VSCC at Prescott – August 2017

The VSCC and the Prescott Hill Climb both go back to the 1930s. Completely separate entities, with the former founded in 1934 by a group of 5 enthusiasts to “promote the pastime of motoring”, its original aim was to allow the “not so rich” to enjoy historic motoring. General guidelines made the club principally for cars built before 1931 and whilst these remain in force to this day, cars built before the Second World War but conforming to standards set in 1931 are also allowed. The Hill Climb at Prescott was created slightly later in 1938, and barring interruptions for the War has been in continuous use ever since and has been home to the Bugatti Owners Club. VSCC and Prescott come together for a spectacular meeting, the largest event of the year for the VSCC in a busy annual program, at the beginning of August, when the Club takes over Prescott for a weekend with a very pre-war theme to it. This is your best chance to see literally hundreds of pre-war cars, both in action on the hill and a good deal more parked up in the car park. It’s an event I’ve attended a number of times in the past and so had little hesitation in putting into my 2017 schedule. With no other significant events taking place over the same weekend, i was able to spend both days there, and apart from a quite incredible downpour which came more or less from nowhere on the Saturday lunchtime, but which quickly dried up again, was able to take everything in under sunny skies. Here is what I saw:

THE VSCC CAR PARK

On the Saturday, pre-war cars filled at least half of the Orchard, and on the Sunday, they filled it completely. And almost every single one arrived, having been driven to Prescott, from all over the country, as opposed to being trailered on site. Talking to some of the owners, it is clear that many had travelled significant distances, determined that they would both enjoy the drive and the chance of letting other people see their car, as well as taking advantage of the opportunity to catch up with old friends. And clearly, many of the owners have known each other for a very long time, judging by some of the conversations you hear. Some clearly come to see the cars and the hill climbing, but plenty of others treat this more as a social occasion, and the expansive picnics that they set up and enjoy over an extended lunchtime are clear evidence that it is the setting and the chance to see people that they only catch up with a few times, or even just once a year constitute reason enough to travel. Although many of the cars depicted here are ones I have seen in previous years at this event, there are plenty that do not feature in my photos from any of the past several years that I have been attending. There was a huge variety from familiar marques and models as well as some that were particularly rare and a few brands that required work with Google after the event to try to learn more about them.

 photo Picture 328_zpsqexrym4i.jpg  photo Picture 236_zpsp7turmwe.jpg  photo Picture 225_zpsfganruyv.jpg  photo Picture 169_zpsszha7yly.jpg  photo Picture 252_zpsyxyyg5hc.jpg

AC

 photo Picture 230_zps1ytq8ugb.jpg  photo Picture 221_zpsksmup2as.jpg  photo Picture 020_zpsqm7981bu.jpg

ALFA ROMEO

There were three 6C 1750 models here all of them very different, When you think of an Alfa Romeo 6C 1750, you might well imagine something with a two-seater Zagato sports body. This 1930 “Testa Fissa” is very different. First owner Sir Ronald Stewart bought it as a running chassis and asked Captain George Eyston, racer and later record-breaker, to design a racing body. This was built by London coachbuilder A E Leadbetter, and the resulting streamlined machine – note the smooth covers for the rear wheels – was raced extensively at Brooklands by Stewart and Eyston. In October 1930 the duo set a new national 12-hour record at Brooklands in the unique Alfa, averaging 94mph with a best lap of 115mph. The car disappeared in 1931, to be rediscovered by Vic Derrington in 1947, by which time it had gained a four-seat tourer body. Ian Gunn bought it in 1949, took it to Canada and then on to the US, where he discarded the body with the intention, never realised, of recreating the original. After acquiring the Testa Fissa in 2008, the current owner took it to Gary Pitney in Bracknell for the original body design to be recreated. This was completed early this year, in time for the Amelia Island Concours d’Elegance in March. Under the smooth grey bodywork, with its faired-in radiator and steering-wheel cowl, lie entirely original mechanical components.

 photo Picture 190_zps69jh4lyw.jpg  photo Picture 189_zpsah2sinza.jpg  photo Picture 211_zpsija5fyjy.jpg

The other two 6C 1750 cars were both models I’ve seen here before, and have very different bodies on them. In the mid-1920s, Alfa’s RL was considered too large and heavy, so a new development began. The 2-litre formula that had led to Alfa Romeo winning the Automobile World Championship in 1925, changed to 1.5-litre for the 1926 season. The 6C 1500 was introduced in 1925 at the Milan Motor Show and production started in 1927, with the P2 Grand Prix car as starting point. Engine capacity was now 1487 cc, against the P2’s 1987 cc, while supercharging was dropped. The first versions were bodied by James Young and Touring. In 1928, a 6C Sport was released, with a dual overhead camshafts engine. Its sport version won many races, including the 1928 Mille Miglia. Total production was 3000 (200 with DOHC engine). Ten copies of a supercharged (compressore, compressor) Super Sport variant were also made. The more powerful 6C 1750 was introduced in 1929 in Rome. The car had a top speed of 95 mph, a chassis designed to flex and undulate over wavy surfaces, as well as sensitive geared-up steering. It was produced in six series between 1929 and 1933. The base model had a single overhead cam; Super Sport and Gran Sport versions had double overhead cam engines. Again, a supercharger was available. Most of the cars were sold as rolling chassis and bodied by coachbuilders such as Zagato, and Touring. Additionally, there were 3 examples built with James Young bodywork. In 1929, the 6C 1750 won every major racing event it was entered, including the Grands Prix of Belgium, Spain, Tunis and Monza, as well as the Mille Miglia was won with Giuseppe Campari and Giulio Ramponi, the Brooklands Double Twelve and the Ulster TT was won also, in 1930 it won again the Mille Miglia and Spa 24 Hours. Total production was 2635.

 photo Picture 290_zpshqzyeaa6.jpg  photo Picture 291_zpswcrgnqdm.jpg  photo Picture 289_zpscmf83en5.jpg  photo Picture 242_zpsxpwtaqfs.jpg  photo Picture 214_zpszg33cna1.jpg photo Picture 578_zpsxpplx5y6.jpg

ALVIS

There were probably more Alvis models here than any marque other than Riley. A lot of them were versions of the 12/50 and 12/60 models.

 photo Picture 007_zpsvcxclw3e.jpg  photo Picture 009_zps0n19gvqt.jpg  photo Picture 360_zpsim0fcezz.jpg  photo Picture 350_zpssze4avl7.jpg  photo Picture 264_zpsokl2bad4.jpg photo Picture 296_zpstvv0klpy.jpg  photo Picture 294_zpso5y0keqp.jpg  photo Picture 251_zpsbr8fljlg.jpg  photo Picture 182_zpsfvq5gcni.jpg  photo Picture 115_zpsycdnpnqc.jpg

This elegant car is a Speed 25 from 1938. The Alvis 4.3-litre and Alvis Speed 25 were luxury touring cars announced in August 1936 and made until 1940 by Alvis Car and Engineering Company in Coventry. They replaced the Alvis Speed 20 2.8-litre and 3½-litre. They were widely considered one of the finest cars produced in the 1930s. The Speed Twenty’s 2½-litre, 2.8-litre or 3½-litre engines with four main bearings were replaced in the 4.3-litre and 3½-litre Speed Twenty-Five with a strengthened new designed six-cylinder in-line unit now with seven main bearings. For the 3½-litre version an output of 110 PS at 3,800 rpm was claimed (and proven) along with a top speed of almost 160 km/h (100 mph). It propelled the occupants at high speed in exceptional luxury accompanied by the attractive sound of a powerful deep and throaty exhaust. Its beauty is also confirmed as it is the only car to win the prestigious Ladies Choice VSCC Oxford Concourse prize two years in a row. The clutch, flywheel and crankshaft were balanced together, which minimised vibration. The cylinder head was of cast iron but the pistons were of aluminium. Two electric petrol pumps fed the three SU carburettors, which were protected by a substantial air filter. A new induction system incorporated an efficient silencing device. Rear springs were 15 inches longer than in the previous model. The brakes had servo assistance. Alvis did not make any of the bodies for the Speed 25. The cars were supplied in chassis form and firms such as Cross & Ellis (standard tourer) Charlesworth (standard saloon and Drop Head Coupé) as well as Vanden Plas, Lancefield, Offord and others would fit suitably elegant open touring or saloon car bodies. The car was built on a heavy steel chassis with a substantial cross brace. With its sporty low slung aspect, all-synchro gearbox, independent front suspension and servo-assisted brakes, this was a fast, reliable and beautifully made car, although at almost £1000 it was not cheap. The survival rate for what was after all a hand-built car is surprisingly good. Later models featured increased chassis boxing, and to reduce the car’s weight Alvis cut numerous holes in the chassis box sections, which was also a solution tried less successfully earlier in the decade by Mercedes-Benz when confronting the same challenge with their enormously heavy Mercedes-Benz SSKL. Minor improvements to both cars announced at the October 1938 Motor Show included a dual exhaust system said to quieten the engine and improve power output. From the show the press reported the 4.3-litre four-door sports saloon to have “a most imposing front with very large headlamps, fog and pass lights, and post horns.” A chassis for bespoke bodywork was still listed but a range of standard coachwork was made available. On the standard four-door saloon there were no running boards and the wings were streamlined. The luggage locker was lined in white rubber. Dunlopillo upholstery eased muscular fatigue. The rake of both the driver’s seat and its squab were now easily adjustable. There was a system of no-draught ventilation. The double sliding roof might be opened from either back or front seat. There were twin tuned electric horns and twin electric windscreen wipers. The instrument panel included a revolution counter and there were ashtrays and a smoker’s companion. There were to be only detail changes for 1940.

 photo Picture 621_zpsft0qwrg5.jpg  photo Picture 322_zpso2nbhmg1.jpg  photo Picture 319_zpscjaedtbl.jpg

ASTON MARTIN

Every year there is a great collection of Aston Martin models from the 1930s, and the owners of many of these clearly do arrange to meet up outside the venue and convoy in together, as the majority of these fabulous cars do end up parked next to each other. Most numerous among them were the 1.5 litre and International cars of the early 1930s.

 photo Picture 015_zpsdoxdxjvx.jpg  photo Picture 557_zpsai21c85r.jpg  photo Picture 559_zps8039lxez.jpg  photo Picture 556_zpsvfbvxpmj.jpg  photo Picture 555_zpsztddepf4.jpg photo Picture 288_zpshs0ss6ba.jpg  photo Picture 048_zpsc62rqyvn.jpg  photo Picture 040_zpsiy3ru8ll.jpg

This looks like an Ulster, but is in fact a replica, one of 7 made in 1987 by Fergus Engineering.

 photo Picture 523_zpsjie7lhgq.jpg

There were plenty of the 15/98 model here. This was Aston Martin’s standard model from 1936 onward. It was built in both short chassis and LWB form. Both models were named after their RAC power rating of 15 and an actual output of 98 bhp. Initially launched as a four-seat tourer Aston Martin’s prepared a shorter 15/98 short chassis to spur on sales. Some were fitted with occasional back seats and others were strictly 2-seat roadsters. The car retained Aston’s 2-litre engine which was capable of nearly 100 bhp. This was the same unit developed for the 1936 Le Mans team cars, but converted to wet-sump lubrication. Most of the roadsters were bodied by Abbey Coachworks in London while the sedans and coupes were handled by E. Bertelli Ltd. In either configuration the complete car was £575 and £475 in 1938 to sell unsold examples. Around 100 were made.

