 032_zpshdsst8cj.jpg photo Picture 308_zpsqagehkhz.jpg  photo Picture 306_zpsil2yqarp.jpg

The next generation of V8-powered Ferrari was here too, the 458 Italia. An all new design, the 458 Italia was first officially unveiled at the 2009 Frankfurt Motor Show. Once more, Ferrari advised that the model incorporated technologies developed from the company’s experience in Formula 1. The body computer system was developed by Magneti Marelli Automotive Lighting. The 458 came with a 4,499 cc  V8 engine of the “Ferrari/Maserati” F136 engine family, producing 570 PS ( 562 hp) at 9,000 rpm and 540 N·m (398 lb/ft) at 6,000 rpm with 80% torque available at 3,250 rpm. The engine featured direct fuel injection, a first for Ferrari mid-engine setups in its road cars. The only transmission available was a dual-clutch 7-speed Getrag gearbox, in a different state of tune shared with the Mercedes-Benz SLS AMG. There was no traditional manual option, making this the fourth road-car after the Enzo, Challenge Stradale and 430 Scuderia not to be offered with Ferrari’s classic gated manual. The car’s suspension featured double wishbones at the front and a multi-link setup at the rear, coupled with E-Diff and F1-Trac traction control systems, designed to improve the car’s cornering and longitudinal acceleration by 32% when compared with its predecessors.The brakes included a prefill function whereby the pistons in the calipers move the pads into contact with the discs on lift off to minimise delay in the brakes being applied. This combined with the ABS and standard Carbon Ceramic brakes caused a reduction in stopping distance from 100–0 km/h (62-0 mph) to 32.5 metres. Ferrari’s official 0–100 km/h (62 mph) acceleration time was quoted as 2.9–3.0 seconds with a top speed of 340 km/h (210 mph).  In keeping with Ferrari tradition the body was designed by Pininfarina under the leadership of Donato Coco, the Ferrari design director. The interior design of Ferrari 458 Italia was designed by Bertrand Rapatel, a French automobile designer. The car’s exterior styling and features were designed for aerodynamic efficiency, producing a downforce of 140 kg (309 lb) at 200 km/h. In particular, the front grille features deformable winglets that lower at high speeds, in order to offer reduced drag. The car’s interior was designed using input from former Ferrari Formula 1 driver Michael Schumacher; in a layout common to racing cars, the new steering wheel incorporates many controls normally located on the dashboard or on stalks, such as turning signals or high beams. At launch the car was widely praised as being pretty much near perfect in every regard. It did lack a fresh air version, though, but that was addressed with the launch of the 458 Spider at the 2011 Frankfurt Motor Show. This convertible variant of the 458 Italia featured an aluminium retractable hardtop which, according to Ferrari, weighs 25 kilograms (55 lb) less than a soft roof such as the one found on the Ferrari F430 Spider, and can be opened in 14 seconds The engine cover was redesigned to accommodate the retractable roof system. It had the same 0–100 km/h time as the hard-top but a lower top speed of 199 mph. It quickly became the better seller of the two versions.

 photo Picture 008_zpseieurg4v.jpg  photo Picture 028_zpsuzwn1pvx.jpg  photo Picture 099_zpsbxp5c9pi.jpg  photo Picture 297_zpsqy2wka7z.jpg

The sort of car that I think of as that special supercar that you did not expect to see in real life very often, but which you could gaze it in a poster on your bedrooom wall (yes, I had one!) is this, the Testarossa, the dramatically styled Pininfarina design which was launched at the 1984 Paris Show in October 1984, and produced until 1991, with the same basic design then going through two model revisions, with the  512 TR and later F512 M which were produced from 1992 to 1996 before the model was replaced by the front-engined 550 Maranello. Almost 10,000 Testarossas, 512 TRs, and F512 Ms were produced, making it one of the most-produced Ferrari models, despite its high price and exotic design. In 1995, the F512 M retailed for £136,500. The Testarossa followed the same concept as the BB512, the model it replaced, but was intended to fix some of the criticisms of the earlier car, such as a cabin that got increasingly hot from the indoor plumbing that ran between the front-mounted radiator and the midships-mounted engine and a lack of luggage space. This resulted in a car that was larger, and at 1,976 millimetres (78 in) wide the Testarossa was half a foot wider than the Boxer and immediately condemned for being too wide, though these days it does not appear anything like as wide as it did when new. This resulted in an increased wheelbase that stretched about 64 mm (2.5 in) to 2,550 mm (100 in) which was used to accommodate luggage in a carpeted storage space under the front forward-opening lid. The increase in length created extra storage space behind the seats in the cabin. Headroom was also increased with a roofline half an inch taller than the Boxer. The design came from Pininfarina with a team of designers led by design chief Leonardo Fioravanti, the designer of many contemporary Ferraris. The design was originated by Nicosia, but the guidance of Fioravanti was equally important. Being a trained aerodynamicist, Fioravanti applied his know-how to set the aerodynamics layout of the car. This meant the large side intakes were not only a statement of style but actually functional – they drew clean air to cool the side radiators and then went upward and left the car through the ventilation holes located at the engine lid and the tail. As a result, the Testarossa did not need a rear spoiler like Lamborghini’s Countach yet produced zero lift at its rear axle. The aerodynamic drag coefficient of 0.36 was also significantly better than the Lamborghini’s 0.42. Pininfarina’s body was a departure from the curvaceous boxer—one which caused some controversy. The side strakes sometimes referred to as “cheese graters” or “egg slicers,” that spanned from the doors to the rear wings were needed for rules in several countries outlawing large openings on cars. The Testarossa had twin radiators in the back with the engine instead of a single radiator up-front.  In conjunction the strakes provided cool air to the rear-mounted side radiators, thus keeping the engine from overheating. The strakes also made the Testarossa wider at the rear than in the front, thus increasing stability and handling. One last unique addition to the new design was a single high mounted rear view mirror on the driver’s side. On US based cars, the mirror was lowered to a more normal placement in 1987 and quickly joined by a passenger side rear view mirror for the driver to be able to make safe easy lane changes. Like its predecessor, the Testarossa used double wishbone front and rear suspension systems. Ferrari improved traction by adding 10-inch-wide alloy rear wheels. The Testarossa drivetrain was also an evolution of the BB 512i. Its engine used near identical displacement and compression ratio, but unlike the BB 512i had four-valve cylinder heads that were finished in red. The capacity was 4,943 cc, in a flat-12 engine mid mounted. Each cylinder had four valves,  lubricated via a dry sump system, and a compression ratio of 9.20:1. These combined to provide a maximum torque of 490 Nm (361 lb/ft) at 4500 rpm and a maximum power of 390 hp at 6300 rpm. That was enough to allow the Testarossa to accelerate from 0–60 mph in 5.2 seconds and on to 100 mph. The original Testarossa was re-engineered for 1992 and released as the 512 TR, at the Los Angeles Auto Show, effectively as a completely new car, with an improved weight distribution of 41% front: 59% rear. The F512 M was introduced at the 1994 Paris Auto Show, with the M standing for “modificata”.  That car is easy to spot as it lost the pop-up headlights and gained awkward glazed in units.

 photo Picture 299_zpsr0wy1yyr.jpg  photo Picture 276_zpsfhawho8s.jpg

Since the mid 1990s, top Ferrari models have been powered by V12 engines, mounted at the front of the car, and there were examples of both the 2 seater – the 599GTB – and four seater – the 612 Scaglietti – models following this format.

 photo Picture 029_zps6pps6cm0.jpg  photo Picture 002_zpsv6fdol01.jpg  photo Picture 001_zpsozqoafsj.jpg  photo Picture 025_zpsggbp3od7.jpg

More recent Ferrari models on show included the California in both its original guise and the recently released heavily revamped California T as well as the F12 Berlinetta.

 photo Picture 026_zpsbfcpfzbv.jpg  photo Picture 031_zpsnyyhdotg.jpg  photo Picture 004_zps6le3sdkc.jpg  photo Picture 003_zpsvptsc0mk.jpg

Final Ferrari here was an F40, the car designed to celebrate Ferrari’s 40th birthday and the last production Ferrari to be personally approved by the great Enzo Ferrari, launched a few months before his passing. Considered by many to be the greatest supercar of all time, the F40 was powered by a twin-turbocharged 2.9-litre V8 boasting 471bhp and was the first road legal production car to break the 200mph barrier. Strong and lightweight, the F40’s body is constructed predominantly from kevlar and carbon fibre. With only 1,311 produced and values still rocketing, the F40 has truly cemented its position amongst the greats.

 photo Picture 006_zps3itxy81e.jpg  photo Picture 007_zpsranxrun2.jpg

FORD

Representing the sort of extreme-performance car at prices that far more people could afford was this Escort RS Cosworth, a sports derivative and rally homologation special of the fifth generation European Ford Escort. It was designed to qualify as a Group A car for the World Rally Championship, in which it competed between 1993 and 1998. It was available as a road car from 1992–96 in very limited numbers. Ford developed the car around the chassis and mechanicals of its spiritual predecessor, the Sierra Cosworth to accommodate the larger Cosworth engine and transmission, whilst clothing it in Escort body panels to make it resemble the standard car. Designed under the guidance of Rod Mansfield and John Wheeler of Ford’s SVO department, the styling was carried out during 1989, a year before the standard Escort was launched, by Stephen Harper at MGA Developments in Coventry. The spoiler was added by Frank Stephenson, who originally proposed a three-deck piece. The body tooling was created by coachbuilders Karmann at their facility in Rheine, Germany, where the cars were manufactured. Changes were made to the engine management system and a new turbocharger was fitted. Permanent four wheel drive with a 34/66% front/rear split came courtesy of an uprated five speed gearbox as used in the Sierra Cosworth. Recaro sports seats came as a standard fitment. Later production models were available without the oversize tail spoiler although by far the majority were still ordered with it. Like its Sierra predecessor, they are commonly nicknamed “Cossie” by enthusiasts. The car’s top speed was 150 mph, which rivalled lower-end supercars including the Audi Quattro, BMW M3, Nissan 300ZX and Toyota Supra, and comfortably outperformed traditional “hot hatchbacks” like the Volkswagen Golf GTI. It was much faster than the 126 mph which the Escort RS2000 and earlier Escort RS Turbo were capable of. Two versions were produced. The initial 2,500 units were “homologation specials” used to get the FIA accreditation for entry into the World Rally Championship. They were fitted with a Garrett T3/T04B turbocharger. Among these initial units, a handful were badged as Motorsport versions, these lacked certain refinements such as a sunroof and sound deadening. The initial cars included features that, although they made the Cosworth a more effective car, did not enhance it as a road vehicle, and once the rules were satisfied Ford attempted to make the car less temperamental and easier to drive under normal conditions. The second generation, starting production from late 1994, were fitted with a Garrett T25 turbocharger, a smaller unit which reduced turbo lag and increased usability in everyday driving situations. With these later models, the ‘whale tail’ spoiler became a delete option. The Escort Cosworth was a rare car, with 7,145 vehicles produced from the start of production on 19 February 1992 until the last car rolled out of the factory on 12 January 1996. This is the only example that was produced in yellow.

 photo Picture 022_zpsevmog8eu.jpg  photo Picture 219_zpsxvgd5idb.jpg  photo Picture 195_zpsbpjh1yw1.jpg

For as long as there have been Mustangs, there have been people making them go faster, with numerous performance versions produced not just by Ford themselves, but also the well known Shelby versions as well as plenty of other after-market converters. Seen here with the latest shape GT 5.0 V8 production car which recently went on sale in the UK in right hand drive form, were examples of the previous generation in  GT500 SuperSnake and an earlier model.

 photo Picture 463_zpsce4xsy6r.jpg  photo Picture 462_zpsz0rlg3dp.jpg  photo Picture 461_zpstnz5rfkj.jpg  photo Picture 023_zpslqk3aur0.jpg  photo Picture 246_zpsgzv7svqe.jpg  photo Picture 222_zpsyinq6df2.jpg photo Picture 263_zpsdy7mlhtr.jpg  photo Picture 084_zpsg99vokxc.jpg  photo Picture 089_zpsv9vebeqv.jpg  photo Picture 170_zps25f769ru.jpg

Ford’s supercar of recent  times is the GT, and there was one of these on display. The Ford GT began as a concept car designed in anticipation of the automaker’s centennial year and as part of its drive to showcase and , the left headlight cluster was designed to read “100”. The British company, Safir Engineering, who built continuation GT40s in the 1980s, owned the “GT40” trademark at that time. When they completed production, they sold the excess parts, tooling, design, and trademark to a small Ohio company called Safir GT40 Spares. This company licensed the use of the “GT40” trademark to Ford for the initial 2002 show car. When Ford decided to make the production vehicle, negotiations between the two firms failed, so the production cars do not wear the GT40 badge. The GT was produced in model years 2005 and 2006, with the first customers taking delivery in August 2004. The GT began assembly at Mayflower Vehicle Systems in Norwalk, Ohio and was painted by Saleen in their Saleen Special Vehicles facility in Troy, Michigan. The GT is powered by an engine built at Ford’s Romeo Engine Plant in Romeo, Michigan. Installation of the engine and manual transmission along with interior finishing was handled in the SVT building at Ford’s Wixom, Michigan plant. Like many exotic vehicles, when the Ford GT was first released, the demand outpaced supply, and the cars initially sold for premium prices. The first private sale of Ford’s new mid-engine sports car was completed on August 4, 2004, when former Microsoft executive Jon Shirley took delivery of his Midnight Blue 2005 Ford GT. Shirley earned the right to purchase the first production Ford GT (chassis #10) at a charity auction at the Pebble Beach Concours d’Elegance Auction after bidding over $557,000. A few other early cars sold for as much as a US$100,000 premium over the suggested retail price of $139,995 (Ford increased the MSRP to $149,995 on July 1, 2005). Optional equipment available included a McIntosh sound system, racing stripes, painted brake calipers, and forged alloy wheels adding $13,500 to the MSRP. Of the 4,500 GTs originally planned, approximately 100 were to be exported to Europe, starting in late 2005. An additional 200 were destined for sale in Canada.  Approximately 550 were built in 2004, nearly 1,900 in 2005, and just over 1,600 in 2006, for a grand total of 4,038. The final 11 car bodies manufactured by Mayflower Vehicle Systems were disassembled, and the frames and body panels were sold as service parts. Sales of the GT continued into 2007, from cars held in storage and in dealer inventories. The car gained fame – of sorts – when Jeremy Clarkson, initially a super-keen owner of an example lost his patience and demanded his money back thanks to a number of quality issues that he had with his car. Nowadays, of course, it is seen very much as a desirable classic.

 photo Picture 312_zpsu0wxkfn6.jpg  photo Picture 314_zpsmpjzbw7v.jpg  photo Picture 291_zpssp1unf6j.jpg  photo Picture 289_zpsttfujpfy.jpg  photo Picture 290_zpsyt30j96i.jpg

JAGUAR

Needing no introduction, even now, over 50 years since its Geneva Show premiere in 1961 is the E Type, and this was represented among the Jaguars on display. stunning the world at the 1961 Geneva Show. Considered by many to be Sir William Lyons’ greatest achievement, not only did the car have stop-you-in-your-tracks gorgeous styling, but it had explosive performance (even if the 150 mph that was achieved in The Autocar’s Road Test is now known to have been with a little “help”), but it was the price that amazed people more than anything else. Whilst out of reach for most people, who could barely afford any new car, it was massively cheaper than contemporary Aston Martins and Ferraris, its market rivals. It was not perfect, though, and over the coming years, Jaguar made constant improvements. A 2+2 model joined the initial range of Roadster and Coupe, and more powerful and larger engines came when the 3.8 litre was enlarged to 4.2 litres, before more significant styling changes came with the 1967 Series 2 and the 1971 Series 3, where new front end treatments and lights were a consequence of legislative demands of the E Type’s most important market, America. Many of the cars that were first sold in the US have since been repatriated, so there are plenty of them around now, but even so values continue to rise. Buy while you can still afford one!

 photo Picture 128_zpsnoqfq9k6.jpg  photo Picture 052_zpskojojqho.jpg

One of the most loved Jaguars of all time, both when it was new, and still now, is the Mark 2 saloon. Many will tell you that it is not the 3 Series BMW that “invented” the “compact sports saloon” car class, but this model, which dates back to 1959. A thorough revision of the small Jaguar saloon that had joined the range in 1955, the Mark 2 was notable in that it was the first car to use the Arabic numeral in its name, as opposed to the Roman numerals of the larger Jaguar models. At launch, the earlier model which had hitherto been known by its engine size was christened the Mark 1. Although clearly based on that car, the updated car looked significantly different, with an increase of 18% in cabin glass area greatly improving visibility. The car was re-engineered above the waistline. Slender front pillars allowed a wider windscreen and the rear window almost wrapped around to the enlarged side windows now with the familiar Jaguar D-shape above the back door and fully chromed frames for all the side windows. The radiator grille was amended and larger side, tail and fog lamps repositioned. Inside a new heating system was fitted and ducted to the rear compartment (although still notoriously ineffective). There was an improved instrument layout that became standard for all Jaguar cars until the XJ Series II of 1973. As well as the familiar 2.4 and 3.4 litre engines, what made this car particularly special was that it was also offered with the potent 220 bhp 3.8 litre unit that was fitted to the XK150 and which would later see service in the E Type. This gave the car a 0 – 60 time of around 8.5 seconds and a top speed of 125 mph. No wonder that the Mark 2 became popular as a get-away car for the criminal fraternity, and to keep up with and catch them, many police forces bought the car as well. With revised suspension and standard four wheel disc brakes, the car was effective on the track, taking plenty of class wins when new, and it is still popular in historic racing circles today. The quickest and most successful private entries came from John Coombs, a man with significant race experience who operated a large Jaguar dealership in Guildford. Coombs would undertake modifications to meet the demands of his customers, so not all the cars that he worked on are the same. Jaguar replaced the Mark 2 with simplified and slightly more cheaply finished 240 and 340 models, as an interim measure until an all-new model was ready to take over from them. The 3.8 litre disappeared from the range at this time, but in the 7 years it had been in production, it had been the best seller of the range, with around 30,000 cars produced, as compared to 28,666 of the 3.4 litre and 25,741 of the 2.4 litre model. Seen here was a nice of example of the 3.8 model.

 photo Picture 070_zpsgadppws7.jpg

Few would have guessed that the XJS would run for over 20 years, but eventually it came time for its replacement, and the car charged with so doing was the XK8.  Development began in 1992, with design work having starting earlier, in late 1991. By October 1992 a design was chosen and later frozen for production in 1993. Prototypes were built from December 1993 after the X100 was given formal approval and design patents were filed in June 1994. Development concluded in 1996, at which point the car was launched. The first-generation XK series shares its platform with the Aston Martin DB7, and both cars are derived from the Jaguar XJS, though the platform has been extensively changed. One of the revisions is the use of the second generation of Jaguar’s independent rear suspension unit, taken from the XJ40. The XK8 was available in coupé or convertible body styles and with the then new 4.0-litre Jaguar AJ-V8 engine. In 1998 the XKR was introduced with a supercharged version of the engine. 2003 the engines were replaced by the 4.2-litre AJ34 engines in both the normally aspirated and supercharged versions. Equipment levels were generous and there was a high standard of fit and finish. Both models came with all-leather interior, burl walnut trim, and side airbags. Jeremy Clarkson, during a Top Gear test-drive, likened the interior of the original XK8 to sitting inside Blenheim Palace. The model ran for 10 years before being replaced by the X150 model XK.  Seen here was an XKR.

 photo Picture 074_zps4birz0i5.jpg

There were a number of Jaguar’s 1990s supercar, the XJ220 here, including a very special XJ220S version. As is well known, the XJ220 was developed from a V12-engined 4-wheel drive concept car designed by an informal group of Jaguar employees working in their spare time. The group wished to create a modern version of the successful Jaguar 24 Hours of Le Mans racing cars of the 1950s and ’60s that could be entered into FIA Group B competitions. The XJ220 made use of engineering work undertaken for Jaguar’s then current racing car family. The initial XJ220 concept car was unveiled to the public at the 1988 British International Motor Show. Its positive reception prompted Jaguar to put the car into production; some 1500 deposits of £50,000 each were taken, and deliveries were planned for 1992. Engineering requirements resulted in significant changes to the specification of the XJ220, most notably replacement of the Jaguar V12 engine by a turbocharged V6 engine. The changes to the specification and a collapse in the price of collectible cars brought about by the early 1990s recession resulted in many buyers choosing not to exercise their purchase options. A total of just 271 cars were produced by the time production ended, each with a retail price of £470,000 in 1992. The production XJ220 used a 3.5-litre twin turbocharged engine, which was given the designation Jaguar/TWR JV6. This engine, which replaced the Jaguar V12 engine featured in the concept car, was a heavily redesigned and significantly altered version of the Austin Rover V64V V6 engine. The decision to change the engine was based on engine weight and dimensions, as well as to environmental emission considerations. Use of the shorter V6 engine design allowed the wheelbase of the XJ220 to be shortened and its weight to be reduced; the V12 engine was definitively ruled out when it was determined it would have difficulty in meeting emissions legislation whilst producing the required power and torque. TWR purchased the rights to the V64V engine from Austin Rover in 1989 and developed a completely new turbocharged engine, codenamed JV6, under the auspices of Allan Scott, with proportions roughly similar to the V64V, and suitable for Sportcar racing. TWR redesigned all parts of the engine, increasing the displacement to 3.5 litres, and adding two Garrett TO3 turbochargers. The JV6 engine would first be used in the JaguarSport XJR-10 and XJR-11 racing cars; its compact dimensions and low weight made it an ideal candidate for the XJ220. The engine had a 90° bank angle, four valves per cylinder and belt-driven double overhead camshafts. It shares a number of design features with the Cosworth DFV Formula One engine. The V64V engine chosen had a short but successful career as a purpose-designed racing car engine. It was designed by Cosworth engine designer David Wood for Austin Rover Group’s Metro derived Group B rally car, the MG Metro 6R4. The redesign work necessary to create the Jaguar/TWR JV6 engine was undertaken by Andrew Barnes, TWR’s Powertrain Manager, and also involved Swiss engine builder Max Heidegger who had designed and built the race engines used in the XJR-10 and XJR-11 racing cars.The XJ220’s engine had a bore and stroke of 94 mm × 84 mm, dry sump lubrication, Zytek multi point fuel injection with dual injectors and Zytek electronic engine management. The engine was manufactured with an aluminium cylinder block, aluminium cylinder heads with steel connecting rods and crankshaft, and in the standard state of tune, it produced a maximum power of 550 PS at 7200 rpm and torque of 475 lb·ft at 4500 rpm. The XJ220 can accelerate from 0–60 miles per hour in 3.6 seconds and reach a top speed of 213 miles per hour.The exhaust system had two catalytic converters, which reduced the power output of the engine. During testing at the Nardò Ring in Italy the XJ220, driven by 1990 Le Mans Winner Martin Brundle achieved a top speed of 217.1 miles per hour when the catalytic converters were disconnected and the rev limiter was increased to 7,900rpm; owing to the circular nature of the track, a speed of 217 mph is equivalent to 223 mph on a straight, level road. The V64V engine had the additional benefit of being very economical for such a powerful petrol engine, it was capable of achieving 32 mpg, in contrast, the smallest-engined Jaguar saloon of the time, the Jaguar XJ6 4.0 could only achieve around 24 mpg. Four-wheel drive was decided against early in the development process, for a number of reasons. It was thought rear-wheel drive would be adequate in the majority of situations, that the additional complexity of the four-wheel drive system would hinder the development process and potentially be problematic for the customer.  FF Developments were contracted to provide the gearbox/transaxle assembly, modifying their four-wheel drive transaxle assembly from the XJ220 concept into a pure rear-wheel drive design for the production car.  A five-speed gearbox is fitted; a six-speed gearbox was considered but deemed unnecessary, as the torque characteristics of the engine made a sixth gear redundant. The transaxle featured a viscous coupling limited slip differential to improve traction. The transmission system featured triple-cone synchromeshing on first and second gears to handle rapid starts, whilst remaining relatively easy for the driver to engage and providing positive feel. The exterior retained the aluminium body panels of the XJ220 concept, but for the production vehicles, Abbey Panels of Coventry were contracted to provide the exterior panels. The scissor doors were dropped for the production model, and significant redesign work was carried out on the design when the wheelbase and overall length of the car was altered. Geoff Lawson, Design Director at Jaguar took a greater interest in the car and insisted the design had to be seen to be a Jaguar if it was to be successful in promoting the company.Keith Helfet returned to undertake the necessary redesign work mandated by the change in the wheelbase, which was reduced by 200 mm. The turbocharged engine required larger air intakes to feed the two intercoolers. Situated between the doors and the rear wheels, the air intakes were larger on the production version of the XJ220 than on the concept car. A number of small design changes for the body were tested in the wind tunnel; the final version had a drag coefficient of 0.36 with downforce of 3,000 lb at 200 mph. The XJ220 was one of the first production cars to intentionally use underbody airflow and the venturi effect to generate downforce. The rear lights used on the production XJ220 were taken from the Rover 200. The production model utilised the same Alcan bonded honeycomb aluminium structure vehicle technology (ASVT) as the concept car for the chassis. The chassis design featured two box section rails which acted as the suspension mounting points and would provide an energy absorbing structure in the event of a frontal impact, these were successfully tested at speeds up to 30 mph, an integral roll cage formed part of the chassis and monocoque, providing additional structural rigidity for the car and allowing the XJ220 to easily pass stringent crash testing.The rear-wheel steering was dropped from the production car to save weight and reduce complexity, as was the height adjustable suspension and active aerodynamic technology. The suspension fitted to the production model consisted of front and rear independent suspension, double unequal length wishbones, inboard coil springs and anti-roll bars, with Bilstein gas-filled dampers.  The suspension was designed in accordance with the FIA Group C specifications. The braking system was designed by AP Racing and featured ventilated and cross-drilled discs of 13 in diameter at the front and 11.8 in diameter at the rear. The calipers are four pot aluminium units. JaguarSport designed the handbrake, which are separate calipers acting on the rear brake discs. Feedback from enthusiasts and racing drivers resulted in the decision to drop the anti-lock braking system from the production car.  The braking system was installed without a servo, but a number of owners found the brakes to be difficult to judge when cold and subsequently requested a servo to be fitted.Rack and pinion steering was fitted, with 2.5 turns lock to lock; no power assistance was fitted. The Bridgestone Expedia S.01 asymmetric uni-directional tyres were specially developed for the XJ220 and had to be rateable to a top speed in excess of 220 mph, carry a doubling of load with the exceptionally high downforce at speed and maintain a compliant and comfortable ride. Rally alloy wheel specialists Speedline Corse designed the alloy wheels, these are both wider and have a larger diameter on the rear wheels; 17 inches wheels are fitted to the front and 18 inches are fitted at the rear, with 255/55 ZR17 tyres at the front and 345/35 ZR18 tyres at the rear.The interior was designed for two passengers and trimmed in leather. Leather trimmed sports seats are fitted together with electric windows and electrically adjustable heated mirrors. The dashboard unusually curves round and carries onto the drivers door, with a secondary instrument binnacle containing four analogue gauges, including a clock and voltmeter fitted on the front of the drivers door. Air conditioning and green tinted glazing was also fitted.The luggage space consists of a small boot directly behind and above the rear portion of the engine, also trimmed in leather. The car was assembled in a purpose-built factory at Wykham Mill, Bloxham near Banbury. HRH The Princess of Wales officially opened the factory and unveiled the first production XJ220 in October 1991. The JV6 engines used in the Jaguar racing cars were produced by Swiss engineer Max Heidegger, but delivering the number of engines required for the XJ220 program was considered beyond his capacity.  TWR formed a division, TWR Road Engines, to manage the design, development, construction and testing of the engines for the production cars. The JV6 engine used in the XJ220 featured little commonality with the engines Heidegger built for use in the XJR racing cars, being specifically engineered to meet performance and in particular, the European emissions requirements, which the race engines didn’t have to meet. FF Developments, in addition to their design work on the gearbox and rear axle assembly were given responsibility for their manufacture. The aluminium chassis components and body panels were manufactured and assembled at Abbey Panels factory in Coventry, before the body in white was delivered to the assembly plant at Bloxham. The car, including chassis and body components, consists of approximately 3000 unique parts. The first customer delivery occurred in June 1992, and production rates averaged one car per day. The last XJ220 rolled off the production line in April 1994; the factory was then transferred to Aston Martin and used for the assembly of the Aston Martin DB7 until 2004.

 photo Picture 434_zpsm0gqqs4s.jpg  photo Picture 261_zpsahdyvuli.jpg  photo Picture 298_zpsf9ushnfm.jpg  photo Picture 273_zpso87cci6i.jpg  photo Picture 271_zpstdsc0yvj.jpg  photo Picture 272_zpsyo3mqghj.jpg photo Picture 278_zpsgmeetzxo.jpg

As well as a regular F Type Coupe R, there was an example of the limited edition Project Seven here. First seen in the summer of 2013, more of an indication of what could be done with the new F Type rather than as something which was going to be produced, such was the clamour from enthusiasts that Jaguar decided to build a limited run of them, and even at a starting price of £130,000, there were more people who wanted to buy one than cars that Jaguar planned to make, with the car selling out before it officially went on sale. Just 250 will be built, 80 available to buyers in the UK, 50 in Germany and the balance to the Americans, who, generally were the first to get their cars. The Seven in the name refers to Jaguar’s seven Le Mans wins (two of them with the help of Ecurie Ecosse, of course).  Visually, it is easy to recognise from a standard F Type, with its abbreviated screen, its new front bumper, many aero mods (carbonfibre splitter, blade-like side skirts, rear diffuser and deck-mounted rear wing) and its nose stripes and racing roundels. The owner explained that he is not allowed to put a number on the roundel for road use, and he is also agonising over whether to put on a front number plate, as it would spoil the looks of the car.  The Project 7 starts as a standard V8 drophead, with its 5.0-litre supercharged engine modified to produce 567bhp, which is  25bhp more than an F-Type R Coupé and 516lb ft of torque (15lb ft more). Proportionally speaking, these aren’t huge increases, but they’re delivered via unique throttle maps that let you feel the extra energy from around 2500rpm and these figures do make this the most powerful Jaguar ever made. Combine this with the benefits of a 45kg weight reduction (35kg of this comes from that rather ungainly “get you home” hood and the seats have race-bred carbonfibre shells) and you get an  F-Type capable of  the  0-60mph sprint in 3.8sec. The top speed is electronically limited to 186mph or 300km/h, as with other F-Types. With the exhaust butterflies open (there’s a special console switch), the car emits a superb growl-bark that turns into a magnificent crackle on the overrun. It’s the one thing that makes you want to slow down, though we did not get the real benefit of this as the car was driven, carefully around the rough and cobbled surfaces of the Square. A lot of the engineering effort spend on developing the car was in rebalancing the suspension and aerodynamics for high-speed duty. Font negative camber was increased from 0.5 to 1.5deg, to encourage the front wheels to dig in, and rear torque vectoring – differential braking of the rear wheels – is there to make the car turn easily.  The car’s rear-biased aerodynamic downforce was addressed by fitting side skirts and a large front splitter, while slightly reducing the effectiveness (and drag) of the bootlid wing.  Project Seven is fitted with all the top-end running gear: eight-speed Quickshift transmission, electronic differential, carbon-ceramic brakes, unique-tune adaptive dampers and its own special settings for engine management and chassis stability control. The Project 7 also has unique springs and anti-roll bars, the most prominent feature being front springs that are a stonking 80% stiffer, to cope with the potential force generated by the brakes and withstand turn-in loads at high speed on the soft standard Continental Force tyres. Engineers also moved the Sport and standard suspension settings further apart, to provide good options for short and long-distance use. The modifications are apparently most obvious on track, and Jaguar SVO reckon most owners will take their cars there as part of the limited mileage that they will probably cover in an average year.

 photo Picture 318_zpsbibsgvcx.jpg  photo Picture 249_zpswqihnmro.jpg  photo Picture 125_zpsl8nhu8mp.jpg  photo Picture 126_zpst5fvxiw8.jpg  photo Picture 127_zpsps740rt6.jpg  photo Picture 164_zpsh7ctfsw2.jpg

LAMBORGHINI

Oldest Lamborghini in this part of the display was the Miura, a car some will say was the first true supercar. For sure, this car, produced between 1966 and 1973, is widely considered to have instigated the trend of high performance, two-seater, mid-engined sports cars. When released, it was the fastest production road car available. The Miura was originally conceived by Lamborghini’s engineering team, Gian Paolo Dallara, Paolo Stanzani, and Bob Wallace who in 1965 put their own time into developing a prototype car known as the P400. The engineers envisioned a road car with racing pedigree – one which could win on the track and be driven on the road by enthusiasts. The three men worked on its design at night, hoping to convince Lamborghini such a vehicle would neither be too expensive nor distract from the company’s focus. When finally brought aboard, Lamborghini gave his engineers a free hand in the belief the P400 was a potentially valuable marketing tool, if nothing more. The car featured a transversely-mounted mid-engine layout, a departure from previous Lamborghini cars. The V12 was also unusual in that it was effectively merged with the transmission and differential, reflecting a lack of space in the tightly-wrapped design. The rolling chassis was displayed at the Turin Salon in 1965. Impressed showgoers placed orders for the car despite the lack of a body to go over the chassis. Bertone was placed in charge of styling the prototype, which was finished just days before its debut at the 1966 Geneva motor show. Curiously, none of the engineers had found time to check if the engine would fit inside its compartment. Committed to showing the car, they decided to fill the engine bay with ballast and keep the car locked throughout the show, as they had three years earlier for the début of the 350GTV. Sales head Sgarzi was forced to turn away members of the motoring press who wanted to see the P400’s power plant. Despite this setback, the car was the highlight of the show, immediately boosting stylist Marcello Gandini’s reputation. The favourable reaction at Geneva meant the P400 was to go into production by the following year. The name “Miura”, a famous type of fighting bull, was chosen, and featured in the company’s newly created badge. The car gained the worldwide attention of automotive enthusiasts when it was chosen for the opening sequence of the original 1969 version of The Italian Job. In press interviews of the time company founder Ferruccio Lamborghini was reticent about his precise birth date, but stressed that he was born under the star sign Taurus the bull. Early Miuras, known as P400s (for Posteriore 4 litri), were powered by a version of the 3.9 litre Lamborghini V12 engine used in the 400GT at the time, only mounted transversely and producing 350 hp. Exactly 275 P400 were produced between 1966 and 1969 – a success for Lamborghini despite its then-steep price. Taking a cue from the Morris Mini, Lamborghini formed the engine and gearbox in one casting. Its shared lubrication continued until the last 96 SVs, when the case was split to allow the correct oils to be used for each element. An unconfirmed claim holds the first 125 Miuras were built of 0.9 mm steel and are therefore lighter than later cars. All cars had steel frames and doors, with aluminium front and rear skinned body sections. When leaving the factory they were originally fitted with Pirelli Cinturato 205VR15 tyres (CN72). The P400S Miura, also known as the Miura S, made its introduction at the Turin Motorshow in November 1968, where the original chassis had been introduced three years earlier. It was slightly revised from the P400, with the addition of power windows, bright chrome trim around external windows and headlights, new overhead inline console with new rocker switches, engine intake manifolds made 2 mm larger, different camshaft profiles, and notched trunk end panels (allowing for slightly more luggage space). Engine changes were reportedly good for an additional 20 hp. Other revisions were limited to creature comforts, such as a locking glovebox lid, a reversed position of the cigarette lighter and windshield wiper switch, and single release handles for front and rear body sections. Other interior improvements included the addition of power windows and optional air conditioning, available for US$800. About 338 P400S Miura were produced between December 1968 and March 1971. One S #4407 was owned by Frank Sinatra. Miles Davis also owned one, which he crashed in October 1972 under the influence of cocaine, breaking both ankles. The last and most famous Miura, the P400SV or Miura SV featured different cam timing and altered carburettors. These gave the engine an additional 15 hp to a total of 380 hp. The last 96 SV engines had a split sump. The gearbox now had its lubrication system separate from the engine, which allowed the use of the appropriate types of oil for the gearbox and the engine. This also alleviated concerns that metal shavings from the gearbox could travel into the engine with disastrous and expensive results and made the application of an optional LSD far easier. The SV can be distinguished from its predecessors from its lack of “eyelashes” around the headlamps, wider rear wings to accommodate the new 9-inch-wide rear wheels and Pirelli Cinturato tyres, and different taillights. 150 SVs were produced.