 photo Picture 560_zpsi4t56f2s.jpg  photo Picture 558_zpsyzqdvnj9.jpg  photo Picture 354_zpsgtqslzxd.jpg

AUSTIN

There were numerous examples of the popular Seven here, reflecting the model’s popularity and its good survival rate. Herbert Austin’s masterpiece which did much to put Britain on wheels in the 1920s was first seen in 1922, as a four seat open tourer. Nicknamed Chummy, the first 100 featured a 696cc four cylinder engine, which was quickly upgraded to the 747cc unit that remained until the end of production some 17 years later. The first cars had an upright edge to the doors and a sloping windscreen, but from 1924, the screen became upright and there was a sloping edge to the doors, as well as a slightly longer body. Stronger brakes came along in 1926, along with a slightly taller nickel-plated radiator grille, conventional coil ignition, a more spacious body and wider doors. An even longer and wider body arrived in 1930, as well as a stronger crankshaft and improvements to the brakes which coupled front and rear systems together so they both worked by the footbrake. In 1931 the body was restyled , with a thin ribbon-style radiator and by 1932 there was a four speed gearbox to replace the earlier three-speeder. 1933 saw the introduction of the Ruby, a car that looked more modern with its cowled radiator. There were also Pearl and Opal versions. Development continued, so in 1937 there was a move to crankshaft shell bearings in place of the white metal previously used, and the Big Seven appeared. The last Seven was made in 1939, by which time 290,000 had been produced. Aside from saloons and tourers, there had been vans and sports derivatives like the Le Mans, the supercharged Ulster and the rather cheaper Nippy. Around 11,000 Sevens survive today.

 photo Picture 028_zps7mi7acp7.jpg  photo Picture 327_zpsnqxhwyvl.jpg  photo Picture 184_zpshsieizn6.jpg  photo Picture 320_zpshn9hkfkc.jpg  photo Picture 355_zps9bfdexzj.jpg photo Picture 016_zpsyfdpafxv.jpg  photo Picture 338_zpskl0uv6y4.jpg  photo Picture 329_zps5hepg8bi.jpg  photo Picture 253_zps3o0mw95l.jpg  photo Picture 306_zpsaf5zkhrh.jpg  photo Picture 527_zpsxcroklwl.jpg  photo Picture 370_zps5ahktz2i.jpg  photo Picture 235_zpsxedca9nc.jpg  photo Picture 045_zpspr5piika.jpg  photo Picture 326_zps2aefqorc.jpg  photo Picture 325_zpssql4h6ba.jpg  photo Picture 324_zpslyndpacz.jpg

Sitting above it in the range was the Ten, a model which Austin had launched in 1932, to plug the gap between the diminutive Seven and the larger Twelve models in their range which had been updated in early 1931. The Ten became the marque’s best seller and was produced, in a number of different versions through to 1947. A number of improvements were made to the car in the months following launch, but it was for 1937 when the first really big change came about with the launch of the almost streamlined Cambridge saloon and Conway cabriolet. Compared with the preceding cars, the passengers and engine were positioned much further forward, the back seat now being rather forward of the back axle. There were six side windows like the Sherborne and the quarter lights were fixed. Again like the Sherborne the forward doors opened rearwards. At the back there was now a compartment large enough to take a trunk as well as more luggage on the open compartment door when it was let down. A new smoother single plate spring-drive clutch was now fitted, the two friction rings carried by the centre plate were held apart by leaf springs. Other changes included Girling brakes with wedge and roller shoe expansion and balance lever compensation using operating rods in tension with automatic compensation between front and rear brakes all four of which might be applied by hand or foot. Drums were now 9 inches diameter. 16-inch steel disc wheels replaced the 18-inch wires. Top speed from the 1141cc engine rose to 60 mph.

 photo Picture 371_zpsrzzysc9j.jpg  photo Picture 018_zpslleqov7v.jpg

There was also a later Ten, a 1936 Cambridge. Launched in December that year, the new body styling was almost streamlined for the Cambridge saloon and Conway cabriolet. Compared with the preceding cars the passengers and engine were positioned much further forward, the back seat now being rather forward of the back axle. There were six side windows like the Sherborne and the quarter lights were fixed. Again like the Sherborne the forward doors opened rearwards. At the back there was now a compartment large enough to take a trunk as well as more luggage on the open compartment door when it was let down. A new smoother single plate spring-drive clutch was now fitted, the two friction rings carried by the centre plate were held apart by leaf springs. Other changes included Girling brakes with wedge and roller shoe expansion and balance lever compensation using operating rods in tension with automatic compensation between front and rear brakes all four of which might be applied by hand or foot. Drums were now 9 inches diameter. 16-inch steel disc wheels replaced the 18-inch wires Top speed rose to 60 mph. The car’s wheelbase was now ¾ inch longer. Rear track was now increased to 3′ 10½”, 46.5 in (1,180 mm). The vehicle’s weight was now reported to be 18½ cwt, 2,072 lb (940 kg). These changes did not appear on the open cars, which no longer included the Ripley sports, until 1938 when the Cambridge and the Conway cabriolet gained an aluminium cylinder head on the engine and a higher compression ratio.

 photo Picture 229_zpsdijcyn02.jpg

Slightly confusingly, the Six was a much larger car, as it was named after the number of cylinders rather than the horsepower, unlike the car that was branded Seven which was so named because of its HP rating. The Austin Twelve was introduced in 1921. It was the second of Herbert Austin’s post World War I models and was in many ways a scaled-down version of his Austin Twenty, introduced in 1919. The slower than expected sales of the Twenty brought about this divergence from his intended one-model policy. The Twelve was announced at the beginning of November 1921 after Austin’s company had been in receivership for six months. Twelve refers to its fiscal horse power (12.8) rather than its bhp which was 20 and later 27. The long-stroke engines encouraged by the tax regime, 72 x 102 later 72 x 114.5, had much greater low-speed torque than the bhp rating suggests. Initially available as a tourer, by 1922 three body styles were offered: the four-seat tourer, the two/four-seater (both at £550) and the coupé at £675. The car enjoyed success throughout the vintage era with annual sales peaking at 14,000 in 1927. While the mechanical specification changed little (the engine increased from 1661 cc to 1861 cc in 1926), many body styles were offered with saloons becoming more popular as the twenties drew to a close. The car continued in the Austin catalogue and as a taxi option until 1939. The last cars were produced for the War Department in 1940. After the early thirties the car was referred to by the public as the Heavy Twelve to distinguish it from the other, newer, 12HP cars in the Austin catalogue Light Twelve-Four, Light Twelve-Six etc. and received some updating. The artillery style wheels were replaced by wire wheels in 1933 and coil ignition replaced the magneto in 1935. The gearbox was provided with synchromesh between its top two ratios in 1934. The factory catalogued body range was steadily updated with the last of the no longer fashionable Weymann style fabric-covered cars in 1931 and no open tourers after 1934.

 photo Picture 265_zpsw3xyrsnk.jpg  photo Picture 330_zps0ra24osq.jpg

The Mayfair, also known as an Austin Twenty sat at the top of the Longbridge maker’s range. The first Austin Twenty was introduced in April 1919 and continued in production until 1930. After this, the Austin 20/6 model was introduced in 1927, which meant that the earlier model came to be referred to as the Austin 20/4. Before 1919, Austins had been expensive prestige cars. In the 1920s there were people who believed the four-cylinder Twenty comparable with if not superior to the equivalent Rolls-Royce. If the coachwork were light enough the Twenty could also give a three-litre Bentley a run for its money. The final inter-war version was the enormous, extremely elegant fast and powerful side-valve Twenty-Eight of 1939. The overhead-valve Sheerline and its companion Princess were to continue the line after the Second World War; however, by the 1930s Austin had lost its aristocratic cachet, having become well known for its smaller, cheaper and much bigger-selling Twelves and Sevens. The first six cylinder Twenty was introduced at the 1926 Olympia Motor Show in London, with a 3.6 litre in-line engine under the bonnet. A new body was produced for 1932 and another new one appeared in 1934, and it is that style which was to be seen here. This was an expensive car, listing at £675 (though be aware that just the chassis for a Rolls-Royce 20/25 was more than twice that, at £1500), so it is no surprise to learn that only 487 were made in 1936, with similar numbers being produced in the years before and after that. This particular car started out life at a stately home in rural Somerset. It is believed that it was sold on in the 1950s and then accumulated a big mileage, either as a wedding car or a hearse, and then it fell into some disrepair. It was saved and underwent a full restoration in the 1980s, and the current owner was able to acquire it around 6 years ago. It looks very imposing indeed.

 photo Picture 540_zps6evvao2u.jpg  photo Picture 380_zpscp2lpem9.jpg  photo Picture 539_zpssn5zpjvs.jpg  photo Picture 602_zpsoj8micxl.jpg  photo Picture 603_zps5nmodtv4.jpg photo Picture 379_zpsti0zrjmk.jpg

BENTLEY

Oldest of the models present were a number of the 3 and 4.5 litre cars that were produced in the 1920s and which epitomise the classic Bentley to many people. The 3 Litre was the company’s first model, first shown in 1919 and made available to customers’ coachbuilders from 1921 to 1929. It was conceived for racing. The Bentley was very much larger than the 1368 cc Bugattis that dominated racing at the time, but double the size of engine and strength compensated for the extra weight. The 4000 lb (1800 kg) car won the 24 Hours of Le Mans in 1924, with drivers John Duff and Frank Clement, and again in 1927, this time in Super Sports form, with drivers S. C. H. “Sammy” Davis and Dudley Benjafield. Its weight, size, and speed prompted Ettore Bugatti to call it “the fastest lorry in the world.” The 3 Litre was delivered as a running chassis to the coachbuilder of the buyer’s choice. Bentley referred many customers to their near neighbour Vanden Plas for bodies. Dealers might order a short cost-saving run of identical bodies to their own distinctive design. Most bodies took the simplest and cheapest form, tourers, but as it was all “custom” coachwork there was plenty of variation. The 2,996 cc straight-4 engine was designed by ex-Royal Flying Corps engineer Clive Gallop and was technically very advanced for its time. It was one of the first production car engines with 4 valves per cylinder, dry-sump lubrication and an overhead camshaft. The four valve SOHC Hemi design, with a bevel-geared shaft drive for the camshaft, was based on the pre-war 1914 Mercedes Daimler M93654 racing engine. Just before the outbreak of the war Mercedes had placed one of the winning Grand Prix cars in their London showroom in Long Acre. At the suggestion of W.O. Bentley, then being commissioned in the Royal Naval Air Service, the vehicle was confiscated in 1915 by the British army, dismantled at Rolls-Royce and subjected to scrutiny. A notable difference to both the Mercedes and the aero engines was the cast-iron monobloc design, and the fully Aluminium enclosed camshaft, which greatly contributed to its durability. But having the valve-head and block in one-piece made for a complicated and labour intensive casting and machining. This was a feature shared during that time by the Bugattis which the car was later to compete with. The engine was also among the first with two spark plugs per cylinder, pent-roof combustion chambers, and twin carburettors. It was extremely undersquare, optimised for low-end torque, with a bore of 80 mm and a stroke of 149 mm. Untuned power output was around 70 hp, allowing the 3 Litre to reach 80 mph. he Speed Model could reach 90 mph; the Super Sports could exceed 100 mph. A four-speed gearbox was fitted. Only the rear wheels had brakes until 1924, when four-wheel brakes were introduced. There were three main variants of the 3 litre and they became known by the colours commonly used on the radiator badge. There was a definite rule controlling badge colours but astonishingly it has since been established that given “special circumstances” the factory would indeed supply a “wrong” colour. Blue label was the standard model with 117.5 in wheelbase from 1921 to 1929 or long 130.0 in wheelbase from 1923 to 1929. The Red label used a 5.3:1 high compression engine in the 117.5 in wheelbase chassis and was made from 1924 to 1929. The Green label was made between 1924 and 1929 and was the high performance model with 6.3:1 compression ratio and short 108 in wheelbase chassis. 100 mph performance was guaranteed. As well as 3 Experimental cars, Bentley produced 1088 examples of the 3 litre, and the Speed Model numbered 513 and there were 18 Super Sports.