 photo Picture 017_zps6gd3igbj.jpg  photo Picture 018_zpstkrzcswk.jpg  photo Picture 019_zpsijjdoiju.jpg  photo Picture 429_zpsb0xoggwa.jpg  photo Picture 430_zpstrpkwsut.jpg  photo Picture 196_zps1b0gj8tg.jpg photo Picture 194_zpsjbkslcum.jpg  photo Picture 221_zpszeee5viq.jpg  photo Picture 193_zps2glgonqi.jpg  photo Picture 192_zpso1essj4o.jpg  photo Picture 220_zpscpfdz0qu.jpg

The Gallardo was launched in 2003, and stayed in production over 10 years, In excess of 10,000 were made, making it by some margin the most popular Lamborghini yet made. During the long life, lots of different variants were produced with a mixture of all wheel drive and rear wheel power only, open topped bodies, and lightened Superleggera models, one of which was to be seen here.

 photo Picture 076_zpsthszgruk.jpg  photo Picture 079_zps1km7b7zs.jpg

The Aventador came in 2012, to take the place of the Murcielago, and it remains every inch a true Lamborghini, with bold looks and an awesome sound track from its 7 litre engine. More recently, the SV model has been added to the range, and there were a surprising number of these on show here. There have only been three previous Lamborghini models labelled SV (for Superveloce), and they have all been very special. This one is, too. It has a significant power upgrade over the regular Aventador, churning out 740bhp from a 6.5-litre naturally aspirated V12 engine that revs to 8500rpm. Lamborghini chose not go go down the forced induction route for the extra power, but rather created a whopping, easier-breathing engine in the middle of the car, with a new exhaust and a raised rev limit over the standard V12. It also makes 509lb ft at 5500rpm.  It is mated to a single-clutch automated manual gearbox with an improved shift calibration, and more significantly still, an SV is an impressive 50kg lighter than the regular Aventador. There are new door skins and a couple of lighter carbonfibre panels, clad over the carbonfibre monocoque, but I suspect the real weight saving comes in the stripped-out interior. Lamborghini quotes a dry weight of 1525kg, which you could probably make closer to 1700kg by the time it sits at the kerb. Other changes include a big rear wing that gives serious downforce. Magnetorheological adaptive dampers are standard on the SV, as is dynamic steering – which changes ratio depending on road speed and a host of other factors like how much of a ‘bung’ you give the car on the way into a corner.  Whilst the regular Aventador did not receive a totally rapturous reaction from the press on launch, they all seem to have loved this one.

 photo Picture 013_zpskfpzylhr.jpg  photo Picture 307_zpskuwpeh3q.jpg

Newest Lamborghini is the Huracan, a replacement for the Gallardo. Now it has been available in the UK for some months, there are now quite a few on our roads, so it was no surprise to find several examples of the model here.

 photo Picture 310_zpsobxkebcx.jpg  photo Picture 313_zpsgy9tjteb.jpg  photo Picture 432_zpsmbxhesbo.jpg  photo Picture 259_zpspsbrhbpf.jpg  photo Picture 260_zpsna2aeflr.jpg  photo Picture 258_zps81dziepl.jpg photo Picture 256_zpselg4qzev.jpg  photo Picture 254_zps7akvxh1v.jpg  photo Picture 270_zpsv6qvptsp.jpg  photo Picture 269_zps9h1rxpw0.jpg  photo Picture 264_zpsfa10hmwh.jpg

LANCIA

There’s a rich catalogue of Lancia models dating back over a century, though recent offerings have been somewhat forgettable, and of all them, it is almost certainly this car, the Delta Integrale, which is the nest known. These have become much loved classics with a far higher survival rate than the lesser Delta models even though relatively were sold when they were new, thanks to a combination of the fact that they were quite costly and that they only ever came with left hand drive. The Integrale evolved over several years, starting off as the HF Turbo 4WD that was launched in April 1986, to homologate a new rally car for Lancia who needed something to fill the void left by the cancellation of Group B from the end of 1986. The Delta HF 4X4 had a four-wheel drive system with an in-built torque-splitting action. Three differentials were used. Drive to the front wheels was linked through a free-floating differential; drive to the rear wheels was transmitted via a 56/44 front/rear torque-splitting Ferguson viscous-coupling-controlled epicyclic central differential. At the rear wheels wa a Torsen (torque sensing) rear differential. It divided the torque between the wheels according to the available grip, with a maximum lockup of 70%. The basic suspension layout of the Delta 4WD remained the same as in the rest of the two-wheel drive Delta range: MacPherson strut–type independent suspension with dual-rate dampers and helicoidal springs, with the struts and springs set slightly off-centre. The suspension mounting provided more isolation by incorporating flexible rubber links. Progressive rebound bumpers were adopted, while the damper rates, front and rear toe-in and the relative angle between springs and dampers were all altered. The steering was power-assisted rack and pinion. The car looked little different from the front wheel drive models. In September 1987, Lancia showed a more sophisticated version of the car, the Lancia Delta HF Integrale 8V. This version incorporated some of the features of the Delta HF 4WD into a road car. The engine was an 8-valve 2 litre fuel injected 4-cylinder, with balancing shafts. The HF version featured new valves, valve seats and water pump, larger water and oil radiators, more powerful cooling fan and bigger air cleaner. A larger capacity Garrett T3 turbocharger with improved air flow and bigger inter-cooler, revised settings for the electronic injection/ignition control unit and a knock sensor, boosting power output to 185 bhp at 5300 rpm and maximum torque of 224 lb/ft at 3500 rpm. The HF Integrale had permanent 4-wheel drive, a front transversely mounted engine and five-speed gearbox. An epicyclic centre differential normally split the torque 56 per cent to the front axle, 44 per cent to the rear. A Ferguson viscous coupling balanced the torque split between front and rear axles depending on road conditions and tyre grip. The Torsen rear differential further divided the torque delivered to each rear wheel according to grip available. A shorter final drive ratio (3.111 instead of 2.944 on the HF 4WD) matched the larger 6.5×15 wheels to give 24 mph/1000 rpm in fifth gear. Braking and suspension were uprated to 284 mm ventilated front discs, a larger brake master cylinder and servo, as well as revised front springs, dampers, and front struts. Next update was to change the engine from 8 valves to 16. The 16v Integrale was introduced at the 1989 Geneva Motorshow, and made a winning debut on the 1989 San Remo Rally. It featured a raised centre of the bonnet to accommodate the new 16 valve engine, as well as wider wheels and tyres and new identity badges front and rear. The torque split was changed to 47% front and 53% rear. The turbocharged 2-litre Lancia 16v engine now produced 200 bhp at 5500 rpm, for a maximum speed of 137 mph and 0–100 km/h in 5.5  seconds. Changes included larger injectors, a more responsive Garrett T3 turbocharger, a more efficient intercooler, and the ability to run on unleaded fuel without modification. The first Evoluzione cars were built at the end of 1991 and through 1992. These were to be the final homologation cars for the Lancia Rally Team; the Catalytic Evoluzione II was never rallied by the factory. The Evoluzione I had a wider track front and rear than earlier Deltas. The bodyside arches were extended and became more rounded. The wings were now made in a single pressing. The front strut top mounts were also raised, which necessitated a front strut brace. The new Integrale retained the four wheel drive layout. The engine was modified to produce 210 bhp at 5750 rpm. External changes included: new grilles in the front bumper to improve the air intake for engine compartment cooling; a redesigned bonnet with new lateral air slats to further assist underbonnet ventilation; an adjustable roof spoiler above the tailgate; new five-bolt wheels with the same design of the rally cars; and a new single exhaust pipe. Interior trim was now grey Alcantara on the Recaro seats, as fitted to the earlier 16V cars; leather and air conditioning were offered as options, as well as a leather-covered Momo steering wheel. Presented in June 1993, the second Evolution version of the Delta HF Integrale featured an updated version of the 2-litre 16-valve turbo engine to produce more power, as well as a three-way catalyst and Lambda probe. A Marelli integrated engine control system with an 8 MHz clock frequency which incorporates: timed sequential multipoint injection; self-adapting injection times; automatic idling control; engine protection strategies depending on the temperature of intaken air; Mapped ignition with two double outlet coils; Three-way catalyst and pre-catalyst with lambda probe (oxygen sensor) on the turbine outlet link; anti-evaporation system with air line for canister flushing optimised for the turbo engine; new Garrett turbocharger: water-cooled with boost-drive management i.e. boost controlled by feedback from the central control unit on the basis of revs/throttle angle;   Knock control by engine block sensor and new signal handling software for spark park advance, fuel quantity injected, and turbocharging. The engine now developed 215 PS as against 210 PS on the earlier uncatalysed version and marginally more torque. The 1993 Integrale received a cosmetic and functional facelift that included. new 16″ light alloy rims with 205/45 ZR 16 tyres;  body colour roof moulding to underline the connection between the roof and the Solar control windows;  aluminium fuel cap and air-intake grilles on the front mudguards; red-painted cylinder head; new leather-covered three-spoke MOMO steering wheel; standard Recaro seats upholstered in beige Alcantara with diagonal stitching. In its latter years the Delta HF gave birth to a number of limited and numbered editions, differing mainly in colour, trim and equipment; some were put on general sale, while others were reserved to specific markets, clubs or selected customers.

 photo Picture 232_zps2di9iyod.jpg  photo Picture 191_zpsyo5dnxyg.jpg  photo Picture 135_zpsfrfylpf6.jpg

LAND ROVER

Range Rover Sport SVR

 photo Picture 267_zpsf8l90kz4.jpg  photo Picture 266_zpsgcs9dibk.jpg

LOTUS

There was quite an assembly of Lotus models. Whilst the performance and enthusiast characteristics of every model that the Hethel concern has produced in its 60 year history is not in doubt, it is probably stretching a point to call any of them true supercars, Be that as it may, they made for an interesting display of cars from this British marque’s history, though. Oldest of the cars on show was a Plus 2, sometimes referred to as the +2.  Introduced in 1967,  the Elan +2 had a longer wheelbase and two rear seats and so was intended for those Lotus customers who needed space to carry (small) people in the back, without sacrificing the same basic principles which made the Elan so appealing. A fast and agile sport coupe, a number of different engines were fitted over the years, with the later models having 130 bhp and a 5 speed gearbox at their disposal, which gave a top speed of 120 mph and  0–60 acceleration of  7.9 seconds and  0-100 mph 21.8 seconds. 5,200 Elans +2 were made, with production ceasing in 1975. Fewer than 1,200 of these cars remain on the roads today. Their relative rarity, beautiful lines, impressive performance and practicality are the main factors for the rising interest on these cars among collectors.

 photo Picture 176_zpscpuzzwlj.jpg  photo Picture 178_zpsufotut32.jpg

There was a nice example of the mid-engined Europa here, a car you don’t see often these days , even though 9,300 of them were built between 1966 and 1975. The concept originated during 1963 with drawings by Ron Hickman, director of Lotus Engineering (Designer of the original Lotus Elan, as well as inventor of the Black and Decker Workmate), for a bid on the Ford GT40 project. That contract went to Lola Cars as Colin Chapman wanted to call the car a Lotus and Henry Ford II insisted it would be called Ford. Chapman chose to use Hickman’s aerodynamic design which had a drag coefficient of Cd 0.29 for the basis for the Europa production model. The car was originally intended to succeed the Lotus 7. Volkswagen owned the rights to the Europa name in Germany so cars for sale in Germany were badged Europe rather than Europa. The original Europa used Lotus founder Colin Chapman’s minimalist steel backbone chassis that was first used in the Lotus Elan, while also relying on its fibreglass moulded body for structural strength. The four-wheel independent suspension was typical of Chapman’s thinking. The rear suspension was a modified Chapman strut, as used for Chapman’s earlier Formula racing car designs.Owing to the rubber suspension bushes used to isolate engine vibration from the car body, the true Chapman strut’s use of the drive shaft as the lower locating link could not be followed whilst still giving the precise track and handling desired. The forward radius arms were increased in size and rigidity, to act as a semi-wishbone. A careful compromise between engine mounting bush isolation and handling was required, culminating eventually in a sandwich bush that was flexible against shear but stiff in compression and tension. The car’s handling prompted automotive writers to describe the Europa as the nearest thing to a Formula car for the road.[citation needed] Aside from the doors, bonnet (hood), and boot (trunk), the body was moulded as a single unit of fibreglass. The first cars has Renault 1470cc engines, and suffered from a number of quality issues as well as limited visibility. An S2, released in 1968 brought improvements to the build quality, but Lotus knew that the Renault engine was not powerful enough for what they thought the car could achieve on track and on the road, so the Europa  underwent another update in 1971 when the Type 74 Europa Twin Cam was made available to the public, with a 105 bhp 1557cc Lotus-Ford Twin Cam engine and a re-designed bodyshell to improve rearward visibility. Initially with the same gearbox as the earlier cars, once the supply had been exhausted in 1972 a new stronger Renault four-speed gearbox was introduced. Mike Kimberley, who rose to become chief executive of Group Lotus, then a new engineer at Lotus, was appointed Chief Engineer of the Europa TC project. 1,580 cars were shipped as Europa “Twin Cam” before Lotus switched to a 126 bhp “Big Valve” version of the engine. The big valve “Europa Special” version was aspirated by Dell’Orto carburettors version of the same engine; in addition it also offered a new Renault five-speed (Type 365) gearbox option. It weighed 740 kg (1631 lb), Motor magazine famously tested a UK Special to a top speed of 123 mph, did 0–60 mph in 6.6 seconds, and ran the 1/4 mile in 14.9 sec. This at a time when all road tests were carried out with both a driver and passenger, with only the driver on board the 0–60 mph time would have been well under 6 seconds, a phenomenal performance for the period. Introduced in September 1972 the first 100 big valve cars were badged and painted to honour the just won Team Lotus’s 1972 F1 World Championship title with John Player Special as sponsors, all with five-speed gearbox, these were all black with gold pin stripe matching the livery of the GP cars – plus a numbered JPS dash board badge, becoming the first ever John Player Special commemorative motor vehicles. The “Special” name and colour scheme was planned to be dropped after the first 200 cars, reverting to the Twin Cam name, but such was the reaction to the new car that the name and pin stripe scheme remained until the end of Europa Production although colours other than black were made available. In the end only the numbered plaque distinguishing the first 100 JPS cars from other black Europa Specials. According to Lotus sources, no Special left the factory with “numbered JPS badges” or “JPS stickers” – these were added by the American importer & weren’t official done by Lotus. There were no “badged” cars sold in the UK, Australia, etcetera, just in the USA. In total 4710 Type 74s were produced of which 3130 were “Specials”. The one seen here had Europa 907S badging on it, suggesting it has had a transplant of the later 907 series 2 litre engine that Lotus used in the Elite and Esprit of the late 1970s.

 photo Picture 186_zpsuveqagcy.jpg  photo Picture 187_zps2dznuhme.jpg

I was pleased to see an example of the original Esprit design here, as these cars have become quite rare now. The silver Italdesign concept that eventually became the Esprit was unveiled at the Turin Motor Show in 1972 as a concept car, and was a development of a stretched Lotus Europa chassis. It was among the first of designer Giorgetto Giugiaro’s polygonal “folded paper” designs. Originally, the name Kiwi was proposed, but in keeping with the Lotus tradition of having all car model names start with the letter “E”, the name became Esprit. The production Esprit was launched in October 1975 at the Paris Auto Show, and went into production in June 1976, replacing the Europa in the Lotus model lineup. These first cars eventually became known as S1 Esprits. With a steel backbone chassis and a fiberglass body, the Esprit was powered by the Lotus 907 4-cylinder engine, as previously used in the Jensen Healey. This engine displaced 2.0 litre, produced 160 bhp in European trim 140 bhp in US/Federal trim, and was mounted longitudinally behind the passengers, as in its predecessor. The transaxle gearbox was a 5-speed manual unit, previously used in the Citroën SM and Maserati Merak; it featured inboard rear brakes, as was racing practice at the time. The Series 1 embodied Lotus’ performance through light weight mantra, weighing less than 1,000 kg (2,205 lb). The original Esprit was lauded for its handling and is said to have the best steering of any Esprit. However, it was generally regarded as lacking power, especially in markets such as the United States where the engine was down-rated for emissions purposes. Lotus’ claim of 0-60 mph in 6.8 seconds and a top speed of 138 mph may be thought of as optimistic – actual road test times indicated 0-60 mph in 8 seconds and a top speed of around 133 mph. The S1 Esprit can be distinguished from later Esprits by a shovel-style front air dam, Fiat X1/9 tail lights, lack of body-side ducting, and Wolfrace alloy wheels. Inside the car, the most obvious indication of an S1 Esprit is a one-piece instrument cluster with green-faced Veglia gauges. The car gained fame through its appearance in the James Bond film The Spy Who Loved Me (1977) where a fictionally-modified version was featured in a long action sequence. Bond’s Esprit car is first chased on road, by a motorcycle, then by another car, and then a helicopter, then converts into a submarine for an undersea battle. A series of improvements made to the Esprit during its initial run culminated in the S2 Esprit, which was introduced in 1978. The most obvious of these changes are intake and cooling duct “ears” located behind the rear quarter window, tail lights from the Rover SD1, and an integrated front spoiler. S2 Esprits also used 14-inch Speedline alloy wheels designed specifically for Lotus. Other changes included relocating the battery from above the right side fuel tank (under the rear quarter window) to the rear of the car, adding an access door to the engine cover, as well as replacing the instrument cluster made by Veglia with individual gauges made by Smiths and using different style of switches on the dashboard. During this era, a special edition car was released to commemorate Lotus’s racing victories and their victory in the 1978 F1 World Championship. Sharing the black and gold colour scheme of Lotus’ then F1 sponsor, John Player & Sons, these cars are commonly known as the John Player Special (JPS) Esprits. The “JPS” Esprit has the same mechanicals as the regular two-litre S2. According to Lotus themselves a limited series of 300 was built, but most likely the total was considerably lower. Lotus’ records of production figures are notoriously vague, but best estimates suggest that 149 JPS Esprits were produced. The S2.2 was produced as a stop-gap model from May 1980, almost identical to the S2 but with an enlarged (2.2 litre) type 912 engine used.  This kept horsepower the same, but bumped up torque from 140 lb·ft to 160 lb·ft. Importantly, the S2.2 also introduced the use of a galvanised chassis, although it did not benefit from the succeeding S3’s chassis improvements. These cars are extremely rare even among Esprits: according to Lotus themselves, only 88 were produced in its thirteen-month production span. In 1980 the first factory turbocharged Esprit was launched. Initially, this was another special edition model commemorating F1 ties and reflecting current sponsorship, this time in the blue, red and chrome livery of Essex Petroleum, and is therefore known as the Essex Esprit. The new turbocharged dry-sump type 910 engine produced 210 hp and 200 lb·ft of torque. 0-60 mph could be achieved in 6.1 seconds, with a top speed of 150 mph. These performance improvements were coupled to a redesign and strengthening of the chassis and rear suspension, where an upper link was added to alleviate strain on the driveshafts, along with brake improvements. The Essex cars introduced a Giugiaro-designed aerodynamic body kit with a rear lip spoiler, prominent louvered rear hatch, more substantial bumpers, a deeper front airdam, and air ducts in the sills just ahead of the rear wheels, which were 15″ Compomotive three piece items. Internally, scarlet leather, combined with a roof-mounted Panasonic stereo, made for a dramatic environment. 45 Essex Esprits were built, interspersed and followed by a number of non Essex-liveried but otherwise identical specification dry-sump turbo cars. Two Essex-spec Turbo Esprits – one in white and the other in copper – were featured in the James Bond film For Your Eyes Only (1981), although these were scripted as the same vehicle – the white one was destroyed by an anti-burglar explosion system in Spain, while the copper red one was a “rebuild” of the original (actually a joke between Bond and Q in the latter’s laboratory), and was fully functional (the copper exterior paint colour for the replacement car was chosen to make the car stand out more in filming against the snowy background of Cortina, Italy, the only locale in which it appears). By the close of 1980, Lotus was effectively building three different models of Esprit, with distinct chassis designs and body moulds – the Domestic (i.e. UK) S2.2, the Export S2.2, and the dry-sump Turbo Esprit. Introduced in April 1981, the Turbo Esprit and S3 (Series 3) Esprits marked a necessary consolidation: both new models had a common chassis, inheriting much of the configuration of the Essex cars, whilst body production was based on a single common set of moulds. The S3 continued to use the 2.2 litre type 912 engine of the S2.2, whilst the Turbo Esprit reverted to a less complex wet-sump lubrication system, retaining the power and torque outputs of its dry-sump predecessor. The interior for both cars was revised and featured new trim; combined with changes to the body moulds this resulted in more headroom and an enlarged footwell.  Externally, the Turbo Esprit retained the full aerodynamic body kit of the Essex cars, and featured prominent ‘turbo esprit’ decals on the nose and sides; the S3 gained the more substantial bumpers, yet retained the simpler sill line and glazed rear hatch of the S2.2 body style. Both models were supplied with 15″ BBS alloy wheels. For the 1985 model year, the S3 and Turbo underwent some slight alterations to the bodywork and to the front suspension. In April 1986, the final incarnations of the Giugiaro-styled Esprit were announced, with raised engine compression giving rise to the ‘HC’ moniker. This increased the output of the naturally aspirated engine to 172 hp and 160 lb·ft for the Esprit HC, and to 215 hp and 220 lb·ft for the Turbo Esprit HC, with the increased torque available at a lower rpm. For markets with stringent emissions requirements (mainly the United States), Lotus introduced the HCi variant, teaming the higher compression engine with Bosch KE-Jetronic fuel injection and a catalytic converter- the first fuel-injected Esprits. This engine had the same peak power as the carburettor version, but at a somewhat higher engine speed, and torque dropped to 202 lb·ft.

 photo Picture 181_zpszocyz1hn.jpg  photo Picture 180_zpssou4bbm7.jpg  photo Picture 177_zpsanvpgj0e.jpg

In 1987, a new version of the Esprit was unveiled, incorporating rounder styling cues given by designer Peter Stevens (who later designed the McLaren F1). A new Lotus patented process was introduced to create the new body, called the VARI (Vacuum Assisted Resin Injection) process, which offered more advantages than the previous hand laid process. Kevlar reinforcement was added to the roof and sides for roll-over protection, resulting in an increase of the Esprit’s torsional rigidity by 22 percent.  Giugiaro is said to have liked the restyling, claiming it was perhaps too close to his original design. The Stevens styled cars retained the mechanical components of the previous High Compression Esprit and Turbo Esprit, but introduced a stronger Renault transaxle, which necessitated a move to outboard rear brakes. However, the MY 1988 North American Esprit Turbo kept its Citroën SM type transaxle and the Bosch K-Jetronic fuel injection system used in the previous model year. The car’s Type 910 engine retained 215 bhp and 220 lb·ft, but decreased its zero to sixty from 5.6 seconds to a varied time between 5.4 – 5.1 seconds and a top speed of over 150 mph. The exterior style changes were accompanied by a redesign of the interior, allowing a little more space for the occupants. The Stevens styled Esprit is often known by its project code of X180. In 1989, the Esprit was again improved with the GM multi-port, electronic fuel injection system and the addition of a water to air intercooler, which Lotus has named the Chargecooler, producing the SE (Special Equipment). This inline-four engine was known as the Type 910S. Horsepower was pushed up to 264 with 280 available on overboost and zero to sixty miles per hour times reduced to 4.7 seconds with a top speed of over 160 mph. Several modifications were made to the body kit as well, like side skirts which are parallel to the body, five air ducts in the front air dam, wing mirrors from the Citroën CX and the addition of a rear wing. Along with the SE, Lotus produced the little seen Esprit S, a midrange turbocharged car offering fewer appointments and 228 hp, as well as the standard turbo still offering 215 hp . The N/A and lower-powered turbo were cancelled after 1990, and the S in 1991. Another unusual variant was a two-litre “tax special” developed for the Italian market, fitted with an intercooled and turbocharged version of a new 1,994 cc version of the venerable 900-series four-cylinder engine. Equipped with SE trim, this appeared in December 1991 and produced 243 PS at 6,250 rpm. Beginning in the autumn of 1996, this engine became available in other markets as well. The Esprit was a popular and successful addition to the American IMSA Bridgestone Supercar Championship and as a result Lotus produced the SE-based X180R, with horsepower bumped to 300 and with racing appointments. The Sport 300 was a derivative of the X180R sold in Europe, which included many modifications. These are known as the fastest of the four-cylinder Esprits and among the most desirable. In 1993, another exterior and interior revamp of the car resulted in the S4 which was the first model to include power steering. The exterior redesign was done by Julian Thompson, which included a smaller rear spoiler placed halfway up the rear decklid. Other major changes were to the front and rear bumpers, side skirts and valence panels. New five spoke alloy wheels were also included in the redesign. The S4 retained the same horsepower as the SE at 264 hp.The S4 was succeeded in 1994 by the S4s (S4 sport), which upped power to 300 bhp and 290 lb·ft of torque, improving all-around performance while retaining the comfort of the previous version. Top speed was increased to 168 mph, skidpad increased to 0.91g, an increased slalom of 61.7 mph and a 0-60 mph time of 4.6 seconds. Although the engine kept its 2.2-litre capacity, many modifications were added to improve engine performance. Some of the changes were enlarged inlet ports, cylinder head modifications, a re-calibrated ECM and a revised turbocharger. The most visible external styling changes was the addition of a larger rear wing taken from the Sport 300. In 1996 the Esprit V8 used Lotus’ self-developed all-aluminium, twin-turbocharged (Garrett T25/60 turbos) 90-degree V-8, Code-named Type 918, in front of the same Renault transmission as before with no Chargecooler. Derek Bell developed an uprated gearbox that overcame a lot of the gearbox problems with a much thicker single piece input shaft. The Type 918 engine was detuned from a potential 500 bhp to 350 bhp to prevent gearbox damage due to the fragility of the Renault UN-1 transmission. In period tests, zero to sixty miles per hour came in at 4.4 seconds and top speeds of over 175 mph were achieved. Produced alongside V8 models was the GT3, a turbocharged four-cylinder car with the type 920 2.0 litre chargecooled and turbocharged engine which had been used only in Italian market cars previously. In 1998 the V8 range was split into SE and GT specifications, both cars with a much changed interior configuration, both offering similar performance with the SE being the more luxurious of the two. The ultimate incarnation of the Esprit came in 1999 with the Sport 350. Only 50 were made, each offering 350 horsepower and various engine, chassis and braking improvements, like the addition of AP Racing brakes, stiffer springs and a revised ECU.  Several visual changes were made as well, including the addition of a large carbon fibre rear wing on aluminium uprights in place of the standard fibreglass rear wing. By this time the Esprit could reach 60 mph in 4.3 seconds as well as reaching 0-100 mph in less than 10 seconds, and weighed 1,300 kg (2,866 lb) as a result of many modifications. Thereafter, Lotus made little development aside from minor cosmetic changes including a switch to four round tail lights for the 2002 model year. Esprit production ceased in February 2004 after a 28 year production run. A total of 10,675 Esprits were produced.

 photo Picture 161_zps6g9jccmc.jpg  photo Picture 159_zpszwdwtrm6.jpg  photo Picture 182_zpsg8fqikcq.jpg  photo Picture 179_zpsln7nx6r5.jpg

There has only ever been one front wheel drive model with Lotus badges on it, the “M100” Elan sports car, and there was a long line of them here  Like many specialist produced cars of the era, there was a long wait for this car form when news first broke that it was under development to the actual release of cars people could buy. The M100 Elan story goes back to 1986 and the purchase of Lotus by General Motors which provided the financial backing to develop a new, small, affordable car in the same spirit as the original Elan, the last of which had been built in December 1972. A development prototype, the M90 (later renamed the X100) had been built a few years earlier, using a fibreglass body designed by Oliver Winterbottom and a Toyota-supplied 1.6-litre engine and transmission. Lotus was hoping to sell the car through Toyota dealerships worldwide, badged as a Lotus Toyota, but the project never came to fruition and the prototype was shelved, although Lotus’s collaboration with Toyota had some influence on the design of the Toyota MR2. The idea of a small roadster powered by an outsourced engine remained, however, and in late 1986 Peter Stevens’s design for the Type M100 was approved and work began by Lotus engineers to turn the clay styling buck into a car that could be built. This process was completed in just under three years, a remarkably short time from design to production car. The M100 Elan was conceived as a mass-market car and in particular one that would appeal to US buyers. Consequently, Lotus put an enormous effort (for such a small firm) into testing the car; over a two-year period 19 crash cars and 42 development vehicles were built, logging nearly a million test miles in locations from Arizona to the Arctic. The Elan was driven at racing speeds for 24 hours around the track at Snetterton. Finally each new car was test-driven for around 30 miles at Lotus’s Hethel factory to check for any manufacturing defects before being shipped to dealers. The choice of front-wheel drive is unusual for a sports car, but according to Lotus sales literature, “for a given vehicle weight, power and tyre size, a front wheel drive car was always faster over a given section of road. There were definite advantages in traction and controllability, and drawbacks such as torque steer, bump steer and steering kickback were not insurmountable.” This was the only front-wheel-drive vehicle made by Lotus. Every model made since the M100 Elan, such as the Lotus Elise, has been rear-wheel drive. The M100 Elan’s cornering performance was undeniable (on release the Elan was described by Autocar magazine as “the quickest point to point car available”). Press reaction was not uniformly positive, as some reviewers found the handling too secure and predictable compared to a rear-wheel-drive car. However, the Elan’s rigid chassis minimised roll through the corners and has led to its description as ‘the finest front wheel drive [car] bar none’. Unlike the naturally aspirated version, the turbocharged SE received power steering as standard, as well as tyres with a higher ZR speed rating. The M100 Elan used a 1,588 cc double overhead camshaft (DOHC) 16-valve engine, sourced from the Isuzu Gemini and extensively modified by Lotus (a third generation of this engine was later used in the Isuzu Impulse), which produced 162 hp. 0–60 acceleration time was measured by Autocar and Motor magazine at 6.5 seconds, and a top speed of 137 mph was recorded. Significant differences in the Isuzu-Lotus engine from the original include a new exhaust system, re-routed intake plumbing for better thermodynamic efficiency, improved engine suspension, and major modifications to the engine control unit to improve torque and boost response. Almost all models featured an IHI turbocharger. Two variants were available at launch, the 130 bhp Elan 1.6 (retailing at £17,850) and the 162 bhp Turbo SE (£19,850). Initial sales were disappointing, perhaps because its launch coincided with a major economic recession in the UK and USA, and perhaps also because it coincided with the cheaper Mazda MX-5 which was arguably similar in concept, though the MX-5 was quite intentionally nostalgic and old fashioned (apeing the original Elan), while the M100 was deliberately futuristic, modern and forward looking. The Elan was regarded as a good product in a bad market, but was also very expensive to make (the cost to design and produce the dashboard alone was more than the total cost of the Excel production line), and sales figures were too low to recoup its huge development costs. Altogether 3,855 Elans were built between November 1989 and July 1992, including 129 normally aspirated (non-turbo) cars. 559 of them were sold in the US, featuring a ‘stage 2 body’ which had a different rear boot spoiler arrangement together with a lengthened nose to accommodate a USA-compliant crash structure and airbag, and 16-inch wheels (optional in most markets, standard in the U.S.) instead of 15-inch as on the UK model. A limited edition of 800 Series 2 (S2) M100 Elans was released during the Romano Artioli era (produced June 1994–September 1995) when it was discovered that enough surplus engines were available to make this possible. According to Autocar magazine, the S2 addressed some of the concerns over handling, but power was reduced to 155 bhp and the 0–60 acceleration time increased to 7.5 seconds, due to the legislative requirement to fit a catalytic converter in all markets. The S2s have very similar performance to the USA vehicles, having an identical engine management system calibration and a slightly lower overall vehicle weight.

 photo Picture 152_zpsbreunx6q.jpg  photo Picture 153_zps7nufyfs6.jpg  photo Picture 157_zpss3dbkkhq.jpg  photo Picture 158_zpstdphmatb.jpg  photo Picture 150_zpsvedga5zt.jpg  photo Picture 154_zpsryustgaf.jpg photo Picture 155_zpsxv2pqyce.jpg  photo Picture 156_zpszifi2j09.jpg

It is almost 20 years since Lotus launched the Elise, a model which showed a return to the core values of simplicity and light-weight which were cornerstones of Colin Chapman’s philosophy when he founded the marque in 1955. The first generation Elise was produced for just over 4 years, with a replacement model, the Series 2 arriving in October 2000. It came about as the Series 1 could not be produced beyond the 2000 model production year due to new European crash sustainability regulations. Lacking the funding to produce a replacement, Lotus needed a development partner to take a share of investment required for the new car. General Motors offered to fund the project, in return for a badged and GM-engined version of the car for their European brands, Opel and Vauxhall. The result was therefore two cars, which although looking quite different, shared much under the skin: a Series 2 Elise and the Vauxhall VX220 and Opel Speedster duo. The Series 2 Elise was a redesigned Series 1 using a slightly modified version of the Series 1 chassis to meet the new regulations, and the same K-series engine with a brand new Lotus-developed ECU. The design of the body paid homage to the earlier M250 concept, and was the first Lotus to be designed by computer. Both the Series 2 Elise and the Opel Speedster/Vauxhall VX220 were built on the same production line, in a new facility at Hethel. Both cars shared many parts, including the chassis, although they had different drive-trains and power-plants. The VX220 carried the Lotus internal model identification Lotus 116, with the code name Skipton for the launch 2.2 normally aspirated version and Tornado for the 2 litre Turbo which came out in 2004. Fitted with 17 inch over the Elise’s 16 inch front wheels, the Vauxhall/Opel version ceased production in late 2005 and was replaced by the Opel GT for February 2007, with no RHD version for the United Kingdom. The Elise lived on. and indeed is still in production now, some 15 years later, though there have been countless different versions produced in that time. Whilst the first of the Series 2 cars came with the Rover K-Series engine, and that included the 111S model which had the VVC engine technology producing 160 hp (119 kW), a change came about in 2005 when Lotus started to use Toyota engines. This was initially due to Lotus’ plans to introduce the Elise to the US market, meaning that an engine was needed which would comply with US emissions regulations. The selected 1.8 litre (and later 1.6 litre) Toyota units did, and the K-series did not. that MG-Rover went out of business in 2005 and engine production ceased confirmed the need for the change. Since then, Lotus have offered us track focused Elise models like the 135R and Sport 190, with 135 bhp and 192 bhp respectively, as well as the 111R, the Sport Racer, the Elise S and Elise R. In 2008  an even more potent SC model, with 218 bhp thanks to a non-intercooled supercharger was added to the range. In February 2010, Lotus unveiled a facelifted version of the second generation Elise. The new headlights are now single units; triangular in shape they are somewhat larger than the earlier lights. The cheapest version in Europe now has a 1.6 litre engine to comply with Euro 5 emissions, with the same power output as the earlier 1.8 136bhp car. Lotus has been through some difficult times in recent years, but things are looking more optimistic again, with production numbers having risen significantly in the last couple of years, after a period when next to no cars were made. The Elise is still very much part of the range. Seen here were an array of Series 1 and Series 2 models.