 photo Picture 311_zpsyd5jzd4i.jpg  photo Picture 535_zps0pfprf73.jpg  photo Picture 599_zpsj5qy5wir.jpg  photo Picture 179_zpsgs6ifprx.jpg  photo Picture 344_zpstxlulbwg.jpg  photo Picture 238_zps1rgzuxyb.jpg  photo Picture 024_zpsskdfwmk0.jpg  photo Picture 378_zpsguf0yhz6.jpg

Bentley replaced the 3 Litre with a more powerful car by increasing its engine displacement to 4.5 litres. As before, Bentley supplied an engine and chassis and it was up to the buyer to arrange for their new chassis to be fitted with one of a number of body styles, most of which were saloons or tourers. Very few have survived with their four-seater coachwork intact. WO Bentley had found that success in motorsport was great publicity for the brand, and he was particularly attracted to the 2 Hours of Le Mans endurance race, the inaugural running of which took place 26–27 May 1923, attracting many drivers, mostly French. There were two foreign competitors in the first race, Frank Clement and Canadian John Duff, the latter winning the 1924 competition in his personal car, a Bentley 3 Litre. This success helped Bentley sell cars, but was not repeated, so ater two years without success, Bentley convened a group of wealthy British men, “united by their love of insouciance, elegant tailoring, and a need for speed,” to renew Bentley’s success. Both drivers and mechanics, these men, later nicknamed the “Bentley Boys”, drove Bentley automobiles to victory in several races between 1927 and 1931, including four consecutive wins at the 24 Hours of Le Mans, and forged the brands reputation. It was within this context that, in 1927, Bentley developed the Bentley 4½ Litre. Two cylinders were removed from the 6½ Litre model, reducing the displacement to 4.4 litres. At the time, the 3 Litre and the 6½ Litre were already available, but the 3 Litre was an outdated, under-powered model and the 6½ Litre’s image was tarnished by poor tyre performance. Sir Henry “Tim” Birkin, described as “the greatest British driver of his day” by W. O. Bentley, was one of the Bentley Boys. He refused to adhere strictly to Bentley’s assertion that increasing displacement is always preferable to forced induction. Birkin, aided by a former Bentley mechanic, decided to produce a series of five supercharged models for the competition at the 24 Hours of Le Mans; thus the 4½ litre Blower Bentley was born. The first supercharged Bentley had been a 3-litre FR5189 which had been supercharged at the Cricklewood factory in the winter of 1926/7. The Bentley Blower No.1 was officially presented in 1929 at the British International Motor Show at Olympia, London. The 55 copies were built to comply with 24 Hours of Le Mans regulations. Birkin arranged for the construction of the supercharged cars having received approval from Bentley chairman and majority shareholder Woolf Barnato and financing from wealthy horse racing enthusiast Dorothy Paget. Development and construction of the supercharged Bentleys was done in a workshop in Welwyn by Amherst Villiers, who also provided the superchargers. W.O. Bentley was hostile to forced induction and believed that “to supercharge a Bentley engine was to pervert its design and corrupt its performance.” However, having lost control of the company he founded to Barnato, he could not halt Birkin’s project. Although the Bentley 4½ Litre was heavy, weighing 1,625 kg (3,583 lb), and spacious, with a length of 172 in and a wheelbase of 130.0 in, it remained well-balanced and steered nimbly. The manual transmission, however, required skill, as its four gears were unsynchronised. The robustness of the 4½ Litre’s latticed chassis, made of steel and reinforced with ties, was needed to support the heavy cast iron inline-four engine. The engine was “resolutely modern” for the time. The displacement was 4,398 cc. Two SU carburettors and dual ignition with Bosch magnetos were fitted. The engine produced 110 hp for the touring model and 130 hp for the racing model. The engine speed was limited to 4,000 rpm. A single overhead camshaft actuated four valves per cylinder, inclined at 30 degrees. This was a technically advanced design at a time where most cars used only two valves per cylinder. The camshaft was driven by bevel gears on a vertical shaft at the front of the engine, as on the 3 Litre engine. The essential difference between the Bentley 4½ Litre and the Blower was the addition of a Roots-type supercharger to the Blower engine by engineer Amherst Villiers, who had also produced the supercharger. W. O. Bentley, as chief engineer of the company he had founded, refused to allow the engine to be modified to incorporate the supercharger. As a result, the supercharger was placed at the end of the crankshaft, in front of the radiator. This gave the Blower Bentley an easily recognisable appearance and also increased the car’s understeer due to the additional weight at the front. A guard protected the two carburettors located at the compressor intake. Similar protection was used, both in the 4½ Litre and the Blower, for the fuel tank at the rear, because a flying stone punctured the 3 Litre of Frank Clement and John Duff during the first 24 Hours of Le Mans, which contributed to their defeat. The crankshaft, pistons and lubrication system were special to the Blower engine. It produced 175 hp at 3,500 rpm for the touring model and 240 hp at 4,200 rpm for the racing version, which was more power than the Bentley 6½ Litre developed. Between 1927 and 1931 the Bentley 4½ Litre competed in several competitions, primarily the 24 Hours of Le Mans. The first was the Old Mother Gun at the 1927 24 Hours of Le Mans, driven as a prototype before production. Favoured to win, it instead crashed and did not finish. Its performance was sufficient for Bentley to decide to start production and deliver the first models the same year. Far from being the most powerful in the competitions, the 4½ Litre of Woolf Barnato and Bernard Rubin, raced neck and neck against Charles Weymann’s Stutz Blackhawk DV16, setting a new record average speed of 69 mph; Tim Birkin and Jean Chassagne finished fifth. The next year, three 4½ Litres finished second, third, and fourth behind another Bentley, the Speed Six, which possessed two more cylinders.The naturally aspirated 4½ Litre was noted for its good reliability. The supercharged models were not; the two Blower models entered in the 1930 24 Hours of Le Mans by Dorothy Paget, one of which was co-driven by Tim Birkin, did not complete the race. In 1930, Birkin finished second in the French Grand Prix at the Circuit de Pau behind a Bugatti Type 35. Ettore Bugatti, annoyed by the performance of Bentley, called the 4½ Litre the “fastest lorry in the world.” The Type 35 is much lighter and consumes much less petrol. Blower Bentleys consume 4 litres per minute at full speed. In November 1931, after selling 720 copies of the 4½ Litre – 655 naturally aspirated and 55 supercharged – in three different models (Tourer, Drophead Coupé and Sporting Four Seater, Bentley was forced to sell his company to Rolls-Royce for £125,175, a victim of the recession that hit Europe following the Wall Street Crash of 1929.

 photo Picture 382_zpsaoezrwhu.jpg

This imposing car dates from 1926 and is a 6.5 litre car. The 3 litre Bentley was an exciting and capable car in sporting form but was rather more docile when blessed with formal coachwork. This inspired “W.O.” to look at the development of a car which would not be troubled by the heaviest coachwork. The prototype was a 4½ Litre car, known as “The Sun,” however the 6½ Litre engine was fitted to the first production model, to compete more effectively with Rolls-Royce’s New Phantom. A chassis was exhibited on Stand 224 at Olympia in 1925, priced at £1,450 and the first production models sold in the Spring of 1926. This car, chassis number WB 2570 was supplied in July 1926 to Sir B (later Lord) Moynihan, a notable surgeon at Leeds General Infirmary, fitted with elegant Landaulette coachwork by Connaught. It is believed to have seen war service as an ambulance and passed to a York owner soon after the war. It seems that the original body was removed at about that time and in 1954 the car found a new owner in the West Riding. It has remained in the West Riding ever since, being in the hands of one family for about thirty years and was last licensed in 1957. It is thought that the indicated mileage of 71,700 may well be correct. The car was recently discovered equipped with rather spartan four seat tourer coachwork, although much of the upholstery and door trim may well be from the original car. Instrumentation appears to be entirely original, with the correct “The Big Bentley”, identification, and the car still has its original Smith’s fivejet carburettor. Chassis detail throughout is remarkably original, although twin S.U. fuel pumps replace the original Autovac. As part of its restoration, a new body has been constructed, this very imposing Laundalet.

 photo Picture 600_zpsc6p2f5mw.jpg  photo Picture 598_zpseu6zw8on.jpg  photo Picture 383_zps8rxipkvv.jpg

There were a number of examples of what are known as the “Derby” models. These were produced after the acquisition of Bentley by Rolls-Royce, in 1934, at which point the focus of the brand shifted to the production of large and elegant tourers. The cars retained the famous curved radiator shape based on earlier Bentley models, but in all meaningful respects they were clearly Rolls-Royces. Although disappointing some traditional customers, they were well received by many others and even W.O. Bentley himself was reported as saying that he would “rather own this Bentley than any other car produced under that name.” The Rolls-Royce Engineer in charge of the development project, Ernest Hives (later Lord Hives), underlined the Rolls-Royce modus operandi in a memo addressed to company staff “our recommendation is that we should make the car as good as we know how and then charge accordingly.” At a time when the Ford 8 could be purchased new for £100, an early Bentley 3½ Litre cost around £1,500 (equivalent to £6400 vs. £96,000 today), putting it beyond the reach of all but the wealthiest consumers. Despite not being a car of remarkable outright performance, the car’s unique blend of style and grace proved popular with the inter-war elite and it was advertised under the legend the silent sports car. Over 70% of the cars built between 1933 and 1939 were said to have still been in existence 70 years later. Although chassis production ceased in 1939, a number of cars were still being bodied and delivered during 1940. The last few were delivered and first registered in 1941. The 3.5 litre came first. Based on an experimental Rolls-Royce project “Peregrine” which was to have had a supercharged 2¾ litre engine, the 3½ Litre was finally fitted with a less adventurous engine developed from Rolls’ straight-6 fitted to the Rolls-Royce 20/25. The Bentley variant featured a higher compression ratio, sportier camshaft profile and two SU carburettors on a crossflow cylinder head. Actual power output was roughly 110 bhp at 4500 rpm, allowing the car to reach 90 mph. The engine displaced 3669 cc with a 3¼ in (82.5 mm) bore and 4½ in (114.3 mm) stroke. A 4-speed manual transmission with synchromesh on 3rd and 4th, 4-wheel leaf spring suspension, and 4-wheel servo-assisted mechanical brakes were all common with other Rolls-Royce models. The chassis was manufactured from nickel steel, and featured a “double-dropped” layout to gain vertical space for the axles and thus keep the profiles of the cars low. The strong chassis needed no diagonal cross-bracing, and was very light in comparison to the chassis built by its contemporary competitors, weighing in at 2,510 pounds (1,140 kg) in driveable form ready for delivery to the customer’s chosen coachbuilder. 1177 of the 3½ Litre cars were built, with about half of them being bodied by Park Ward, with the remainder “dressed” by other coachbuilders like Barker, Carlton, Freestone & Webb, Gurney Nutting, Hooper, Mann Egerton, Mulliner (both Arthur and H J), Rippon, Thrupp & Maberly, James Young, Vanden Plas and Windovers in England; Figoni et Falaschi, Kellner, Saoutchik and Vanvooren in Paris; and smaller concerns elsewhere in UK and Europe. Beginning in March, 1936, a 4¼ Litre version of the car was offered as replacement for the 3½ Litre, in order to offset the increasing weight of coachwork and maintain the car’s sporting image in the face of stiff competition. The engine was bored to 3½ in (88.9 mm) for a total of 4257cc. From 1938 the MR and MX series cars featured Marles steering and an overdrive gearbox. The model was replaced in 1939 by the MkV, but some cars were still finished and delivered during 1940-1941. 1234 4¼ Litre cars were built, with Park Ward remaining the most popular coachbuilder. Many cars were bodied in steel rather than the previous, more expensive, aluminium over ash frame construction.