 photo Picture 165_zpsnbv12q2w.jpg  photo Picture 166_zpsny0jjyh9.jpg  photo Picture 168_zpseoaeygdm.jpg  photo Picture 167_zpsrxdjsnmn.jpg  photo Picture 169_zps4xiwc7we.jpg  photo Picture 185_zpshkzvw0gl.jpg  photo Picture 184_zpsvk5gjnq0.jpg  photo Picture 231_zpsmqk9fqxc.jpg  photo Picture 109_zpsuin93ocr.jpg  photo Picture 300_zps73dvh6dv.jpg  photo Picture 227_zpsak9pyk0p.jpg

Developed under the project name Project Eagle, this car was launched as the Evora on 22 July 2008 at the British International Motor Show. The Evora is based on the first all-new vehicle platform from Lotus Cars since the introduction of the Lotus Elise in 1995 (the Exige, introduced in 2000, and the 2006 Europa S are both derivatives of the Elise Evora was planned to be the first vehicle of three to be built on the same platform and was the first product of a five-year plan started in 2006 to expand the Lotus line-up beyond its track-specialised offerings, with the aim of making Evora a somewhat of a more practical road car that would appeal to the mainstream. As such it is a larger car than recent Lotus models Elise and its derivatives (Exige, Europa S, etc.), with an unladen weight of 1,383 kg (3,049 lb). It is currently the only Lotus model with a 2+2 configuration, although it is also offered in a two-seater configuration, referred to as the “Plus Zero” option. It is also the only 2+2 mid engined coupé on sale. The interior is larger to allow taller persons of 6’5″ to fit. The cooled boot behind the engine is large enough to fit a set of golf clubs, although Lotus Design Head Russell Carr denies that this was intentional. Lotus intends Evora to compete with different market sectors including the Porsche Cayman. The name “Evora” keeps the Lotus tradition of beginning model names with an “E”. The name is derived from the words evolution, vogue, and aura. and it of course sounds similar to Évora, which is the name of a Portuguese city and UNESCO World Heritage Site, in Portugal. Sales were started in summer 2009, with an annual target of 2000 cars per year, with prices between £45,000 and just over £50,000. and in America from the beginning of 2010. The Evora received several accolades at its launch from the British motoring press, including: Britain’s Best Driver’s Car 2009 from Autocar and Car of the Year 2009, from Evo.  Sales, however, were far from target, as the car was seen as too costly. A more powerful Evora S was launched in 2010 with a supercharged equipped 3.5-litre V6. A facelifted and more powerful Evora 400 model was unveiled at the 2015 Geneva Motor Show.

 photo Picture 183_zpsjxrfebnq.jpg  photo Picture 229_zpsopfflwah.jpg

Final Lotus here was one of the very latest Exige 350 models.

 photo Picture 123_zpsh0amiycu.jpg

MARCOS

There were several examples of the Marcos here. The original company was one of many which suffered in the mid 1970s, and ceased building cars, but unlike some of the others of this ilk, that was not the end of the story, as marque founder Jem Marsh resurrected the Marcos brand in 1981, offering the previous GT cars as kits. Engine options included Ford’s 3.0 Essex V6, 2.8 Cologne V6, 1600 Crossflow, 2.0 Pinto and 2.0 V4, plus Triumph’s 2.0 and 2.5 straight six. About 130 kits were sold up to 1989. In 1983 the Marcos Mantula was introduced, externally very similar to the old GT, but now powered by a 3.5-litre Rover V8 with a 5-speed gearbox. This alloy engine weighed less than the previous six-cylinder cast-iron units, reducing overall weight to about 900 kg and making the car competitive against other Rover-powered sports cars such as TVR and Morgan. The engine evolved into the Rover Vitesse EFi engine, and later Mantulas were fitted with the 3.9 EFi. In 1986 the model was made available as a convertible, the Marcos Spyder, which would outsell the coupés in later production. 1989 saw the introduction of independent rear suspension, together with the Ford Sierra’s 7″ differential and rear disc brakes. The independent suspension allowed a full-width boot and the relocation of the battery and heater/air conditioning. 170 coupés and 119 Spyders were produced. Launched in 1991, the Marcos Martina was externally very similar to the Mantula, but with flared front wheel arches. It used the Ford Cortina’s 2-litre four-cylinder engine, steering and suspension, and approximately 80 were produced. Originally available as kits or factory-built, the cars were all factory-built from 1992. Production of the Mantula and Martina ceased in 1993. In 1992 Marcos left the kit car business, all cars from this point onwards being factory built, and launched the Marcos Mantara which was sold through dealers in limited numbers. The main difference between the Mantara and the Mantula was the adoption of MacPherson strut front suspension in place of the Triumph suspension and associated trunnions. This change resulted in a wider front track, different bonnet, and flared front arches. The rear wheel arches and rear lights were also changed to give the car a more modern appearance. Power steering was also available for the first time. The Mantara was powered as standard by a 3.9 litre fuel injected Rover V8 or a 4.6 litre Rover V8 as an optional alternative. The Marcos GTS was a version of the Mantara powered by the 2-litre Rover Tomcat engine. The top version was the 200 bhp (149 kW; 203 PS) turbo version. The GTS version of the Mantara had a slightly different bonnet incorporating much smoother lines, flared-in headlamps, and a deeper spoiler, which was used on the later Mantaray model. A handful of late Mantara V8’s were produced with the same bonnet as the 2.0 litre GTS. For a return to GT racing, a range of modified Mantaras was also produced in the LM (Le Mans) versions. In order to qualify as a production vehicle, a limited number of road going cars were also made. Several versions of the LM were made such as the LM400 (with a Rover 3.9-litre V8 engine), LM500 (Rover 5-litre V8) and LM600 (with 6-litre Chevrolet small-block V8). Only 30 road-going LM cars were ever built, and of these only one was a road-going LM600. In 1997 the Mantis name was re-used on a 2-seater coupé or convertible road car based on the LM series powered by the 4.6 litre all-aluminium quad-cam Ford ‘Modular’ engine producing 327 bhp and capable of 170 mph (270 km/h). To accommodate the engine the bonnet of the Mantis was significantly remodelled from the previous LM range (that used the Rover V8), and the upper chassis rails in the engine bay were widened. Price for the Mantis was £46883. In 1998 it was decided to supercharge the engine to produce the first British production sports car with over 500 bhp, this being named the Mantis GT. Using a Vortech supercharger, and intercooler the Mantis GT engine produced 506 bhp which could accelerate the car from 0-60 mph in 3.7 seconds. Price for the Mantis GT was £64331. Production of the Mantis was 51 cars, with 16 being the supercharged GT version (not including the Mantis Challenge race cars). In 1997 the Mantara evolved into the Marcos Mantaray, with the re-styled bonnet from the Mantara GTS and with a new shape rear-end. Mechanically the car was identical to the Mantara. It was offered with 4.0 and 4.6 litre Rover V8 as well as the 2-litre, and 2-litre turbo Rover Tomcat engines. Only 11 were made with the 4.0-litre, and seven with the 4.6-litre engine. Total factory production was 26, plus one car in chassis/body component form. Bankruptcy caused a break in production, but with new finance in place. an all new design, the TS250 was launched in 2004, but this proved to be short-lived before the company finally ceased trading.

 photo Picture 108_zpsiwosvbpu.jpg  photo Picture 139_zps4tcqsjym.jpg  photo Picture 148_zpsxyomlbas.jpg  photo Picture 147_zpssdq8dq0z.jpg  photo Picture 140_zpshkk5fpz4.jpg  photo Picture 054_zpswe1tebjs.jpg  photo Picture 053_zpsmo6jy9rg.jpg  photo Picture 142_zpsngithdyo.jpg  photo Picture 117_zpsuhzhbges.jpg  photo Picture 114_zps37ctskjf.jpg  photo Picture 143_zpsuwyqyln3.jpg

MASERATI

Still a current model, having first been seen in 2007, this car, the GranTurismo, shares its platform with the 5th generation Quattroporte, but clothed in an attractive 2+2 Coupe body style. An open topped model, the GranCabrio joined it a couple of years after launch. There have been a lot of different versions of the car in the ensuing years, but it takes a real marque expert to tell them apart, All share the same jaw-dropping looks and can stop everyone in their tracks when the engine is started, as the noise that this car makes never ceases to surprise, and delight.

 photo Picture 083_zpsbxz99moq.jpg  photo Picture 244_zpszknx2oby.jpg  photo Picture 113_zps8vpmjxa7.jpg

McLAREN

McLaren announced that they would split their product range into three distinct Series: Sports, Super and Ultimate. The 650S is the core model in the Super Series, designed and developed to give the enthusiast driver the ultimate in luxury, engagement and excitement. Fitted with the award-winning 3.8-litre twin turbo V8 engine producing 650PS (641bhp) and 678Nm (500lb ft) of torque, it is a no compromise open-top high performance supercar with optimised levels of performance, handling and driver enjoyment. The secret of its success is its carbon fibre MonoCell chassis, which needs no extra strengthening to provide the necessary rigidity or safety when developing a convertible. This keeps any weight increase to a minimum, meaning the McLaren 650S Spider offers all the enjoyment and driver appeal of the fixed-roof sibling – but with the added appeal of roof-down driving. The 650S Spider is fitted with an electrically retractable hard top, which can be automatically raised or lowered on the move in less than 17 seconds. Building on the success of the MP4 12C, with which it shares much, the 650S series, first seen at the 2014 Geneva Show has proved very popular, helping to establish the brand as a serious rival to the established supercar players.

 photo Picture 328_zpszbezy8ey.jpg  photo Picture 327_zpsclmrgqaw.jpg  photo Picture 326_zpskmo3yc9j.jpg  photo Picture 325_zpssqkfksyr.jpg

MERCEDES-BENZ

Mercedes models in this part of the display all bore AMG badging, as you might expect. As well as Saloon and Coupe versions of the last generation C63 AMG (W204 in Mercedes speak), there were SL63 and SL65 AMG cars and an SLS Spider.

 photo Picture 082_zpst7f5cwha.jpg  photo Picture 119_zpssiocbsxf.jpg  photo Picture 251_zps7yafwcnq.jpg  photo Picture 250_zpsar4o8tpb.jpg  photo Picture 137_zps2jhbimkb.jpg  photo Picture 111_zps5zehkyix.jpg  photo Picture 277_zpsva8y4lwl.jpg

MORGAN

Aero Eight

 photo Picture 286_zpspdagpgwl.jpg  photo Picture 315_zpslu1efkam.jpg

NISSAN

Two potent Nissans here, from current production, were an example of the GT-R and the smaller but less powerful (and cheaper) 370Z NISMO

 photo Picture 242_zpsr2gcm4w2.jpg  photo Picture 091_zpslmfyodul.jpg  photo Picture 120_zpsdysluvwu.jpg  photo Picture 093_zpsv3bmgfmd.jpg

NOBLE

There were three examples of the M12 GTO here. Follow on to the Noble M10, the M12 was a two-door, two-seat model, originally planned both as a coupe and as a convertible. All M12s were powered by modified bi-turbocharged Ford Duratec V6 engines. There was a full steel roll cage, steel frame, and G.R.P. (fibreglass) composite clam shell body parts. Although looking to be track derived, the M12 was street-legal, ready for both road and track. The M12 has no anti-roll bars on the car, allowing for a comfortable feel. The coupe evolved through four versions of Noble cars, with the 425 bhp M400 as the ultimate version of the M12, following the first 2.5 litre 310 bhp car, the 352 bhp 3 litre GTO-3 and the GTO-3R. The car was sold in the US, where it proved quite popular, with 220 GTO-3Rs and M400s sold there. US production rights were sold in February 2007 to 1G Racing from Ohio. Due to high demand of these cars, 1G Racing (now Rossion Automotive) released its own improved car based on the M400, named Rossion Q1. Another company which is also producing a model developed from the M12 is Salica Cars 1 with their Salica GT and Salica GTR.

 photo Picture 172_zpsqskpmrfs.jpg  photo Picture 171_zpsu2vkasiw.jpg  photo Picture 134_zpsnfxininn.jpg  photo Picture 133_zps5vv8mxb2.jpg  photo Picture 124_zpsziajhkh6.jpg

NOVA

This dramatic looking machine was parked up with a collection of Lotus models. I recognised it instantly as a Nova, but was unsure of the Lotus connection, apart from the badge on the back, as to my knowledge, and confirmed by subsequent research, the car was essentially a dramatically styled fibreglass shell on a VW Beetle chassis and mechanicals. Styled by Richard Oakes with engineering by Phil Sayers, this two seater, with an opening canopy that combined roof and doors into one was produced by Automotive Design and Development Ltd (ADD), an English company, based in Southampton from 1971 to 1973 after which it moved to Accrington, Lancashire until 1975. ADD then failed and the rights to the Nova were bought by Nova Cars in Mirfield, West Yorkshire in 1978, which continued until 1990. A low volume production run was made by Nova Developments in Cornwall in the 90’s and the company was sold to India based Aerotec Nova around 1996. Licensed versions of the Nova have been built in Austria as the Ledl, in Australia as the Purvis Eureka, in France as the Défi, in Italy as the Totem and Puma, in New Zealand as the Scorpion, in South Africa as the Eagle, in Switzerland as the Gryff, in the United States as the Sterling and Sovran and in Zimbabwe as the Tarantula. There have also been numerous un-licensed copies. Some versions featured pop-up head lamps and gull-wing doors, but the basic silhouette remained the same. Versions of the Nova have appeared in number of films, including Cannonball Run II, Death Race 2000, Winners and Sinners, Condorman and Mani Di Velluto. Although the majority of these cars had Beetle power, I am aware of at least one with an Alfa engine in it, so I am guessing that the reason for the Lotus badges on this one are because it has a Lotus engine – guessing the 1588cc Twin Cam unit that was used in the Lotus-Cortina as well as the Elan and Europa of the 1960s and 1970s. Although I could not turn up any reference to this particular car, I did find evidence of others that were so equipped.

 photo Picture 103_zpsyfmyukgs.jpg  photo Picture 102_zps2ofcwq4t.jpg

PIPER

One of the rarer cars of the day was this Piper. Piper Cars was a UK manufacturer of specialist sports cars, an associate company of a camshaft and engine tuning parts manufacturer of the same name. The company was initially based in Hayes, then in Kent, with production taking place from 1968 at Wokingham, Berkshire and from 1973 at South Willingham, Lincolnshire. The first Piper GT road model to a design by Tony Hilder, was introduced at the January 1967 Racing Car Show and immediately afterwards entered production as a body/chassis unit for home completion. The front engine rear drive tubular steel chassis using Triumph Herald front suspension and Ford rear axle components could accommodate a variety of engines. Problems with the first few produced caused further production to be delayed until the following year when a substantially better developed version was introduced and became known as the GTT. At the same time, a mid-engined Group 6 racing car, the GTR, was being developed but only a handful were produced before this was abandoned following the death of company owner Brian Sherwood in late 1969. The GTR was only 30 inches high, and had a drag co-efficient of only 0.28. Designer Hilder achieved this by moving all the mechanical parts, such as the water and oil radiators to the rear of the car. The car was entered for the 1969 Le Mans 24 Hours Race, but overheating problems and the failure of driver John Burton to record a qualifying time meant that the car did not start the race. Two employees, Bill Atkinson and Tony Waller, took over the company renaming it Embrook Engineering, ceased all racing activity and focused on improving the road cars. In 1971 this led to a further revision known as the Piper P2 with many improvements to chassis, body and interior design. This model continued in production until the mid-1970s. Estimates of total Piper production vary from around 80 to somewhere over 100.

 photo Picture 116_zpstinonflo.jpg  photo Picture 115_zpst0nt3cjc.jpg  photo Picture 144_zpswhi8ahso.jpg

PORSCHE

First Porsche to catch my eye was one of the recent 911 GT3 RS cars. The 991 GT3 was launched at the 2015 Geneva Motor Show in 2015, and featured in first drive articles in the press a few weeks later, with cars reaching the UK in the summer and another series of universally positive articles duly appearing. It had very big shoes to fill, as the 997 GT3 RS model was rated by everyone lucky enough to get behind the wheel, where the combination of extra power and reduced weight made it even better to drive than the standard non-RS version of the car. A slightly different approach was taken here, with the result weighing just 10kg less than the GT3. It is based on the extra wide body of the 991 Turbo. Compared to the 991 GT3, the front wings are now equipped with louvres above the wheels and the rear wings now include Turbo-like intakes, rather than an intake below the rear wing. The roof is made from magnesium a bonnet, whilst the front wings, rear deck and rear spoiler all in carbonfibre-reinforced plastic (CFRP), the rear apron is in a new polyurethane-carbonfibre polymer and polycarbonate glazing is used for the side and rear windows. The wider body allows the RS’s axle tracks to grow, to the point where the rear track is some 72mm wider than that of a standard 3.4-litre Carrera and the tyres are the widest yet to be fitted to a road-going 911. A long-throw crankshaft made of extra-pure tempered steel delivers the 4mm of added piston stroke necessary to take the GT3’s 3.8-litre flat six out to 3996cc . The engine also uses a new induction system, breathing through the lateral air intakes of the Turbo’s body rather than through the rear deck cover like every other 911. This gives more ram-air effect for the engine and makes more power available at high speeds. It results in an output of 500 bhp and 339 lb/ft of torque. A titanium exhaust also saves weight. The suspension has been updated and retuned, with more rigid ball-jointed mountings and helper springs fitted at the rear, while Porsche’s optional carbon-ceramic brakes get a new outer friction layer. Which is to say nothing of the RS’s biggest advancement over any other 911: downforce. The rear wing makes up to 220kg of it, while the front spoiler and body profile generates up to 110kg. In both respects, that’s double the downforce of the old 997 GT3 RS 4.0.  The transmission is PDK only. The result is a 0-62 mph time of just 3.3 seconds, some 0.6 seconds quicker than the 997 GT3 RS 4.0 and 0-124 mph (0-200kmh) in 10.9 seconds. The 991 GT3 RS also comes with functions such as declutching by “paddle neutral” — comparable to pressing the clutch with a conventional manual gearbox –- and Pit Speed limiter button. As with the 991 GT3, there is rear-axle steering and Porsche Torque Vectoring Plus with fully variable rear axle differential lock. The Nürburgring Nordschleife time is 7 minutes and 20 seconds. The interior includes full bucket seats (based on the carbon seats of the 918 Spyder), carbon-fibre inserts, lightweight door handles and the Club Sport Package as standard (a bolted-on roll cage behind the front seats, preparation for a battery master switch, and a six-point safety harness for the driver and fire extinguisher with mounting bracket). Needless to say, the car was an instant sell out, even at a starting price of £131,296.

 photo Picture 066_zpsyanbrkzr.jpg  photo Picture 324_zpsvfrqqmel.jpg

There were also a couple of the equally highly acclaimed Cayman GT4. Much rumoured for some time, the Cayman GT4 was officially launched at the 2015 Geneva Show, positioned to sit  between the Cayman GTS and the 911 GT3. By the time of the official unveiling, the car was supposedly sold out many times over, though more recently it has become apparent that at least some Porsche dealers have been holding onto cars claiming that the first purchaser changed their mind, and then offering them to those who did not get one of the allocation a year ago, at vastly inflated prices. If true, this is very sharp practice indeed, but seems to be the sort to tricks that are becoming increasingly common as enthusiasts are being fleeced in the name of extra profit. For a starting price of around £65,000 in the UK, the lucky customer would get a car which used used a stiffened and strengthened Cayman bodyshell as a starting point, but lowered by 30mm . Porsche say that in fitting as many GT parts as possible, they did not  make it out of a Cayman GTS, but rather they produced an entry-level mid-engined GT3 car. That sounds like PR spin to me, as of course the car does use an awful lot of parts from the regular Cayman. However, plenty is changed, too. There is a reworked version of the Carrera S’s 3.8-litre flat six engine, producing  380bhp at 7400rpm and 310lb ft at 4750-6000rpm, hooked up to a modified version of the Cayman GTS’s six-speed manual gearbox. A PDK dual-clutch automatic was considered but rejected, meaning the Cayman GT4 is manual only. This is enough to mean that the 0-62mph sprint takes 4.4sec and the top speed is 183mph, with combined fuel economy of 27.4mpg and CO2 emissions rated at 238g/km. The front axle and suspension are borrowed from the 911 GT3 and the rear axle and forged aluminium double wishbone suspension are completely new. Dampers are taken from the 911 GT3. The electric steering system from the 911 GT3 does make it onto the Cayman GT4 but is given new software. Stopping power is provided by standard steel brakes, or optional carbon-ceramics from the 911 GT3. The forged 20in alloy wheels were new and are shod with Michelin Pilot Sport Cup 2 tyres. The rear 295/30 ZR20 tyres are bespoke, but the front 245/35 ZR20s were borrowed from the 911 GT3 as they were “a perfect match”. design-wise, the goal was to create a “zero lift car”, but thanks to the extensive aerodynamic and cooling package on the car – which includes a front splitter, a larger front grille and increased frontal air intakes, side air intakes, not one but two rear spoilers and a fully functional diffuser – the Cayman GT4 produces as much downforce at speed (100kg) as the 911 GT3. Every single part on the Cayman GT4 has a functional use. Other design features include  “cool” black glass on the front and rear lights, blackened twin central exhausts and quality stitching on the twin lightweight bucket seats, taken from the 918 Spyder, as small details adding to that ‘want factor’.Despite all the extra equipment, the Cayman GT4 weighs no more than a Cayman GTS, tipping the scales at 1340kg dry. You could delete items such as the sat-nav and air-con to save weight, but few customers did, just as with the 911 GT3 RS were just 2% of buyers deleted the air-con. Inside, the steering wheel was new. The sports seats were trimmed in both leather and Alcantara. Standard equipment included bi-xenon headlights, a sports exhaust system, a Sport Chrono Package with dynamic engine mounts, the Porsche Torque Vectoring system, a mechanical limited-slip differential at the rear and the Porsche Stability Management system. On the options list were items such as carbonfibre-reinforced, plastic-backed seats for the two-seat interior. These weigh just 15kg each and were inspired by the 918 Spyder. A customised version of the Sport Chrono Package was offered, as is a Club Sport Package. With production limited – each Porsche Centre in the UK was allocated just 10 cars –  the car sold out long before any reviews were published, but when they came, it was quite clear that Porsche had produced an absolutely cracking car. Anyone who managed to get one, and UK deliveries were a long time coming, was very lucky indeed.

 photo Picture 085_zpsdhdrpzpt.jpg  photo Picture 088_zpsjslkjcgy.jpg  photo Picture 239_zpslq4yjalo.jpg  photo Picture 237_zps5za8w4t9.jpg  photo Picture 110_zpsmccq18e3.jpg  photo Picture 136_zpst2tvmnhn.jpg  photo Picture 323_zpsfuz1kwvo.jpg

It was no surprise to find a significant number of other 911 models here, with a 991 GT3 joined by a 997 Turbo and GT3RS, as well as a 996 Cabrio and a 993, as well as a Singer modified classic shape 911.

 photo Picture 122_zps8a3sdk0y.jpg  photo Picture 067_zpsksydp1s1.jpg  photo Picture 073_zps4xfdgzvi.jpg  photo Picture 226_zpsw8g6repj.jpg  photo Picture 230_zpstrlqvpig.jpg  photo Picture 095_zps4xk73p94.jpg  photo Picture 094_zpsvmseeaa7.jpg  photo Picture 090_zpssyji7ufs.jpg  photo Picture 149_zpsp3dpzfdw.jpg  photo Picture 086_zpsqlwvn86m.jpg  photo Picture 087_zps935hhkp1.jpg  photo Picture 015_zps2ub18poh.jpg  photo Picture 056_zpsg6r1pblp.jpg  photo Picture 069_zpsqkxde84p.jpg  photo Picture 101_zpszhz3lihc.jpg  photo Picture 223_zps56sifwxh.jpg  photo Picture 141_zpsiasflxzi.jpg  photo Picture 132_zpsxybfdgag.jpg  photo Picture 131_zpsqnpfbjun.jpg photo Picture 130_zpsbhjvvl2s.jpg

TVR

First TVR here was a Chimaera, the slightly softer version of the Griffith, that was sold from 1993 to 2003. Offered with a choice of 4.0, 4,3 and later 4.5 and 5 litre Rover V8-based engines, this was still an exciting car, and a good looking one as well.

 photo Picture 021_zpsex9ceefb.jpg

Taking its name from the Greek name of a lightweight battle-axe used by the Scythians which was feared for its ability to penetrate the armour of their enemies, the second TVR model to be seen here, was a Sagaris, a car which made its debut at the MPH03 Auto Show in 2003. The pre-production model was then shown at the 2004 Birmingham Motorshow. In 2005 the production model was released for public sale at TVR dealerships around the world. Based on the TVR T350, the Sagaris was designed with endurance racing in mind. Several design features of the production model lend themselves to TVR’s intentions to use the car for such racing. The multitude of air vents, intake openings and other features on the bodywork allow the car to be driven for extended periods of time on race tracks with no modifications required for cooling and ventilation. The final production model came with several variations from the pre-production show models such as the vents on the wings not being cut out, different wing mirrors, location of the fuel filler and bonnet hinges. As with all modern TVRs the Sagaris ignored the European Union guideline that all new cars should be fitted with ABS and at least front airbags because Peter Wheeler believed that such devices promote overconfidence and risk the life of a driver in the event of a rollover, which TVRs are engineered to resist. It also eschewed electronic driver’s aids (such as traction control or electronic stability control). In 2008, TVR unveiled the Sagaris 2, which was designed to replace the original Sagaris. In the prototype revealed, there were minor changes to the car including a revised rear fascia and exhaust system, and modifications to the interior. Sagaris models. on the rare occasions that they come up for sale, are pricey.

 photo Picture 302_zpss2g01lqd.jpg  photo Picture 282_zps9takdv5l.jpg  photo Picture 283_zpsrpqsrozy.jpg  photo Picture 281_zpsmbjegukn.jpg

ULTIMA

Although the model has been in low volume “production” for many years now, there are still plenty of people who do not know what the car is, and the fact that there are no badges on it, and now no tax disc, means that there are no clues even when you see it in person. The Ultima is manufactured by Ultima Sports Ltd of Hinckley in Leicestershire, and is generally described by commentators as a supercar. It  is available both in kit form and as a “turnkey” (i.e. assembled by the factory) vehicle. The design is a mid-engined, rear wheel drive layout, with a tubular steel space frame chassis and GRP bodywork. Both close coupe and convertible versions have been made. The latter is called the Ultima Can-Am.  Kit builders are free to source and fit a variety of engines and transmissions but the Chevrolet small block V8 supplied by American Speed mated to either a Porsche or Getrag transaxle is the factory recommended standard, and this configuration is fitted to all turnkey cars.

 photo Picture 245_zpsmlfnchjq.jpg

VOLKSWAGEN

Very different from everything else on show was this example of VW’s amazing XL1. This is the third iteration of the Volkswagen 1-litre car and was unveiled at the 2011 Qatar Motor Show. The diesel plug-in hybrid prototype is branded as a “Super Efficient Vehicle”. According to Volkswagen, the XL1 can achieve a combined fuel consumption of 0.9 l/100km (310 mpg) with CO2 emissions of 24 g/km. Like the earlier L1, the XL1 uses a two-cylinder turbo-diesel. Displacing 800 cc, it is rated at 35 kW (47 hp) and 121 Nm (89 lb-ft) of torque and transmits power to the rear wheels through a seven-speed DSG transmission. The electric motor pitches in with 20 kW (27 hp) and 100 Nm (74 lb-ft) of torque, and can work in parallel with the diesel or drive the car independent of it. Fully charged, the XL1 can travel up to 35 km (22 mi) on electric power. The XL1 has a curb weight of 795 kg, and a drag coefficient (Cd) of 0.186 (a similar drag coefficient to the General Motors EV1 electric car). Frontal area is 1.5 m2 giving a drag area (CdA) of 0.28 m2. Just 23.2% of the car is made out of either steel or iron; the drivetrain weighs 227 kg (500 lb). The XL1’s length and width are similar to the Volkswagen Polo, with a length of 3,970 mm (156.3 in) and width of 1,682 mm (66.2 in). However, the car is much lower with a height of only 1,184 mm (46.6 in), and has a coupe-like roofline, reducing interior volume. The design incorporates butterfly doors, with the interior seating layout using a staggered side-by-side arrangement similar to a Smart Fortwo, rather than the previous versions’ tandem seating. Performance credentials include a governed top speed of 158 km/h (98.2 mph), with acceleration to 100 km/h in 11.9  seconds. Production of the car, on a limited basis, started in 2013, and ran through to early 2014, by which time the promised 250 units had been made. I think it’s an amazing looking car, and an instant classic. Only a handful were sold in the UK, and they did not come cheap. The owner of this one – which I have seen at a number of shows in recent months – said that there was very little change from £100,000 when he bought it.

 photo Picture 257_zpsfr1jgqzv.jpg  photo Picture 255_zpsqtadhhwh.jpg  photo Picture 311_zpsagllxg04.jpg  photo Picture 292_zps2je5szor.jpg

ZENOS

Perhaps one of the less familiar cars in the display was this Zenos E10S.  First revealed at the Autosport International show in January 2014, the car proved that it was a reality and not just a statement of intent that had been first suggested when two ex-Caterham gents, Ansar Ali and Mark Edwards, showed off a sketch of the E10. Launched with an asking price of under £30,000., for your money you get a 2.0-litre Ford GDI petrol engine making 200bhp and 155lb ft of torque, mounted in the middle, and powering the rear wheels through a limited slip differential and a six-speed transverse manual gearbox. The launch edition also gets removable front and rear wings coloured red, bespoke Zenos composite seats, four-point race harnesses, an OZ performance wheel pack with ZZR Avon tyres, footwell heating and even a quick release steering wheel. The whole thing weighs in at 650kg – thanks to a hybrid carbon and aluminium monocoque – while suspension is of the double wishbone variety all round (with Bilstein dampers). As such, it’s estimated to accelerate from 0-60mph in 4.5 seconds and rock on to a top speed of 135mph, though both of these figures are yet to be confirmed. Plans were announced to create two further models, the E11 and E12 sports cars (the first a roadster, the second a coupe) by 2018, though as ever with start ups, the reality of what can be done and how quickly was somewhat ambitious. The E10 has had good reviews, but is still struggling in a competitive and small sector in the market place.

 photo Picture 431_zpsnwzsxdqb.jpg

DEALER DISPLAYS

In addition to the main supercar displays. a number of dealers, most of them local to the New Forest and Southampton area, were supporting the event, and they had stands located around the edge of the supercar parking. As well as those selling new cars and restored classics were a number of traders with other products and services likely to be of interest to the supercar enthusiast.

ABARTH

I was expecting to see this, one of just three brand new Abarth 124 Spiders in the country, as I had been told by Abarth UK which events they would be supporting in the weeks following their presence at the Ace Cafe with one of the cars. The Abarth 124 Spider was developed in parallel with the Fiat model. It does cost a lot more, and there are those who think you don’t get enough extra for your money, but those who have driven it will tell you otherwise. You do get more power. The 1.4 MultiAir turbo unit jumps up from 138bhp to 168bhp, while torque also increases by a modest 10Nm to 250Nm, which gives it a  0-62mph time of  6.8 seconds, which is half a second quicker than the 2.0-litre Mazda MX-5. The top speed is 143mph. It weighs just 1060kg meaning a power-to-weight ratio of 158bhp-per-tonne, and with the new Record Monza exhaust system it sounds great even at idle, as the Abarth UK staff demonstrated many times during the evening. The Abarth version gets a stiffer suspension setup than the regular Fiat 124 Spider, with Bilstein dampers and beefed-up anti-roll bars. Bigger Brembo brakes also feature, with aluminium calipers. It can be had with a six-speed manual or six-speed automatic transmission with paddles, and the latter gets a Sport mode for quicker shifts. The car seen here was sporting the ‘Heritage Look’ pack, which is a no-cost option. It brings a matt black bonnet and bootlid, plus red exterior trim detailing and is likely to be popular. The £29,565 starting price gets you standard equipment such as cruise control, climate control, Bluetooth, a DAB radio and satnav, plus Alcantara black and red (or pure black) seat trim. The automatic gearbox is a £2,035 extra, while an optional visibility pack brings LED DRLs, auto lights and wipers and rear parking sensors. There will be more powerful versions to come, including a monstrous 300bhp Abarth 124 Rally which was shown at Geneva earlier this year.  The first customer cars are expected in the UK in late September 2016.

 photo Picture 041_zpsmdrmimkn.jpg  photo Picture 040_zpsrjt3rc56.jpg  photo Picture 039_zpsbkt0qqh7.jpg

ALFA ROMEO

Local dealer Meridien Milano had an example of the Alfa 4C here.  First seen as a concept at the 2011 Geneva Show, the production model did not debut for a further 2 years. Production got underway later that year at the Maserati plant in Modena, and the first deliveries were late in 2013. Production was originally pegged at 1000 cars a year and a total of just 3500, which encouraged many speculators to put their name down in the hope of making a sizeable profit on selling their cars on. That plan backfired, and in the early months, there were lots of cars for sale for greater than list price. Press reaction to the car has been mixed, with everyone loving the looks, but most of them feeling that the driving experience is not as they would want. Owners generally disagree – as is so often the case! – and most love their car. I know I would if I could find space (and funds!) for one in my garage!

 photo Picture 042_zpsnntpkg0i.jpg  photo Picture 043_zpsuh6ahadj.jpg

JAGUAR

E Type

 photo Picture 046_zpsnupqyasl.jpg

LAMBORGHINI

As well as a new Huracan, there was a rather nice Countach LP5000S here.

 photo Picture 044_zpspuceiuwm.jpg  photo Picture 045_zpsiscuhfdp.jpg

MERCEDES-BENZ

Sandown Mercedes-Benz had quite an assembly of the latest models from the vast Mercedes range. These included the latest SL and GLE Coupe, the high end S500 in Coupe and Cabriolet guises.

 photo Picture 038_zpsllysiioz.jpg  photo Picture 037_zpsmqrckc34.jpg  photo Picture 055_zpslvnli4rt.jpg  photo Picture 064_zpscdst1xgp.jpg  photo Picture 063_zpscc3e1eq6.jpg  photo Picture 058_zpsxfxaua8v.jpg  photo Picture 060_zpsrtnohi0r.jpg  photo Picture 057_zps6t6g4ico.jpg

Models with AMG badging included an AMG GT,  the rather brash A45 AMG and the new C43 AMG Estate.

 photo Picture 061_zpsqcwhjk2u.jpg  photo Picture 059_zps0nggizqp.jpg  photo Picture 062_zpswxxgncmk.jpg  photo Picture 065_zpsz0uqb5ej.jpg  photo Picture 036_zpsqffvcy17.jpg

TESLA

Generating (if you will pardon the pun!) lots of interest was the Model S on a Tesla Motors stand which always seemed to be busy.

 photo Picture 319_zpsfcjs3csk.jpg  photo Picture 320_zpsttllyyij.jpg

VW

There was another example of the striking little XL1 on show.

 photo Picture 048_zpsxq2cmjj9.jpg  photo Picture 050_zpsstrjyo3a.jpg  photo Picture 049_zps1hfq0xem.jpg

LAMBORGHINI DISPLAY

A special display of Lamborghini models was presented to celebrate 100 years since the birth of marque founder Ferruccio Lamborghini.