 photo Picture 398_zps22ao1ofh.jpg  photo Picture 400_zpsndqkgfem.jpg  photo Picture 381_zps7k2bvycj.jpg  photo Picture 299_zpsn6x1lk0i.jpg  photo Picture 298_zpscrpex9bt.jpg photo Picture 297_zpsljfqrxud.jpg  photo Picture 310_zpsxtbh2giv.jpg  photo Picture 312_zpstjrsfvpm.jpg

BMW

The Historic BMW Car Club – a completely separate entity from the BMW Car Club, and focused solely on the older models – had a special display feature over the weekend just as they had in 2016 when they were marking the centenary celebrations of the BMW company. The display was not quite as extensive this time as it had been in 2016, but there were still lots of cars that you rarely see these days, with several different examples of the Frazer-Nash BMW range from the 1930s. Frazer Nash was, of course, a marque in its own right, making small chain driven sports cars, with proprietary engines which enjoyed much sporting success, including the prestigious Coupe des Alpes. By the mid 1930s, though, their design with beam axles and a channel section chassis was limiting their performance. Things came to a head in 1934, when immediately after their cars were beaten in the 1934 Coupe des Alpes by a trio of BMW 315 2 seaters, the then Company owner, manager and works driver, HJ Aldington, went straight to the BMW factory in Munich to negotiate the importation of right hand drive versions of the cars which had defeated his own. An agreement was struck and announced in December 1934 for the cars to be called Frazer Nash BMWs. Aldington brought back a 315 two seater sports cars to the UK, still in left hand drive form. Registered BMP844, this was one of the actual Alpine Trial Team cars. Many more 315s and the outwardly similar 319s would follow, and several of these were on show.

Although it was the 2 seater sports 315 that had piqued HJ Aldington’s interest, there were plenty of other models in the range, which, ironically, had grown largely as a result of the Bavarian company making British cars under licence, with the Austin Seven based Dixi some years earlier. The first right hand drive cars that came in were the 315 and 319 saloon models, These looked the same and were supplied with a mix of 1.5 and 2.0 litre engines, some with two and some with three carburettors, all with iron heads and vertical valves. By this time production of the chain driven Frazer Nash cars had ceased as the advantages of BMW’s design were indisputable, with outstanding ride and road holding for their day. This was thanks to a stiff tubular chassis, independent front suspension and rack and pinion steering. The early cars – 315, 319 and 329 – had cable brakes and a 6 volt electrical system. Later models had a box chassis with semi-elliptic rear springs. Many of the early cars had aluminium panels over ash frames, but later cars would have all steel bodies. All had the benefit of a foot operated one-shot chassis oil lubrication system. The cars were very advanced compared to what else was on the market at the time, but they were expensive. Even so, more than 700 cars were brought into the UK before the Second World War.

 photo Picture 274_zpsjmjb8yhr.jpg  photo Picture 273_zpske695ycm.jpg  photo Picture 272_zpsf3mabsry.jpg  photo Picture 271_zpsyyue3jec.jpg  photo Picture 033_zpshra3msjc.jpg photo Picture 034_zpsnye706uo.jpg  photo Picture 142_zpsxgnppol7.jpg  photo Picture 141_zpsemzgoqr8.jpg  photo Picture 275_zpsjpofhwzy.jpg  photo Picture 276_zpsiwwq81fh.jpg

During the 1930s, new models continued to be added to the range, with the 326 Saloon and the 327/80 drophead coupe being particularly stylish. Around 60 cars came to the UK in chassis form and were bodied by various English coachbuilders, in particular Abbots of Farnham, Whittingham & Webb with a 326 Saloon by Freestone & Webb and a 320 Saloon by Midland Motor Bodies. These English bodies came in both open and closed versions.

 photo Picture 285_zpszg4unved.jpg  photo Picture 282_zpssvoe4rcx.jpg  photo Picture 286_zps9yxcnszq.jpg  photo Picture 548_zpstw9lpopu.jpg

Also here was the 328, a sports car made between 1936 and 1940, with the body design credited to Peter Szymanowski, who became BMW chief of design after World War II (although technically the car was designed by Fritz Fiedler). It had a 1971cc straight 6 OHV engine and 3 solec carburettors which gave it an output of 79 bhp at 5000 rpm, and a top speed of 150 km/h, making this relatively light car ideal for motorsport. The 328 was introduced at the Eifelrennen race at the Nürburgring in 1936, where Ernst Henne drove it to win the 2.0 litre class. The 328 had more than 100 class wins in 1937, including the RAC Tourist Trophy, the Österreichische Alpenfahrt, and the La Turbie hillclimb. In 1938, the 328 won its class at Le Mans, the RAC Tourist Trophy, the Alpine Rally, and the Mille Miglia. The 328 won the RAC Rally in 1939 and came in fifth overall and first in class in the 1939 24 Hours of Le Mans. The car continued its competition career after the war, with Frank Pratt winning the 1948 Australian Grand Prix driving a 328.

 photo Picture 281_zps355t7ky4.jpg  photo Picture 277_zpsczqtsc9k.jpg  photo Picture 280_zpsntsnppa7.jpg  photo Picture 279_zpspuxjlz2m.jpg  photo Picture 278_zpsx0nujswh.jpg photo Picture 550_zpscddj6hb3.jpg  photo Picture 549_zpsflvivoco.jpg

The BMW 501 was a luxury car manufactured from 1952 to 1958. Introduced at the first Frankfurt Motor Show in 1951, the 501 was the first BMW model to be manufactured and sold after the Second World War, and as the first BMW car built in Bavaria. The 501 and its derivatives, including the V8 powered BMW 502, were nicknamed “Baroque Angels” by the German public. The BMW 502 was the first postwar German car to be manufactured with a V8 engine. The 501 made an impression on the public with its solid engineering and its extravagance. Its list price of more than fifteen thousand Deutsche Mark was about four times the average yearly salary in Germany at the time. Development issues delayed the start of production until late 1952, and even then BMW still did not have equipment for pressing body panels in operation. The first 2,045 four-door saloon bodies were built by Karosserie Baur and were shipped from Baur in Stuttgart to BMW’s factory in Munich for assembly. The thousandth 501 was completed on 1 September 1953. Coupe and convertible versions were available as custom orders from Baur or Autenrieth. While the 501 and 502 model numbers were discontinued in 1958, variations of the model, with the same platform and body, were continued until 1963.

 photo Picture 284_zpsyysaa9xm.jpg  photo Picture 547_zpsmkldrdag.jpg

BUGATTI

A car that is often seen here is what is known as Lydia’s car, a 1928 Type 40 with a one-off Fiacre body built in secret by the 19 year old Jean Bugatti for his sister, Lydia, and retained in the family until the 1970s. The Fiacre body style had been a favourite of Ettore Bugatti for some time, but this car was a more modern reinterpretation with rakish proportions and a lower roof line, the epitome of chic 1920s French design. The design includes a fully folding leather top, retractable side windows, and features a large trunk and a pair of spare wheels. The interior was very luxurious, with lots of leather and mahogany. There are two small rear seats for occasional use. When Ettore found out about the project, which had in fact been going on in the Molsheim coachworks, he said that the car would be too heavy a problem he addressed by fitting the superchargers and drive train from the Type 37 and the brakes were upgraded to the spec of those used in the Type 46.

 photo Picture 152_zpswkmoswsw.jpg  photo Picture 568_zps0hpuiawm.jpg

There were plenty of other Bugatti models here, mostly parked up around the Bugatti Trust building, and these included the Type 35 and 37 and Type 43.

 photo Picture 597_zpsbx4cx2mn.jpg  photo Picture 596_zpsy6tnxuhh.jpg  photo Picture 595_zpskxlicqib.jpg  photo Picture 570_zpsjddhoseq.jpg  photo Picture 569_zpssjh03azc.jpg

CHATER

This Chater-Lea special marks the beginning of Aston Martin. When the current owner, Michael Reed, bought it, he was unaware of that, as most people would be. When he stripped down the engine, he found that it was a Singer-based unit in which holes had been drilled in the sides of the pistons and conrods to make it lighter. It turned out that the person who did this was Lionel Martin. Months after creating this special, he formed Bamford and Martin which was renamed Aston Martin a year later. The modifications worked, as by lightening the engines internals, altering the carburettor and remapping the exhaust manifold, the top speed went up from 43 mph to 70 mph, effectively supercar performance for 1913.

 photo Picture 622_zpslo9i666l.jpg  photo Picture 623_zpsxdkzakna.jpg

CHEVROLET

This is a 1926 Chevrolet Superior. The Superior was launched in 1923, manufactured by Chevrolet for four years with a different series per year. The 1923 model was known as the Series B, the 1924 model was the Series F, for 1925 it was known as the Series K and the 1926 Superior was known as the Series V. It was replaced in 1927 by the Series AA Capitol. All Superior models were powered by a 2.8 litre 4-cylinder engine generatin 26 hp @ 2000 rpm, and shared the 103 in wheelbase. The cheapest complete model, which was the Superior Roadster, cost $510 in 1926, while the range-topping model, the Superior Sedan, sold for $825. It was also possible to buy a chassis; the Commercial chassis cost $425, while the Express Truck chassis cost $525. This chassis was shared with other GM products at the time, including Cadillac, Buick, Oldsmobile, Oakland and GMC products, introducing the “A-body”, “B-body” and “C-body”. This policy of sharing mechanicals across multiple brand led to the General Motors Companion Make Program in the 1920s. Starting with leadership under Mr. Sloan, GM instituted visual styling changes for each yearly series.