Oldest of these was a 400 GT. These cars were essentially just the older 350GT featuring an enlarged, 3929 cc V12 engine, with a power output of 320 bhp and recognised by the change to twin circular headlights from rectangular units. Twenty-three of these cars were built, with three featuring aluminium bodywork, and then at the 1966 Geneva Show, Lamborghini presented a revised version, called the 400 GT 2+2, which had a different roofline, and minor sheetmetal changes compared to the earlier cars, still with the Carrozzeria Touring bodywork. The larger body shape enabled the +2 seating to be installed in the rear, where the 350GT only had room for luggage or +1 seating, without changing the wheelbase. The 400 GT 2+2 also had a Lamborghini designed gearbox, with Porsche style synchromesh on all gears, which greatly improved the drivetrain.  224 examples of the 400 GT 2+2 were built from 1966 to 1968, when it was replaced with the Islero, this is one of just 4 right hand drive models built.

 photo Picture 202_zpsoqjayucc.jpg  photo Picture 199_zpse6stypi5.jpg

Also a 4 seater was the Jarama, the car which first appeared in 1970, as the replacement for the Islero. The Islero had quite a short production life, but needed amending to meet new United States safety and emissions regulations. So instead of just redesigning the Islero, Lamborghini made the Jarama, which could be thought of as a Mark 2 Islero, though it looked quite different, with a new body, styled by Gandini that looks not unlike the one he produced for the Iso Lele, one of the Lmaborghini’s market rivals. Compared to the Islero, the Jarama’s chassis was shortened only by 10.7 inches, being built on a shortened version of the same platform as the Espada. Even though the Jarama was heavier than the Islero, it had the same top speed. Two different models were made, the original GT, from 1970–1973, having a 350 bhp V12, and the GTS (also known as Jarama S), made between 1972–1976, with its output upped to 365 bhp  Also, with the GTS there were a few minor body modifications, redesigned interior dashboard, power assisted steering, removable roof panels, and an automatic transmission became available as options. Ferruccio Lamborghini was concerned the car would be thought to be named after the Jarama racing circuit near Madrid, while he meant the car to be named for the Jarama bullfighting region in Spain. In this way it carries a special double meaning. A total of 328 Jaramas were built, 176 of them the GT. This is one of the S cars.

 photo Picture 197_zpsamva13lx.jpg

There were two further examples of the Miura, a P400 and one of the later SV cars.

 photo Picture 204_zpsqbzlmpqi.jpg  photo Picture 201_zpscjwznczl.jpg  photo Picture 200_zpsa38wdyaf.jpg

The Espada, like this Series 3 model, was a genuine 4 seater, which was sold alongside the 2+2 400GT and the mid-engined Miura. It was designed by Marcello Gandini at Bertone. Gandini drew inspiration and cues from two of his Bertone show cars from 1967, the Lamborghini Marzal and the Jaguar Piraña. The name “Espada” means “sword” in Spanish, referring to the sword that the Torero uses to kill the bull in the Corrida. During its ten years in production the car underwent some changes, and three different series were produced. These were the S1 (1968–1970), the S2 (1970–1972) and the S3 (1972–1978). Each model featured interior redesigns, while only minor details were changed on the exterior. The Espada was launched at the 1968 Geneva Motor Show. The original design of the dashboard was inspired by the Marzal concept car, and featured octagonal housings for the main instruments, topped by an additional binnacle for the secondary gauges. Wheels were Campagnolo alloys on knock-off hubs, of the same design seen on the Miura. The tail lights were the same units mounted on the first series Fiat 124 Sport Coupé. 186 were made up to January 1970. At the 1970 Brussels Motor Show Lamborghini unveiled the Espada S2. Outside the only change was the deletion of the grille covering the vertical glass tail panel. Inside changes were more radical: all-new dashboard, centre console and steering wheel were installed. The instrument binnacle was of a more conventional rectangular shape, with round gauges. A wood-trimmed fascia extended along the entire width of the dashboard. Power output increased to 345 bhp due to a higher 10.7:1 compression ratio; the brakes were upgraded to vented Girling discs. Power steering was offered as an option. 575 Series II Espada were made, making it the most popular and desirable variant. The Espada S3 was launched in 1972. Its 3.9 litre V12 engine produced 321 bhp. With the second redesign the dashboard changed to a aluminium-trimmed cockpit that kept all instruments and most controls (including the radio) within easy reach of the driver. Newly designed wheels on five-stud hubs replaces the earlier knock-off wider wheels fitted with Pirelli Cinturato 215/70WR15 CN12 tyres, making the Espada S3 instantly recognizable; other exterior changes included the square instead of hexagonal mesh grille and tail lights from the Alfa Romeo 2000 replacing the previous Fiat-sourced ones. In 1974 a Borg Warner automatic transmission became available. From 1975 large impact bumpers had to be installed to meet United States safety requirements; some people consider cars produced with them as a separate fourth series, but Lamborghini did not officially change the model designation. Production ended in 1978, by which time 1217 Espadas had been built, making it the most successful Lamborghini model until the expansion of Countach production in the mid-1980s.

 photo Picture 198_zpsr7evpleo.jpg

Which small boy (and perhaps car loving girl) did not lust after a Countach back in the 1970s and 1980s. A dramatic looking car, this was the stuff of dreams that you would only ever see at the London or NEC Motor Shows. Countach first made an appearance, as a concept in 1971, but it was 1973 before the production car made its debut, and despite unfortunate timing with fuel shortages and a recession, and a number of financial problems for its maker, the car sold well throughout its production life. The car was updated a number of times during its lifetime, with a larger and more powerful 5 litre engine being fitted, in an attempt to stay ahead of rival Ferrari. This is one of those LP5000S cars. Incidentally, LP stands for Longditudinale Posteriore, in other words nothing more exotic than the location of the engine, an orientation that has featured in every Lamborghini since. The Countach stands at little more than 1 metre tall. No wonder they were so hard to get in and out of! The example here was one of the later Countach 5000Qv cars.

 photo Picture 203_zpsxw6w3fzc.jpg  photo Picture 205_zpsb5wvfkre.jpg  photo Picture 206_zpsly3rzqxs.jpg

After a number of false starts at producing a viable successor to the Countach, Lamborghini finally presented their new model, the Diablo, in 1990. The first Lamborghini to be able to exceed 200 mph, the car was certainly fast, but it was also tricky to drive. The VT was intended to change all that. Introduced in 1993. the most notable change was the addition of all wheel drive, which made use of a viscous centre differential (a modified version of LM002’s 4WD system). This provided the new nomenclature for the car (VT stands for viscous traction). The new drivetrain could direct up to 25% of the torque to the front wheels to aid traction during rear wheel slip, thus significantly improving the handling characteristics of the car. Other improvements debuting on the VT included front air intakes below the driving lamps to improve brake cooling, larger intakes in the rear arches, a more ergonomic interior with a revised dashboard, electronically adjustable dampers, four-piston brake calipers, power steering, and minor engine refinements. Many of these improvements, save the four-wheel drive system, soon transferred to the base Diablo, making the cars visually nearly identical. The VT stayed in the range, receiving the updates that were applied to the other Diablo models during the 1990s, including the new front end design which replaced the pop-up headlights with units under a clear cover and the fitment of the larger 6 litre engine. Seen here were both a road-going SV model and the racing SVR.

 photo Picture 207_zpsus4byrrr.jpg  photo Picture 208_zpsoioh1crx.jpg  photo Picture 209_zpsijm1xzap.jpg

In its turn, the Diablo gave way to the Murcielago in 2001. By this time, parent company Audi’s money was being made available, and this was reflected in higher standards of build quality, though the Lamborghini trademark bold styling remained, and the noise of the thunderous V12 remained a feature of the car throughout its 10 year life. Several Coupe and Spider versions were here.

 photo Picture 210_zpsr90kzorp.jpg

Outside this marquee were more Murcielago. Gallardo and Huracan models.

 photo Picture 213_zpsuv3iqtqk.jpg  photo Picture 212_zps7eq11fre.jpg  photo Picture 216_zps4wyvhbwt.jpg  photo Picture 215_zpsiba4joqn.jpg  photo Picture 214_zpskcbdf6m1.jpg  photo Picture 211_zpsfqyog9ni.jpg photo Picture 218_zpstwhjs6hg.jpg  photo Picture 217_zpsqxg4cubh.jpg

THE HOLY TRINITY

Three hypercars made their debut at the 2013 Geneva Motor Show: the Ferrari LaFerrari, McLaren P1 and Porsche 918 Spyder. All three were the ultimate offering in their respective ranges, combining the very latest technology and stupefying levels of performance with price tags that meant that only the particularly wealthy could contemplate trying to own one of them let along all three. Needless to say, they sold out almost instantly, though it took some months after their premiers before the first cars would reach their owners and some time after that before their very limited production runs were complete. Collectively they have become known as the “Hypercar Holy Trinity” and a separate display for these was promised in the event promotional material. Sadly, on the day I visited, though, this was not a Trinity, but whatever you call something with just two of the three present. Missing was a Porsche 918 Spyder, which was a shame, but the other two cars were a real pull for large numbers of photographers and fans.

 photo Picture 341_zpsbon1cfiy.jpg  photo Picture 343_zpsmzzyfgld.jpg  photo Picture 342_zps4wt8aeuw.jpg  photo Picture 332_zpsgaalchuw.jpg  photo Picture 330_zps6y1rbklu.jpg  photo Picture 335_zpsqfvculby.jpg photo Picture 331_zpsnjycme0o.jpg  photo Picture 334_zpskhg3rirq.jpg  photo Picture 436_zpswbxobiw3.jpg  photo Picture 440_zpsjlxbt2cd.jpg  photo Picture 439_zps300vds3b.jpg  photo Picture 435_zpsb1ahfy31.jpg  photo Picture 438_zpsi1n33yiu.jpg  photo Picture 437_zpszdgbbkuc.jpg  photo Picture 329_zpsu9txejgw.jpg  photo Picture 337_zps58ut9xpy.jpg  photo Picture 340_zpsyeb9mf1j.jpg  photo Picture 339_zpsvjacqgks.jpg  photo Picture 333_zps6cjohdkd.jpg  photo Picture 338_zps0gfrcywn.jpg  photo Picture 336_zpszlqxscgp.jpg

THE SUV SECRET GARDEN

Tucked away in what was almost like a Secret Garden, surrounded by high edges were a collection of SUVs. Very potent ones. The idea was that these would all be the most powerful type available, each delivering more than 500 bhp. When I saw that, I had to stop and think, as I suspected that this would make for a small display, but such has been the expansion of this sector of the market that there are quite a few vehicles that achieve these levels of power. Some of those on show, though, were not as potent as that, but still qualify as being the performance oriented SUV in their respective ranges.

Audi SQ5

 photo Picture 366_zpsaqrqabkz.jpg  photo Picture 365_zpsqqswv71w.jpg

Bentley Bentayga

 photo Picture 362_zpsninoaxto.jpg  photo Picture 373_zpsbizrwlxs.jpg  photo Picture 363_zpsftiaiz9f.jpg  photo Picture 364_zpsaw3gqhe3.jpg  photo Picture 361_zpsmn47l7pz.jpg  photo Picture 372_zpslwspiigv.jpg

Jaguar F Pace

 photo Picture 348_zpsfh7a5ncu.jpg  photo Picture 347_zpsgltrvtgz.jpg  photo Picture 349_zpsfakmwdtf.jpg

Jeep Grand Cherokee SRT

 photo Picture 369_zpsrmvrkfbl.jpg

Without question, the most extreme of all the cars in this display was the Lamborghini LM002, the original potent SUV. Its concept goes back to 1977, when Lamborghini built its first military vehicle, a prototype vehicle codenamed the “Cheetah”.  Lamborghini had designed the Cheetah with hopes of selling it to companies in the oil exploration and production industry. The original Cheetah prototype had a rear-mounted Chrysler V8 engine. The only finished prototype was never tested by the US military, only demonstrated to them by its designer, Rodney Pharis. It was later sold to Teledyne Continental Motors by MTI and is apparently still in the US. This led Lamborghini to develop the LM001, which was very similar to the Cheetah, but had an AMC V8 engine. It was finally determined that the engine being mounted in the rear caused too many unfavourable handling characteristics in an offroad vehicle, and the LMA002 was built with an entirely new chassis, moving the engine (now the V12 out of the Lamborghini Countach) to the front. After much testing and altering of the prototype, it was finally given a serial number and became the first LM002. The production model was unveiled at the Brussels Auto Show in 1986. It was dubbed the “Rambo-Lambo”. Civilian models were outfitted with a full luxury package, including full leather trim, tinted power windows, air conditioning, and a premium stereo mounted in a roof console. In order to meet the vehicle’s tire needs, Lamborghini commissioned Pirelli to create the Pirelli Scorpion tyres with custom, run-flat tread designs. These were made specifically for the LM and were offered in two different tread designs, one for mixed use and the other for sand use only. These tyres could be run virtually flat without risk and could handle the desert heat, the loading, and the speeds of the LM. The LM002 was fitted with a 290-litre fuel tank. For those requiring even more power, the Lamborghini L804 type 7.2 litre marine V12, more commonly found in Class 1 offshore powerboats, could be specified. In 1988, Lamborghini sent an LM002 to a team of special engineers with the intention of making it capable of participating in the Paris Dakar Rally. They stripped it of anything that added unnecessary weight and gave it an upgraded suspension, engine modifications which brought it to 600 hp, full roll cage, plexiglas windows, and GPS equipment. Funding ran out before it could officially be entered in competition, although it did participate in the Rallye des Pharaons in Egypt and another in Greece, both times driven by Sandro Munari. There are quite a few of these beasts in the UK, so they are not quite as rare as you might imagine.

 photo Picture 351_zpsmafxzf5s.jpg  photo Picture 350_zpskcffmju3.jpg  photo Picture 371_zps0rdfhezo.jpg

Range Rover Sport SVR

 photo Picture 352_zpsbenvzlr0.jpg

Mercedes G350CDi, G63 AMG and Brabus 800

 photo Picture 354_zps9l1pvvvj.jpg  photo Picture 355_zpszessgo6q.jpg  photo Picture 357_zps62qjgzwj.jpg  photo Picture 360_zps1w4lvue1.jpg  photo Picture 359_zpso9hkoen6.jpg  photo Picture 358_zpse8cfl34s.jpg  photo Picture 356_zpsls4qf5ri.jpg photo Picture 353_zpswmlymvft.jpg

Nissan Juke RS Nismo

 photo Picture 367_zps5dtuw9ai.jpg  photo Picture 368_zpsbqbsr5f1.jpg

Volvo XC90 T6

 photo Picture 370_zpscqvm2tnm.jpg

ASTON MARTIN DISPLAY

The first of two Tribute Collections which were located on the lawns in front of the Palace, this was a special display of some rare Aston Martin models.