 photo Picture 349_zpsd9892dkz.jpg

CITROEN

1934 saw the introduction of the Rosalie’s mould-shattering successor, the front-wheel-drive semi-monocoque Citroën Traction Avant. The Traction endured a troubled and prolonged birth process, however, and was part of an ambitious investment programme which involved, also in 1934, the bankruptcy of the business, and its acquisition by Citroën’s principal creditor. The patron himself died in 1935. In this troubled situation, availability of the larger Rosalies (although re-engined with a turned-around version of the new Traction’s OHV four-cylinder engines) continued till 1938: it is only through the distorting prism of subsequent events that its reputation has been diminished when set against the technical brilliance of its successor. There were three examples of the Traction Avant here. Produced for over 20 years, many different versions were made during that time, all with the same styling outline, but with power outputs ranging from 7 to 15CV, and different wheelbases, as well as some with Coupe and Convertible body styles. There was even one model with a large opening tailgate, the Commerciale. The only one to be seen here this time was an 11CV Traction Avant Cabriolet.

 photo Picture 348_zpszm8khsnw.jpg  photo Picture 313_zpslpcvecnh.jpg

CROSSLEY

 photo Picture 544_zps1eu5pfcj.jpg

DAIMLER

One of the largest cars present was this 35/120 model. In 1929 Daimler’s range encompassed six-cylinder and twelve-cylinder motor cars and the six-cylinder 35/120 model was the second largest car in the range with its 5.8 litre sleeve valve engine. It fitted into the range between the ponderous 7 ½ and 9 ½-litre models and the later vee-twelves. This particular car was first registered on 31st January 1930 with Gloucestershire County Council and the first recorded owner in the continuation buff log book, commencing in June 1952, was a Charles Wingfield of Barrington Park, Burford, who may well have been the first owner of this car. In July 1952 it passed to P.H. Nicholas & Son of Wisbech and was at that time re-licensed as a hackney carriage. In 1965 it was acquired for preservation. It has been suggested that this car was exhibited at the 1929 Olympia Motor Exhibition however this is not substantiated by reference to that Show Catalogue, but it is understood that it did however make an Olympia appearance at The Car of the Year Show in 1968, as a qualifying Champion of Champions. This car has originality in spades and is presented in dark blue over black livery, still bearing a family crest on the rear door. It is traditionally upholstered, leather to the front and cloth to the rear and features two substantial occasional seats, therefore providing accommodation for seven passengers. The rear compartment is particularly impressive with silk blinds to each of the rear windows and also to the two-piece, wind-down division. Rotax head and side lamps are fitted while twin side-mounted spare wheels provide for the longer motor tour. The rear doors open to reveal supplier’s plates from Stratton Instone Ltd. of 27 Pall Mall and Maythorn & Son Ltd. of Biggleswade.

 photo Picture 283_zpsp9sskplb.jpg  photo Picture 546_zpsp7ceylb7.jpg  photo Picture 545_zps0zv52h4c.jpg  photo Picture 302_zpsqg6l28yn.jpg  photo Picture 301_zpsfhgwgsjd.jpg

This equally imposing car is a 1939 EL24. Produced from 1937 to 1939, the Daimler EL24 range was based on a Daimler rolling chassis, on which various coach builders fitted a variety of body styles from saloons and limousines to fixedhead and drophead coupé. The light limousine was usually bodied by Charlesworth and proved popular as Mayoral transport. The chassis was of a latticework box section with a special cruciform centre bracing which gave exceptional torsional stiffness. It also featured a built-in lubrication and jacking system with ‘Gilt Edge’ safety glass fitted throughout. Power came from a 3.3 litre straight-six rated at 23.8hp with push-rod operated overhead valves operated by a chain driven high clearance cam, a seven bearing crankshaft with a torsional vibration damper, SU carburettor and mechanical petrol pump. Depending on body style, the car had a top speed of around 73mph and 20-25mpg economy. Transmission was via a four-speed pre-selector gearbox with Daimler fluid flywheel and direct drive top gear. Suspension was by beam axles with semi-elliptic springs, a pair of radius rods at the front and Luvax shock absorbers. Brakes were Girling mechanical with a Dewandre servo. In all just 710 examples of all body types were made.

 photo Picture 293_zpszcezrv2b.jpg  photo Picture 541_zpsxkdfwmsv.jpg

DE DION

 photo Picture 384_zps9ayerfmj.jpg  photo Picture 525_zpsc2m36aq9.jpg

DELAGE

 photo Picture 353_zpsy7lf0kmv.jpg  photo Picture 248_zpstuervq3w.jpg  photo Picture 341_zpsszdkdvwn.jpg  photo Picture 191_zps5anxrxz7.jpg

ESSEX

 photo Picture 334_zpsrohvto1d.jpg

FORD

The Ford Model A was the Ford Motor Company’s second market success after its predecessor, the Model T. First produced on October 20, 1927, but not introduced until December 2, it replaced the venerable Model T, which had been produced for 18 years. This new Model A (a previous model had used the name in 1903–04) was designated a 1928 model and was available in four standard colours. By February 4, 1929, one million Model As had been sold, and by July 24, two million. The range of body styles ran from the Tudor at US$500 (in grey, green, or black) to the Town Car with a dual cowl at US$1200. In March 1930, Model A sales hit three million, and there were nine body styles available. Prices for the Model A ranged from US$385 for a roadster to US$1400 for the top-of-the-line Town Car. The engine was a water-cooled L-head inline four with a displacement of 3.3 litre. This engine provided 40 bhp. Top speed was around 65 mph (105 km/h). The Model A had a 103.5 in (2,630 mm) wheelbase with a final drive ratio of 3.77:1. The transmission was a conventional unsynchronized three-speed sliding gear manual with a single speed reverse. The Model A had four-wheel mechanical drum brakes. The 1930 and 1931 models were available with stainless steel radiator cowling and headlamp housings. The Model A came in a wide variety of styles including a Coupe (Standard and Deluxe), Business Coupe, Sport Coupe, Roadster Coupe (Standard and Deluxe), Convertible Cabriolet, Convertible Sedan, Phaeton (Standard and Deluxe), Tudor Sedan (Standard and Deluxe), Town Car, Fordor (five-window standard, three-window deluxe), Victoria, Town Sedan, Station Wagon, Taxicab, Truck, and Commercial. The very rare Special Coupe started production around March 1928 and ended mid-1929. The Model A was the first Ford to use the standard set of driver controls with conventional clutch and brake pedals, throttle, and gearshift. Previous Fords used controls that had become uncommon to drivers of other makes. The Model A’s fuel tank was situated in the cowl, between the engine compartment’s fire wall and the dash panel. It had a visual fuel gauge, and the fuel flowed to the carburettor by gravity. A rear-view mirror was optional. In cooler climates, owners could purchase an aftermarket cast iron unit to place over the exhaust manifold to provide heat to the cab. A small door provided adjustment of the amount of hot air entering the cab. The Model A was the first car to have safety glass in the windshield. Model A production ended in March 1932, after 4,858,644 had been made in all body styles. Its successor was the Model B, which featured an updated inline four-cylinder engine, as well as the Model 18, which introduced Ford’s new flathead (sidevalve) V8 engine.

 photo Picture 528_zpsmlhlpulp.jpg  photo Picture 031_zpspf4tdktf.jpg  photo Picture 032_zpsoc0lpkpo.jpg  photo Picture 193_zps8ghmmefz.jpg

There was an example of the Model 18 V8 here, too, a rare car as Ford quickly changed the styling with a completely new and more modern looking nose.

 photo Picture 352_zpskjiidmks.jpg

Ford really started to grow market share in the UK when they extended their range downwards with models aimed at the family motorist, designed in the UK for UK tastes. Sometimes called the Eight, the Model Y was the first Ford designed in Europe. It was powered by a 933 cc, 8 hp Ford sidevalve engine, and was available in two and four-door versions. The suspension was by the traditional Ford transverse leaf springs front and rear and the engine drove the rear wheels through a three-speed gearbox which, right from the start, featured synchromesh between the top two ratios. The maximum speed was just under 60 mph and fuel consumption was 32 mpg. Even by the standards of the time, the car, like its major competitor the Austin 7, was found noteworthy for its almost unbelievable lack of brakes. In June 1935 a reduced specification two-door model was the only closed-body car ever to sell in Britain for just £100, a price it held until July 1937. It was replaced by the 7Y in 1938, which following a minor facelift became the Anglia. Production resumed after the war, along with a four door version, the Prefect. When these models were replaced by a much more modern design in 1953, the design lived on in the E103 Popular. It was powered by a Ford Sidevalve 1172 cc, 30 bhp four-cylinder engine, and was very basic. It had a single vacuum-powered wiper, no heater, vinyl trim, and very little chrome; even the bumpers were painted, and the bakelite dash of the Anglia was replaced by a flat steel panel. The Popular 103E differed visually from the Anglia E494E in having smaller headlights and a lack of trim on the side of the bonnet. Early 103Es had the three spoke banjo type Anglia/Prefect steering wheel as stocks of these were used up, but most have a two spoke wheel similar to the 100E wheel but in brown. Early Populars also had the single centrally mounted tail/stop-lamp of the Anglia, but this changed to a two tail/stop lamp set up with the lamps mounted on the mudguards and a separate number plate lamp. This car proved successful because, while on paper it was a sensible alternative to a clean, late-model used car, in practice there were no clean late-model used cars available in postwar Britain owing to the six-year halt in production caused by the Second World War. This problem was compounded by stringent export quotas that made obtaining a new car in the late 1940s and into the early 1950s difficult, and covenants forbidding new-car buyers from selling for up to three years after delivery. Unless the purchaser could pay the extra £100 or so for an Anglia 100E, Austin A30 or Morris Minor, the choice was the Popular or a pre-war car. 155,340 Populars were produced.

 photo Picture 233_zpspfbk8k8a.jpg

FRAZER NASH

This company was founded in 1922 by Archibald Frazer-Nash who had, with Henry Ronald Godfrey founded and run the GN cyclecar company. The company was established in Kingston upon Thames, Surrey, moving to Isleworth, Middlesex in 1929. The company entered receivership in 1927 and re-emerged as AFN Limited. The majority of AFN was acquired by H. J. (“Aldy”) Aldington in 1929 and run by the three Aldington brothers, H.J., Donald A. and William H. Aldy’s son, John Taylor (“JT”) Aldington was the last of the family owners/directors until AFN Ltd was sold to Porsche GB. The company produced around 400 of the famous chain drive models between 1924 and 1939. They were all built to order, with a surprisingly long list of different models offered during this time. Most had 1.5 litre 4 cylinder engines, and many of the models were built only in single digits, but the Fast Tourer/Super Sports and the TT Replica models were made in significant quantity. Seen here were examples of the Super Sports and the Shelsley as well as a couple of Specials.

 photo Picture 295_zpsxtgwc1s9.jpg  photo Picture 246_zpsznunfbhu.jpg  photo Picture 232_zpsfd0w1qsk.jpg  photo Picture 128_zpsmv7np8ya.jpg  photo Picture 047_zps4zlgbucb.jpg photo Picture 011_zpszcrpybom.jpg

HILLMAN

This rather stylish car is an Aero Minx. The original Minx was announced to the forewarned (in August) public on 1 October 1931. It was straightforward and conventional with a pressed-steel body on separate chassis and 30 bhp 1185 cc engine producing cushioned power. It was upgraded with a four-speed transmission in 1934 and a styling upgrade, most noticeably a slightly V-shaped grille. For 1935 the range was similar except that synchromesh was added to all forward gears and this Minx became the first mass-produced car with an all synchromesh gearbox. it was designed by Rootes’ technical director Captain John Samuel Irving (1880-1953) designer of Sunbeam aero engines and Sunbeam’s Golden Arrow in conjunction with Alfred Herbert Wilde, (1891-1930) recently chief engineer of Standard and designer of the Standard Nine.

 photo Picture 346_zpsorfsxhpt.jpg  photo Picture 172_zpsethimfph.jpg  photo Picture 171_zpsuhdgntvf.jpg

The 1936 model had a new name, the Minx Magnificent, and a restyle with a much more rounded body. The chassis was stiffened and the engine moved forwards to give more passenger room. The rear panel, previously vertical, was now set at a sloping angle, and the manufacturers offered the option of a folding luggage grid attached to the rear panel for “two pounds, seven shillings and sixpence” (slightly under £2.40) painted. A Commer-badged estate car was added to the range. A variety of saloon, tourer, drophead and coupe bodies were offered.

 photo Picture 521_zpsh0ypblij.jpg

HRG

HRG Engineering Company also known as HRG, was a British car manufacturer based in Tolworth, Surrey. Founded in 1936 by Major Edward Halford, Guy Robins and Henry Ronald Godfrey, it took its name from the first letter of their surnames. Having raced together at Brooklands, Ron Godfrey approached Major Edward Halford in 1935 as regards the development of a new sports car. Having shown the prototype in late 1935, the company was formed in 1936 with Guy Robins formerly of Trojan joining as the third partner. Taking space at the premises of the Mid-Surrey Gear Company in Hampden Road, Norbiton, the cars were heavily influenced in their design by Godfrey’s previous long involvement — from 1909 — with both the GN company and subsequently Frazer Nash. The first Meadows-engined HRG cost £395, about half the cost of the 1.5-litre Aston Martin, and weighed almost 1000 pounds (450 kg) less. In 1938 the Company announced the 1100cc model using an OHC engine from Singer’s Bantam Nine. and then in 1939 they also started using the OHC 1500cc Singer Twelve later Singer Roadster engine in place of the old OHV Meadows unit. Post-war, the 1100 and 1500 2-seaters continued being made to the same pre-war design. HRG also commenced manufacturing the Aerodynamic model on basically the same vintage chassis. In 1950 Guy Robins left the company and S. R. Proctor joined as technical director, having been associated with Godfrey on the ill-fated Godfrey-Proctor in the 1920s. Sports car production ended in 1956 after 241 cars had been made, although the company remained in business as an engineering concern and as a development organisation for others, including Volvo. In 1965, they made a prototype Vauxhall VX 4/90-powered sports car. The company ceased trading in 1966, making a profit until the end. The factory’s racing team, Ecurie Lapin Blanc, achieved several notable successes. In the 1938 Le Mans 24-hour race. the works entry driven by Peter Clark and Marcus Chambers was the highest-placed British car (10th out of 15 finishers from 42 starters). The following year Clark and Chambers returned to win the 1.5 litre class. In 1947 Chambers took 3rd place in the Grand Prix des Frontières at Chimay, and HRG won the team prize in the Isle of Man Empire Trophy race. In 1948 Chambers was 4th at Chimay, and HRG won the team prize in the Spa 24 hour race, where team leader Peter Clark had the cars equipped with two-way radios for communication between the drivers and the pits. Innovative at the time, radio communication is common in racing today. The team prize again went to HRG at Spa the following year. Also in 1949, the 1.5 litre class at Le Mans was won for the second time by an HRG, driven on this occasion by Eric Thompson and Jack Fairman. Proving that HRGs were still competitive 59 years later, a three-car team won the 2006 Vintage Sports Car Club 2-hour team relay race at Donington Park. They raced as “Ecurie Lapin Blanc”. Of the 241 cars made, it is estimated that 225 survive.

 photo Picture 522_zpskiy71eu4.jpg

JAGUAR

Oldest Jaguar model type here was an SS100. The first of William Lyons’ open two-seater sports cars came in March 1935 with the SS 90, so called because of its claimed 90 mph top speed. This car used the 2½-litre side-valve, six-cylinder engine in a short-chassis “cut and shut” SS 1 brought down to an SS 2’s wheelbase. Just 23 were made. It was the precursor to one of the finest pre-war sports car ever made, the SS100. That car benefitted from some significant engine development work that was led by Harry Westlake, who was asked to redesign the 2½-litre 70 bhp side-valve engine to achieve 90 bhp. His answer was an overhead-valve design that produced 102 bhp and it was this engine that launched the new SS Jaguar sports and saloon cars in 1936. Shown first in the SS Jaguar 2½-litre saloon, the new car caused a sensation when it was launched at a trade luncheon for dealers and press at London’s Mayfair Hotel on 21 September 1935. The show car was in fact a prototype. Luncheon guests were asked to write down the UK price for which they thought the car would be sold and the average of their answers was £765. Even in that deflationary period, the actual price at just £395 would have been a pleasant surprise for many customers, something which characterised Jaguars for many decades to come. Whilst the new Jaguar saloon could now compete with the brand new MG SA, it was the next application of the engine that stunned everyone even more, with the launch of the legendary SS100. Named because it was a genuine 100 mph car, this open topped sports car looked as good as it was to drive. Only 198 of the 2½-litre and 116 of the 3½-litre models were made and survivors are highly prized and priced on the rare occasions when they come on the market. Such is their desirability that a number of replica models have been made over the years, with those made by Suffolk Engineering being perhaps the best known, and which are indeed hard to tell apart from an original 1930s car at a glance.

 photo Picture 362_zpsroka3odv.jpg

There was also an examples from the range of saloon and drophead models that Jaguar produced in the late 1930s and again once production resumed after the war until 1949. Sometimes referred to as the Jaguar Mark IV. the cars were marketed as the Jaguar 1½ litre, Jaguar 2½ litre and Jaguar 3½ litre with the Mark IV name later applied in retrospect to separate this model from the succeeding Mark V range. All these cars were built on a separate chassis frame with suspension by semi-elliptic leaf springs on rigid axles front and rear. Biggest seller, with 10,980 made, was the smallest model of the range, the 1½ litre, which originally featured a 1608 cc side valve Standard engine but from 1938 this was replaced by a 1776 cc overhead-valve unit still from Standard who also supplied the four-speed manual transmission. Pre-war the car was available as a saloon or drophead coupé but post war only the closed model was made. Up to 1938 body construction on all the models was by the traditional steel on wood method but in that year it changed to all steel. Performance was not a strong point but 70 mph was possible: the car featured the same cabin dimensions and well-appointed interior as its longer-engined brothers. Despite its lack of out-and-out performance, a report of the time, comparing the 4-cylinder 1½-litre with its 6-cylinder siblings, opined that the smallest-engined version of the car was “as is often the case … the sweetest running car” with a “big car cruising gait in the sixties”. For the 2½ Litre, the engine was alsosourced from Standard but had the cylinder head reworked by SS to give 105 bhp. Unlike the 1½ Litre there were some drophead models made post-war. The chassis was originally of 119 in but grew by an inch in 1938, the extra length over the 1½ Litre was used for the six-cylinder engine as the passenger accommodation was the same size. Nearly 7000 of these were sold. The 3½ Litre, introduced in 1938, was essentially the same body and chassis as the 2½ Litre but the larger 125 bhp engine gave better performance but at the expense of economy.

 photo Picture 150_zpsksmmvfu6.jpg

LAGONDA

There were a number of the 2 and 3 litre models that Lagonda sold in the late 1920s and early 1930s

 photo Picture 369_zpsmqvgqkzy.jpg  photo Picture 577_zps5h34xxse.jpg  photo Picture 269_zpsgt4o9wus.jpg  photo Picture 231_zpshtky7dn5.jpg  photo Picture 174_zps2dvzmsgl.jpg photo Picture 163_zps10rtsefe.jpg  photo Picture 023_zps1x2ipvyp.jpg  photo Picture 014_zpsvjtdxgb1.jpg  photo Picture 008_zpsbl0rha3r.jpg

The LG6 was announced at the 1937 London Motor Show and would be produced up to 1940. The LG6 chassis is based on the one used on the V12 model lengthened by 3.5 in to cater for the longer engine fitted. Suspension is independent torsion bar front suspension and live rear axle with Spiral bevel gear final drive. The braking system is Lockheed hydraulic. The 4453 cc straight-six engine with pushrod operated overhead valves was bought in from Henry Meadows of Wolverhampton and previously used in the LG45 model. Drive is to the rear wheels through a single dry plate clutch and four-speed gearbox. Standard coachwork included saloon, tourer, coupé and sedanca styles. The tourer was also available in a Rapide version and this had a higher compression ratio engine but only two were sold. The car can be distinguished from the V12 by the twin long trumpet horns on either side of the radiator grille. 67 of the short chassis and 18 long chassis were made.

 photo Picture 239_zpsloypiw4t.jpg

Top of the range was the V12, and this Dutch plated example was a splendid example. It was first shown at the 1936 London Motor Show but production did not commence until 1938. The V12 model featured an all new 4480 cc 60 degree V12 engine designed by W. O. Bentley. The engine has a combined cylinder block and upper crankcase cast in iron with a light alloy lower crankcase. The cylinder heads are in cast iron. Each bank of six cylinders has its own single overhead camshaft, chain driven, and its own distributor driven from the back of the camshaft. Twin downdraught SU carburettors are located between the engine blocks. 180 bhp is developed at 5000rpm. The chassis was also new and features independent torsion bar front suspension and live rear axle with hypoid final drive. The braking system is Lockheed hydraulic. The engine is connected to a four-speed gearbox with centrally mounted change lever. Coachwork could be by Lagonda or a number of independent coachbuilders and to suit various body designs a wheelbase of 124 in (3,150 mm), 132 in (3,353 mm) or 138 in (3,505 mm) could be specified. Only ten cars were built with the longest bodywork. Even with a saloon body the car could reach 100 mph. Two modified V12s with four carburettor engines were entered for the 1939 24 Hours of Le Mans where they finished third and fourth. 189 were made over a 2 year period.

 photo Picture 345_zpsjonnayve.jpg

There were a couple of the smaller Lagonda Rapier models here, too. The Rapier was produced from 1934 to 1935. A few more were subsequently produced by the independent Rapier Car Company. At the heart of the car was an all new 1104 cc twin overhead camshaft four-cylinder engine. The design of this was done by a consultant Thomas Ashcroft (known as Tim) with the brief of producing “Britain’s finest 1100 cc engine”. The engine was originally intended to be cast in light alloy but to save cost it was eventually made in cast iron using the original patterns making it rather heavy. It did, however, produce 50 bhp at 5400 rpm, a very good output for the time. Production of the engine was sub-contracted to Coventry Climax. The chassis was designed by Charles King and consisted of steel sections bolted together. The engine was connected to a four-speed preselector gearbox with right-hand change lever and the Girling system rod operated brakes had large 13 in drums. Half-elliptic springs provided the suspension controlled by friction dampers. Although the original car as shown at the 1933 London Motor Show had a wheelbase of 90.75 in, in order to cater for a wider range of bodies, production cars from 1934 had this extended by 8 in to 98.75 in. The factory supplied the running chassis for £270 to customers who could then select their own coachwork. Most cars had bodies by E. D. Abbott Ltd of Farnham, Surrey. A complete car with Abbott four-seat tourer body sold for £368. Other suppliers of coachwork included John Charles, Maltby and E J Newns who made around 12, subsequently known as Eagles. The engine was just too large for use in the popular 1100 cc class so a few cars were made with 1084 cc engines. In 1935 the Lagonda company failed and was bought by Alan Good who reformed it as LG Motors (Staines) Ltd. As part of the general upheaval the rights to make the Rapier were sold to a new company Rapier Cars Ltd of Hammersmith Road, London, a premises previously used by Lagonda as their London service centre. The intention was now to sell the car complete with body and a design was produced by Ranalah. A four-seat tourer was priced at £375. Production continued until 1938 but only 46 cars were made.