 photo Picture 422_zps5jiaon6x.jpg  photo Picture 421_zpsxvmnswfg.jpg

Displayed separately from the rest of the Aston Martin models was this production DB11. Aston’s latest car made its debut at the 2016 Geneva Show, featuring a new engine and body structure, fresh styling, improved packaging and motorsport-derived aerodynamic features. After a series of Aston models which were so visually connected that telling one from another had been getting increasingly difficult for all but the true afficianado, the DB11 does look distinctively different, even it it is still recognisable an Aston. It is an all new car, based on a new platform. Perhaps the stand-out feature in this most significant of new Astons is located under the one-piece clamshell bonnet. Designed and built in-house by a team led by chief powertrain engineer Brian Fitzsimons, the new twin-turbocharged 5204cc V12 is the most powerful unit yet fitted to a DB road car. Its 600bhp and 516lb ft outputs are sufficient to accelerate the DB11 from zero to 62mph in 3.9sec and on to a top speed of 200mph. It’s also the first series-production Aston Martin to use a twin-turbo unit. The DB11 doesn’t have a synthesised system to augment the engine noise. The new engine sends its power to the DB11’s rear axle via a ZF eight-speed paddle-shift torque-converter automatic gearbox. The car features a mechanical limited-slip differential with active torque vectoring, the latter a being first for Aston Martin. Aston hasn’t revealed official figures, but it is targeting a 20% improvement in fuel efficiency and CO2 emissions over the Aston Martin DB9. That should equate to combined economy of about 24mpg and CO2 emissions of roughly 270g/km. Key to that dramatic improvement is a host of technology including variable valve timing, stop-start and intelligent bank activation, which shuts down six cylinders during periods of light throttle usage. The new car’s chassis, suspension, steering and electronics have been completely reworked under the watch of ex-Lotus handling guru Matt Becker, now Aston’s chief of vehicle attribute engineering. Aston’s target was to give the DB11 a broad range of capabilities. Using a steering wheel-mounted button, the driver can select from three dynamic modes — GT, Sport and Sport Plus — which progressively intensify the responses of the engine, transmission, electric power steering and torque vectoring by braking system. A separate button also increases the firmness of the Bilstein adaptive dampers. The DB11 rides on 20in tyres and wheels as standard. Its Bridgestone tyres have a bespoke tread pattern, construction and compound. Electric power-assisted steering has been incorporated to offer greater scope for tuning and improvements in fuel efficiency. Aston set its engineering team the target of creating a body structure that is lighter, stronger and more space-efficient than the one that underpins the DB11’s predecessor, the DB9. Using a mix of new bonded aluminium pressings, extrusions and castings, the structure “sets new standards for mass versus stiffness”. The new DB11 is longer, wider and lower than the DB9, at 4739mm long, 2060mm wide and 1279mm tall. Additionally, the wheelbase is 65mm longer, with Aston emphasising the car’s capabilities as a true 2+2 grand tourer. Compared with the DB9, the front and rear track widths have increased by 75mm and 43mm respectively, and overall width has been extended by 28mm. The front overhang has been reduced by 16mm and the rear overhang increased by 11mm, with an overall gain in length of 50mm. By making the wheelbase 65mm longer than that of the DB9, Aston has been able to mount the V12 further back in the chassis to improve weight distribution to 51% front and 49% rear. The body panels are made from a mix of pressed aluminium (for the clamshell bonnet, roof and doors), composite material (the rear haunches, front wings and rear decklid assembly) and injection-moulded plastic (the front and rear bumpers, sills, front splitter and rear diffuser). The DB11 features two aerodynamic devices inspired by Aston’s racing cars and also integrated onto the track-only Aston Martin Vulcan supercar. The first of these, named ‘Curlicue’, is a gill-like vent incorporated into each front wheel arch lining to reduce front-end aerodynamic lift. It vents high-pressure air from the top of each front wheel arch through recessed apertures behind the side strakes. Additional high-pressure air is extracted from the back of each wheel arch through stirrup vents positioned aft of the front wheels. The second feature, which Aston calls ‘AeroBlade’, uses ducted high-speed airflow to act as a virtual spoiler and enhance rear stability. Intake slots incorporated in the base of the car’s C-pillars are fed with high-speed air, which then passes within the bodywork through specially contoured ducting before venting via slots in the rear deck. This high-pressure jet of disrupted air reduces aerodynamic lift, obviating the need for an upswept ‘flip’ in the tail to be designed into the car’s rear. At higher speeds, a small active spoiler automatically deploys from the rear deck, increasing the effectiveness of the AeroBlade with a negligible increase in drag. Although Aston Martin’s new design language was previewed on the DB10, which was created for the Bond film Spectre last year, the DB11 marks the first time that it has appeared on a full production model. The new look was created by Aston Martin’s design team led by chief creative officer Marek Reichman. Highlights include a bigger, bolder interpretation of Aston’s iconic grille and the pressed aluminium, forward-hinging clamshell bonnet, shrink-wrapped to the engine bay. The all-LED headlights and tail-lights are another defining element of the DB11’s design. They incorporate daytime running lights and low-speed cornering lights for the first time on an Aston Martin. A roof strake that flows in an unbroken arc from the A-pillar to the C-pillar is another design signature, and the side strake on the car’s flanks, while harking back to past Aston Martins, has been re-imagined and now forms part of the Curlicue air vent. The cabin is a blend of recognisable Aston Martin design, such as the centre console that flows from the dashboard to the transmission tunnel and the familiar gearchange buttons, and new technology, including some sourced from Daimler. A new instrument cluster features a full-colour 12.0in TFT LCD screen, and a second, centrally mounted 8.0in TFT screen is dedicated to infotainment. Operation is via a rotary control, and an optional touchpad offers character recognition, multi-touch and gesture support. The DB11 offers more occupant space and comfort than the outgoing DB9. Redesigned A-pillar structures and a reduction in the height and width of the sill sections mean the door apertures are larger, making it easier to get into and out of the car. Front seat occupants benefit from a 10mm increase in head room and a greater range of seat movement. Meanwhile in the rear, there’s a 54mm increase head room and an 87mm gain in leg room, with the aim of making the DB11’s rear cabin more usable than that of the DB9. There’s also more luggage space, with the DB11’s 270-litre boot offering a 20% increase in capacity over that of the DB9. Other features new to the DB11 include keyless entry/ keyless start, parking control including parallel and bay park assistance, a 360deg bird’s-eye camera and an electrically powered steering column with an ‘up and away’ function for easier ingress and egress. Priced in the UK at £154,900, Aston Martin had 1000 orders by the time the car was revealed, and this number increased once more people could see it in the metal. The first cars are just starting to reach their owners.

 photo Picture 374_zpsqjghynng.jpg  photo Picture 426_zpssn5rqunn.jpg  photo Picture 428_zpspwddksj1.jpg  photo Picture 427_zpscmj1z4lz.jpg  photo Picture 376_zpsvljq16x1.jpg  photo Picture 375_zpsd4ufz0e4.jpg

Oldest of the cars in the main display was a DB2, the first new post-war Aston, and the first car to adopt the now legendary DB naming convention, reflecting the fact that in 1947 David Brown had bought the Aston Martin and Lagonda companies and incorporated them as Aston Martin Lagonda Ltd.  Lagonda’s 2.6 litre dual overhead cam, straight-six engine, more powerful than the pushrod 1.9 litre unit in the Aston Martin 2-Litre Sports, was the main objective in Brown’s acquisition of the company. W. O. Bentley had supervised the engine’s design, which was largely by William (Willie) Watson, an engineer with the pre-war Invicta company who had collaborated on Lagonda’s pre-war V12 and also designed the short-lived post-war version. Work then started on producing a new car, which was called the DB2. This new model would utilise a version of the Lagonda engine in a shortened version of the tube-frame chassis designed by Claude Hill for the Aston Martin 2-Litre Sports, with a fastback coupé body designed by Frank Feeley. Three pre-production cars were entered for the 1949 24 Hours of Le Mans. One, which would become the development car for the production DB2, had the Lagonda straight-6, while the four-cylinder Aston Martin 2-litre unit powered the other two. After six laps the Lagonda-powered car, driven by Leslie Johnson, retired with overheating caused by failure of the water pump. One of the 2-litre cars was in 4th place and running without brakes when it crashed two hours short of the finish, fatally injuring driver Pierre Maréchal. The other finished 7th, crewed by Arthur Jones and Nick Haines. A month later, the larger-engined car, driven by Leslie Johnson and Charles Brackenbury, finished 3rd in the Spa 24-hour race, where one of the 2-litre cars was driven to 5th by Nick Haines and Lance Macklin. For 1950 all three factory team cars were equipped with the Lagonda engine. At the 1950 Le Mans race the one driven by George Abecassis and Lance Macklin finished 5th, with Brackenbury and Reg Parnell bringing another home 6th, which won Aston Martin 1st and 2nd in the 3-litre class. Across the Atlantic, Briggs Cunningham drove his DB2 to 2nd in its class at the inaugural Sebring race meeting in December 1950. The factory team cars continued racing in Europe throughout 1951, including at Le Mans, where Macklin and Eric Thompson took 3rd overall, with Abecassis and Brian Shawe-Taylor 5th. David Brown soon embarked on a series of Aston Martins designed specifically for competition use, starting with the DB3. Meanwhile, the production DB2 debuted at the New York Auto Show in April 1950 and continued in production until April 1953, by which time 411 had been made. The first 49 had a chrome-framed front grille in three separate parts, and large rectangular cooling vents in the front wings. Subsequent cars had a one-piece grille with horizontal chrome slats, and no side vents. The single-piece bonnet was hinged at the front. At the rear of the fixed-head coupé (FHC) a small top-hinged lid gave access to the spare wheel, and luggage space was behind the front seats, accessible only from inside the car. Later in 1950, a Drophead Coupé (DHC) variant was introduced. At least 102 were built. In April 1950, an engine with larger carburettors, inlet camshaft the same as the exhaust (for increased duration), and higher compression ratio pistons (8.16:1) was made available. Aston Martin’s first Vantage upgrade option offered 125 hp. Initially the higher compression ratio made the engine unsuitable for the British market, as the postwar austerity measures of the early 1950s restricted UK vehicles to 72 octane “Pool petrol”. The first DB2 Vantage, LML 50/21, was delivered to, and raced by, Briggs Cunningham in the United States. A revised version of the DB2 was launched in 1953, called the DB2/4. It was available as a 2+2 hatchback, marketed as a Saloon, as a Drophead Coupé (DHC) and as a 2-seat Fixed Head Coupe. A small number of Bertone bodied spiders were commissioned by private buyers. A further update in 1957 created the Mark III, and this was produced until the launch of the DB4 in 1958.

 photo Picture 382_zpsqkildxu5.jpg  photo Picture 381_zpscof7iqg6.jpg  photo Picture 380_zpstkbi2nx8.jpg

Rather rarer, as only 99 of these cars were built, was this DB7 Zagato. Introduced at the Pebble Beach Concours d’Elegance in August 2002 and later shown at the Paris Motor Show in October 2002, the Zagato was immediately sold out. Like the DB7 Vantage on which it was based, the Zagato was powered by a 6.0 litre V12 engine controlled via a 6-speed manual transmission. It has a top speed of 186 mph (299 km/h) and a 0–60 mph acceleration time of 4.9 seconds. Unlike the later DB AR1, the Zagato was built on a shortened chassis. Whilst the looks divided opinion, as is often the case with Zagato cars, there can be no doubting how special this car is.

 photo Picture 377_zpssak9ca9g.jpg  photo Picture 418_zpshgyfmzfr.jpg  photo Picture 420_zpsqtvtmnn6.jpg   photo Picture 419_zpsi4fevync.jpg  photo Picture 379_zpswzlgdck7.jpg  photo Picture 378_zpsddlxxvq8.jpg

The other Aston models here were current models. Of these, the V12 Vantage S, the latest incarnation of the smallest current Aston, looked the most familiar.

 photo Picture 388_zpsjfktc7kc.jpg  photo Picture 389_zpsqi5hpvsr.jpg

There was also one of the high speed express Rapide S cars here.

 photo Picture 423_zpszuanyzup.jpg  photo Picture 391_zpsarcv079j.jpg  photo Picture 392_zpsrvhedzt6.jpg  photo Picture 394_zps2wrg9y9p.jpg  photo Picture 393_zps7ctvtw9b.jpg

It was good to see a Lagonda Taraf here. I had the chance to get a detailed and close up inspection of this car at the 2015 Geneva Show, where I was able to conclude that close up, the car looks far better than it did in the early launch photos. Indeed, the detailing is amazing and out in the open, in natural light, I think the car is stunning. It is pricey. Very pricey.

 photo Picture 417_zps3itqtyde.jpg  photo Picture 416_zpskoceglsv.jpg  photo Picture 390_zpski0a6c2u.jpg  photo Picture 387_zpsxgcpwmrr.jpg  photo Picture 383_zps3dovfne4.jpg  photo Picture 386_zpsup284vzg.jpg  photo Picture 385_zpslcviuqdd.jpg photo Picture 384_zpse3hmp7zy.jpg  photo Picture 415_zpszutkf6uq.jpg  photo Picture 414_zpsrzelovdv.jpg

MURRAY WALKER TRIBUTE COLLECTION

The second of the Tribute Collections was assembled in honour of Murrary Walker OBE, the much loved and long time voice of British motorsport. With the weekend paying tribute to Murrary, now 94 years old, the display here comprised a range of bikes and cars associated with his life and career, starting with a bike that his father race to the cars that crowned British Formula 1 Champions. Sadly, there was no sign of Murray himself. Health issues have afflicted him in recent months, and his public appearances have been reduced more than somewhat, but even with that famous voice and all his wonderful stories and anecdotes, this was still a fitting tribute to a much loved commentator.

Bikes were Murray’s first love, not least because his father used to race them, and the young Murray used to go and watch. He never really felt the desire to have a go himself, though.

 photo Picture 410_zps7vgf5pww.jpg

He is, of course, far better known, for his long-running role as commentator on Formula 1. This was something he built up to after his first attempts at Shelsley Walsh in 1949, when he got the chance to take over from the person who was supposed to be doing the job – and at which the BBC happened to be present and took due notice of his combination of knowledge and enthusiast. When he retired from his professional career in advertising, he was lucky enough to be able to enjoy a second career, travelling the world and getting to meet all the drivers over many years. Lots of them inspired him, of course, but as a patriotic Englishman, it is no exaggeration to see that his legendary excitement and emotion probably reached new peaks when Nigel Mansell and a few years later Damon Hill were crowned as Formula 1 World Champions. Accordingly, there were Williams cars which these two drivers had used to secure their success.

 photo Picture 406_zpsxbd3osch.jpg  photo Picture 405_zpsapltkw2j.jpg  photo Picture 404_zpspnihdnp7.jpg  photo Picture 403_zpsb44mpvpn.jpg  photo Picture 402_zps6retg9pk.jpg

Also a Grand Prix winner, in its day, was this fabulous Maserati 250F, the car which Juan Manuel Fangio took to victory in 1955.

 photo Picture 411_zpsxy2oufnh.jpg  photo Picture 409_zps4u0epcdt.jpg  photo Picture 408_zpsq9mrnyaw.jpg  photo Picture 407_zpsa81chrfj.jpg

But Murray’s love of motorsport extended more widely and so, in honour of the time when he commentated on this particular genre, there were also three cars associated with Rallycross in the display: Lance Foster displayed his famous Green & White Mini Spares Mini, Dave Halford brought along his Audi Quattro and Adam Keeler attended with his ex-Will Gollop / Tiff Needell MG Metro 6R4

 photo Picture 397_zpsuqvlrq2u.jpg  photo Picture 396_zpsx9xpbdth.jpg  photo Picture 395_zpsfg3i382w.jpg  photo Picture 401_zpsy25b35ih.jpg  photo Picture 399_zps2lqdwbmi.jpg  photo Picture 400_zpstdmruha5.jpg photo Picture 398_zpsmcc2mcwq.jpg

Final car in the display was a splendid BMW 328.

 photo Picture 412_zpst7q3i3eo.jpg  photo Picture 413_zpsdnwjli0s.jpg

SUPERCAR to RACECAR

Another display, presented under a huge circular marquee was this, comprising pairings of cars, a road-going supercar and the associated race car. Lighter, faster and missing the luxury showroom options that you might expect, the stripped-back roll-caged cars in this display were beefed-up, growly versions of some well known machines, designed to compete in endurance race series. The cars here ranged from homologation specials to GT Class dominators.

Ford GT and GT40

 photo Picture 442_zpshmnhcyaw.jpg  photo Picture 441_zpswayucevv.jpg  photo Picture 446_zpslafpjggs.jpg  photo Picture 444_zpsk5hedw5e.jpg  photo Picture 443_zpssxa1llfx.jpg  photo Picture 456_zpsyimfytnm.jpg

Jaguar XJ220

 photo Picture 454_zps71zmlqre.jpg  photo Picture 453_zpsluvjxqsp.jpg  photo Picture 452_zps2gnin51l.jpg  photo Picture 451_zps7fjvrb2y.jpg  photo Picture 450_zpsfobzvx3h.jpg  photo Picture 449_zps7dzarniq.jpg

Jaguar F Type

 photo Picture 460_zpsyovpfwxg.jpg  photo Picture 459_zpsv1ftz1dq.jpg  photo Picture 457_zpsozh30nop.jpg  photo Picture 458_zpsse9qt0j4.jpg

Nissan GT-R

 photo Picture 445_zpsl8vspxht.jpg  photo Picture 455_zps2uculbvl.jpg  photo Picture 448_zpsvcg4nut1.jpg  photo Picture 447_zpshz4qscfx.jpg

HOUSE and GARDENS

Although I did not have the time to go inside the house on this occasion, it is certainly worth doing so if you get the chance, but as the skies cleared, I did take advantage of the opportunity to get some photos for my collection. And I did meander around the Victorian Kitchen and Flower Gardens, which are both extensive and packed full of all sorts of plants, some more familiar than others. There were plenty of vegetables being grown here, most of them recognisable, but a few which had me scratching my head uncertain as to what I was looking at, along with long borders of colourful and in many cases scented plants, again some of which would require specialist knowledge to identify.

 photo Picture 424_zpsszpgemrl.jpg  photo Picture 425_zpsrcwaeqk6.jpg  photo Picture 344_zpsb4vsswxf.jpg  photo Picture 345_zpspvyzytkc.jpg  photo Picture 346_zpslfvhztaq.jpg

This proved to be a most enjoyable day out,. Whilst the supercars were the main attraction, the fact that these are not the rarities that they used to be means that I have become a bit blase about seeing some of them, and yet when presented in this way, in number and variety and with all the various other displays, the trip down to the New Forest seemed like a great way to spend an August Sunday. The 2017 event takes place on 5/6th August, which means it clashes with several of other favourite events. It is going to be hard to decide which to prioritise.

Leave a Reply

Your email address will not be published. Required fields are marked *