 photo Picture 376_zpshrrg5uwe.jpg  photo Picture 366_zpswrlci77y.jpg  photo Picture 343_zps6faet7in.jpg

LANCHESTER

 photo Picture 337_zpsu60nvtju.jpg  photo Picture 336_zpsbtoodn9m.jpg

LANCIA

One of the best-known of pre-war Lancia is the Lambda, an innovative car which was first shown in 1922. A number of these were present. Built in 9 series over a 10 year period, the Lambda pioneered a number of technologies that soon became commonplace in our cars. For example, it was the first car to feature a load-bearing monocoque-type body, (but without a stressed roof) and it also pioneered the use of an independent suspension (the front sliding pillar with coil springs).Vincenzo Lancia even invented a shock absorber for the car and it had excellent four wheel brakes. The narrow angle V4 engine which powered is not something which was widely copied. Approximately 11,200 Lambdas were produced. Most of them had the open Torpedo style body, but some of the last Series 8 and 9 cars had Weyman saloon bodies.

 photo Picture 181_zpsjhhprsor.jpg  photo Picture 037_zpssibohuzg.jpg  photo Picture 216_zpsahrcau7w.jpg  photo Picture 385_zpscpuyn1tv.jpg  photo Picture 543_zpsxea0bddj.jpg

This is a 1931 Artena Berlina, and is apparently the 1931 Geneva Show car. It has only had three owners and stayed in Switzerland until the current owner bought it in 2000. He understands that the car was refurbished around 1978, when it acquired the rather nice two tone paint scheme. The Artena was produced between 1931 and 1936, powered by a 2 litre Lancia V4 engine. There were four successive versions of the car. Lancia built approximately 1500 of the first series between autumn of 1931 through summer of 1932. During the next year the second series was produced, and the third series from Autumn 1933 till the start of 1936. The third series was available in two lengths. The 54 bhp engine was sufficient to provide a claimed maximum speed of 72 mph for each of the first three versions. Between 1940 and 1942 a further 507 Artenas were built. These modified Artenas were larger and slower than the prewar versions: they were used by senior military and political personnel, and in modified form as ambulances.

 photo Picture 258_zpsnzou3zoe.jpg  photo Picture 257_zpsdtvagew3.jpg

This is an Augusta, as produced by Lancia between 1933 and 1936. It made its première at the 1932 Paris Motor Show. The car was powered by a 1,196 cc Lancia V4 engine. During the 1920s, Lancia had been known as producers of sports cars and middle sized sedans: the smaller Augusta represented a departure from that tradition, and contributed to a significant growth in Lancia’s unit sales during the 1930s. Nevertheless, in terms of volumes sold, the Augusta was overwhelmed by Fiat’s much more aggressively priced 508 Ballila.

 photo Picture 187_zps4zsiolmq.jpg  photo Picture 241_zpsq0pquuxk.jpg

LEA FRANCIS

The Hyper was a light sports car which made its first appearance in 1925 and was the car to put this Coventry marque on the map. Also called the S-type, the Hyper was the first British supercharged production car with a 1.5 litre Meadows engine, and in 1928, one of these cars won the Ulster TT, a 30-lap race on the 13.5-mile Ards circuit on the roads of Northern Ireland in the hands of legendary race car driver, Kaye Don. The race was watched by a record 250,000 spectators, and the victory placed Lea-Francis firmly on the map. There were a number of them competing on the hill as those in the Orchard.

 photo Picture 046_zpsqacfsifs.jpg

There were a couple of examples of the P Type here. During 1927 Charles Van Eugen convinced the directors of Lea-Francis to allow him to design a completely new chassis assembly. Incorporating semi-elliptic springs front and rear the new chassis was longer and with a wider track than previous models. The trailing end of the springs was mounted in such a way that it slid in bronze trunnions, which were themselves able to rotate in their mounting. When well maintained this arrangement gave the new chassis a good ride quality and comparatively good road-holding for the period. The spur gear differential was gone in favour of a bevel gear version and torque reaction was now taken by the rear springs. The hand brake no longer operated on the transmission but instead through a second set of shoes in each of the rear brake drums. The radiator, while retaining the distinctive shape was taller and higher. A new plate clutch was designed which was eventually fitted to all cars on the new chassis when fitted with a Meadows 4ED engine. This new chassis fitted with the 1.5 litre Meadows 4EC engine was designated the U Type. Fitted with a standard single port Meadows 4ED engine it was designated the P Type and with the twin-port Brooklands version of the Meadows 4ED engine the O Type. This chassis frame would also form the basis for that used on famous Hyper or S Type, the V Type and W Type. Made 3” longer the frame was also used as the basis for the T Type. While the basic specification of theP Type remained more or less the same over the years, many detail changes were made to the design. 38 of the early P Types were fitted with a cone clutch, but after that all but the last few cars were fitted with the Lea-Francis plate clutch – a reliable and effective unit that would prove quite capable of handling the power of a supercharged engine when used in the S Type. The first 500 or so cars were fitted with a scuttle mounted petrol tank feeding a Solex carburettor by gravity. On later cars the petrol tank was moved to the rear, slung between the rear dumb-irons of the chassis and petrol was now fed to the carburettor by way of an Autovac. With the petrol tank now at the rear, the spare wheel had to be relocated and, with a redesign of the front wings, was now mounted on the side of the scuttle. The majority of P Types were fitted with the standard wide-ratio gearbox, although customers could specify the close-ratio variant, as they could the Lea-Francis patent free-wheel. The latter being a unit secured to the rear of the gearbox, operated through a second gear-lever, and which, when engaged, worked with the same principle as the free-wheel on a bicycle. The last few P Types were fitted with a Borg & Beck clutch and the duo-gearbox, which had been designed for use in the Ace of Spades. A wide range of bodies were fitted to the P type. The most common being four seaters by Avon and Cross & Ellis and two seater and dickey bodies by the same builders. Cross & Ellis fitted many of the chassis with saloon bodies with a few also being built by Vulcan. While perhaps the most advertised optional extra on this model was the aforementioned Lea-Francis patented free-wheel, customers could have a car built with all manner of variations from the standard specification. Some P types, for example, left the factory fitted with the twin carburettor 12/50 Brooklands specification engines. This made them more of less identical to an O Type and may explain why so few of the latter were built. The P type, with the standard single-port engine, became deservedly popular, selling almost as well as the J type and surviving in far greater numbers. Approximately 1093 were built of which at least 97 have survived so it has become the most familiar pre-war Lea-Francis.

 photo Picture 224_zpsywpoywbn.jpg  photo Picture 266_zpsdlubu6lf.jpg

This is a 14hp Special based on a 1937 saloon.

 photo Picture 335_zpsblbacc6a.jpg

MG

There were several examples of the 18/80 here. These were among the earliest MG cars, and were based on the contemporary Morris Oxford, but with a range of coachbuilt bodies offered as well as the standard factory ones, and with more power than the Morris on which they were based.

 photo Picture 234_zpsz5kepukx.jpg

Next up was this J2 from 1934. The J-type was produced from 1932 to 1934. This 2-door sports car used an updated version of the overhead camshaft, crossflow engine, used in the 1928 Morris Minor and Wolseley 10 and previously fitted in the MG M-type Midget of 1929 to 1932, driving the rear wheels through a four-speed non-synchromesh gearbox. The chassis was from the D-Type with suspension by half-elliptic springs and Hartford friction shock absorbers all round with rigid front and rear axles. The car had a wheelbase of 86″ and a track of 42″. Most cars were open two-seaters, but a closed salonette version of the J1 was also made, and some chassis were supplied to external coachbuilders. The open cars can be distinguished from the M type by having cut-away tops to the doors. Small numbers of J3 and J4 models, designed for racing, were made and the J1 was the four seater model in the range, but by far the most common were the J2 models, such as this one. The 847cc engine gave the car a top speed of 65 mph, although The Autocar maanged to get nearly 20 mph more than that from a specially prepared one that they tested in 1933. The most serious of the J2’s technical failings is that has only a two-bearing crankshaft, which could break if over-revved. The overhead camshaft is driven by a vertical shaft through bevel gears, which also forms the armature of the dynamo. Thus any oil leak from the cambox seal goes into the dynamo brushgear, presenting a fire hazard. Rather than hydraulic brakes the car has Bowden cables to each drum. Although requiring no more pedal force than any other non-power-assisted drum brake if they are well maintained, the drums themselves are small, and even in period it was a common modification to replace them with larger drums from later models. Nonetheless, the car was quite popular, and at £199, was relatively affordable.

 photo Picture 161_zps631n12h2.jpg  photo Picture 012_zpscphhcfu7.jpg

Replacing the J series cars was the 1934 PA. The PA and later PB replaced the J Type Midget. These 2-door sports cars used an updated version of the overhead camshaft, crossflow engine that was also used in the 1928 Morris Minor and Wolseley 10 as well as the J-type Midget of 1932 to 1934. It drove the rear wheels through a four-speed non-synchromesh gearbox. The chassis was a strengthened and slightly longer version of that used in the J-type with suspension by half-elliptic springs all round with rigid front and rear axles. Steering was initially by a Marles Weller and later a Bishop Cam system. The two-seat car had a wheelbase of 87″ and a track of 42″. Most cars were open two seaters, but streamlined Airline coupé bodies were also made. The P-type was also available as a four-seater, a car that suffered from a lack of power and poor rear ground clearance. Whereas J, K and L-type MGs differentiated between versions with the use of numbers, with 1 indicating a four-seater (the J1) and 2 a two-seater (the J2), this was not the case with the P-type (or its six-cylinder sister, the N-type Magnette), and there is no clue to the type in the name. The first version, the PA used an 847 cc engine similar to the one on the J-Type, but now with a 3-bearing crankshaft, larger camshaft and twin SU carburettors. It produced 36 bhp at 5,500 rpm. In 1935, a PA open two-seater cost £222. Around 2,000 PAs were made. In late 1936 the PA was replaced by the PB, which had a larger 939cc 43bhp engine and which is distinguished by a grille of vertical slats as opposed to the honeycomb pattern of the PA. 526 examples of the PB were made.

 photo Picture 399_zps5dmhzybb.jpg  photo Picture 363_zpsqxnyowyi.jpg  photo Picture 017_zpscsn5hpaa.jpg

This is a PA/Riley Special, which hsa had the original engine replaced by a much larger and more potent 1.5 litre Riley unit.

 photo Picture 520_zpsqix65dnw.jpg

Slightly larger than these was the F Type Magna, a six-cylinder-engined car produced from October 1931 to 1932. It was also known as the 12/70. Looking for a car to fill the gap between the M-Type Midget and the 18/80, MG turned to another of the engines that had become available from William Morris’s acquisition of Wolseley. This was the 1271 cc 6-cylinder version of the overhead camshaft engine used in the 1929 MG M type Midget and previously seen in the 1930 Wolseley Hornet and had dummy side covers to disguise its origins. Fitted with 1 in twin SU carburettors it produced 37.2 bhp at 4100 rpm at first, later increased to 47 bhp by revising the valve timing. Drive was to the rear wheels through a four-speed non-synchromesh gearbox of ENV manufacture. The chassis was a 10-inch (250 mm) longer version of the one from the MG D-type with suspension by half-elliptic springs and Hartford friction shock absorbers all round with rigid front and rear axles. Wire wheels with 4.00 x 19 tyres and centre lock fixing were used. The car had a wheelbase of 94 in and a track of 42 in. With its sloping radiator and long bonnet the F-Type is an attractive car capable of reaching 70 mph. 188 of the cars were supplied in chassis form to outside coachbuilders such as Abbey, Jarvis, Stiles and Windover. The original F was restricted by only having 8-inch brake drums, which, with its 4-seat bodies, was not really adequate. Many F1 cars have subsequently been fitted with the larger F2 brakes. The four-seat tourer cost £250 and the Foursome coupé cost £289. Introduced in late 1932 the F2 was the open 2-seater car in the range. It also got much needed enhanced braking by fitting larger 12-inch drums all round. The body with straight-topped doors came from the J-Type Midget. The F3, also introduced in 1932, used the same brakes as the F2 but had the 4-seater tourer and Foursome Coupé bodies fitted. The engine cooling was improved by changing the cooling water flow.

 photo Picture 025_zpsjyuaook2.jpg

What would turn out to be the last of the Magna line – the L-Type – arrived in March 1933 boasting an engine downsized to 1,087cc but producing greater power (41bhp) thanks to a 12-port, cross-flow cylinder head. 12″ brakes were retained for the L-Type chassis, which was broadly similar to that of the contemporary K-Series Magnette apart from a narrower track, while the new body featured attractive flowing wings. Top speed was in the region of 75mph. A total of 576 L1/L2 Magnas had been produced by the time production ceased in 1934.

 photo Picture 580_zpssbnbwgws.jpg  photo Picture 244_zpsbijinji0.jpg

Although pre-war MG is best known for its sports cars, the Abingdon marque did head up market in the late 1930s, producing a range of cars which were aimed at competing with the emerging Jaguar saloons, and there were examples of each of the three series that resulted, an SA, the smaller VA and the later WA. All three were splendid. Seen here was an SA Saloon that I have admired on a number of occasions here in the past The SA Saloon was launched as the 2 litre, and only later became known as the SA. The car had been originally planned as an advanced performance saloon to rival the likes of SS Cars (later to be known as Jaguar) and even Bentley with all independent suspension and was given the factory code of EX150 and designated the S-type. A prototype was made but with the amalgamation of MG with Morris Motors in 1935, development stopped. The Cowley drawing office picked up the project again but a much more conservative car appeared with conventional live rear and beam front axles. The SA used a tuned version of the six cylinder 2062cc Morris QPHG engine which it shared with the Wolseley Super Six but enlarged to 2288cc. The capacity was increased again to 2322cc in 1937 bringing it into line with the Wolseley 18. This was a tall engine and to allow the bonnet line to be as low as possible the twin SU carburettors had their dashpots mounted horizontally. Drive was to the live rear axle via a four speed manual gearbox with synchromesh on the top two ratios (on all but a few early models). Wire wheels were fitted and the drum brakes were hydraulically operated using a Lockheed system. A built in Jackall jacking system was fitted to the chassis. The saloon body, the only option available at the time of the car’s launch, was made in-house by Morris and was a spacious four door with traditional MG grille flanked by two large chrome plated headlights. The spare wheel was carried on the boot lid. Inside there were individual seats in front and a bench seat at the rear, all with leather covering. Much use was made of walnut for the dashboard and other trim items. A Philco radio was offered as an optional extra for 18 Guineas (£18.90). From April 1936 a Tickford drophead coupé by Salmons joined the range priced at £398, the saloon was £375, and in July coachbuilders Charlesworth offered a four door tourer at £375. The tourer originally had straight topped doors but these were replaced with front ones with cutaway tops from 1938 and at the same time the spare wheel moved to the front wing. Of the 2739 cars made, 350 were exported with Germany proving the best market. Quite a few have survived, though many are in need of restoration, and that is a costly business, as this was a complex car, and values of the car do not (yet) make this financially justifiable, which is a pity, as this is a supremely elegant car. This was one of my favourite cars of the whole event.

 photo Picture 250_zpsw8d7evme.jpg  photo Picture 249_zpskhrz0kxr.jpg  photo Picture 542_zpsd1n5rql9.jpg

There were a couple of examples of the TA here, the first of a long line of T series sports cars produced by MG from 1936 to 1955. The TA Midget replaced the PB in 1936. It was an evolution of the previous car and was 3 inches (76 mm) wider in its track at 45 inches (1,100 mm) and 7 inches (180 mm) longer in its wheelbase at 94 inches (2,400 mm). The previous advanced overhead-cam inline-four engine was by then not in use by any other production car so it was replaced by the MPJG OHV unit from the Wolseley 10, but with twin SU carburettors, modified camshaft and manifolding. The engine displaced just 1292 cc, with a stroke of 102 mm and a bore of 63.5 mm and power output was 50 hp at 4,500 rpm. The four-speed manual gearbox now had synchromesh on the two top ratios and was connected to the engine by a cork-faced clutch running in oil. Unlike the PB, hydraulic brakes were fitted with 9-inch drums. Like the PB, most were two-seat open cars with a steel body on an ash frame. A bench-type seat was fitted with storage space behind. The T-type was capable of reaching almost 80 mph (130 km/h) in standard tune with a 0–60 mph time of 23.1 seconds. Allan Tomlinson won the 1939 Australian Grand Prix handicap driving an MG TA. 3,003 were made and in 1936 it cost £222 on the home market, the same as the PB. When first introduced the model was known as the T Type and only after the advent of the TB did the TA designation come into use.

 photo Picture 386_zpsermx9ffm.jpg  photo Picture 220_zpsjkqccicp.jpg

MG’s TB is one of the rarest of the MGs, with only 379 being manufactured before the outbreak of WWII. They were to feature the all new XPAG engine, which would go on to power almost every MG model and several special racing cars for the next 15 years. This particular TB Special has been imported from Australia by the vendor and sports a unique and very rakish two seat body. The Special was constructed by an engineer and is well known to the TB register and saw some mild competition use in Australia. The XPAG engine fitted has been tuned with an unleaded cylinder head and breathes through 1.5 inch SU carburettors. The exhaust is a four branch type, the differential, suspension and the gearbox have all been uprated and modified and the car sits on 16 inch wire wheels, which enhance the sporting look.

 photo Picture 127_zpszgjqmo6m.jpg

MORGAN

Three Wheeler

 photo Picture 347_zpsmk1uvdgt.jpg  photo Picture 183_zpsef1lpvzb.jpg

early plus 4

 photo Picture 243_zpsplhsyb6h.jpg

MORRIS

There were a number of early Morris Cowley and Oxford models here including a 1921 Cowley with a distinctive polished aluminium body.

 photo Picture 572_zpsrzerdju1.jpg

The Bullnose radiator was replaced by a more conventional flat radiator announced 11 September 1926 on new cars now with doors either side and a longer list of accessories supplied as standard. All steel bodies were coming available. The engines remained the same, but the Cowley unlike the Oxford, retained braking on the rear wheels only as standard, although a front brake system was available at extra cost (featured car has this fitted). The chassis was new and the suspension was updated with semi elliptic leaf springs all round plus Smiths friction type scissor shock absorbers. The brakes are rod and spring operated with cams inside the drums to actuate. Interesting to note that the rear brake drums include two sets of shoes, one of which is connected directly to the handbrake. The chassis was further modified in 1931 to bring it in line with the Morris Major. Wire wheels became an option instead of the solid spoked artillery ones previously fitted. A new model arrived for 1932.

 photo Picture 144_zpss4zwnhv8.jpg  photo Picture 126_zpshmrkvmfq.jpg

Beginning in 1922, the tiny Austin Seven had brought motoring to a new public and broadened the market. Against that Morris’s Oxfords and Cowleys had taken 41 per cent of the entire 1925 British private car market. Morris sales had begun to slow in 1926. They were revived by a new face for the Morris Oxford and Cowley and an expansion of Morris’s range both up and down the scale. The same year William Morris realised millions from the sale and stock market listing of preference shares in his business and he privately bought Wolseley, founded by Herbert Austin, which up to a few years earlier had been Britain’s largest car manufacturer. This gave Morris ample wherewithal to go after Herbert Austin’s little car with his own small Morris. With a surplus of production facilities, and Wolseley’s design engineers added to his own at Morris Commercial Cars, little time was taken for development of the Morris Minor. A more complex design than Austin’s Seven the all-new car was revealed in 1928. The launch was on 11 October 1928 at the opening of London’s 22nd Olympia Motor Show. A 4-seated tourer was displayed and a 4-seated saloon with sliding windows. Both had two doors. The Times’ motoring correspondent tested the fabric saloon and reported at length in December finishing with “I liked the general control and one does not get the impression that one is driving a very small car”. The fabric covered bodies used so much wadding to smooth their corners birds learned to peck through the fabric for the felt to build their nests. Coachbuilt, steel-panelled cars with a folding “sunshine” roof, for £9 more than the fabric car, were announced in August 1929 and all three cars were given rear-hinged doors with their forward ends sloping towards the front at the bottom. A 5-cwt van was added to the Minor range for 1930. It was displayed as Morris’s smallest van offering at the 1929 Motor Transport Show. The following year, in August 1930, a new 2-seater semi-sports joined the range with a hood and side screens. It was designed for two adults and their luggage and was cheapest in the range by £5. The tourer and two saloons, fabric and steel-panelled, remained in production. Advertisements referred to improved coachwork comfort and finish and improved lubrication and electrical systems. Tyres were now 19 x 4.00-inches. The coachbuilt saloon might now be had in black as well as blue. This last saloon came with automatic windscreen wiper, rear-vision mirror, safety glass and the new chromium finish. Morris’s stand at Olympia displayed just a chassis of the Minor. Just before Christmas 1930 Sir William Morris released a statement saying that he would put on the market very soon a new car to sell at £100 and it would be known as the Morris Minor S.V. two-seater. The body, he said, is to be coach built—steel panels on a wood frame—has as few bright parts as possible “to reduce polishing” and is finished in naval grey with red upholstery. Decarbonisation and valve adjustment were very simple and contributed to the new car’s low running costs.Within a few months 2-door saloon models with the S.V. type engine were also in production. A 4-seater S.V. tourer was announced in April.The overhead valve engine was proving to be expensive to make and Wolseley’s design—the six-cylinder version powered their successful Hornet saloon, and racing MGs—suffered from oil getting into the dynamo. So in 1931 a version with valve gear re-designed by staff of Morris Engines using side-valves and giving nearly the same power output, 19 bhp was introduced. On the road, the tester advised, the new Morris Minor S.V. exceeded 50 mph. A certain amount of wheel-bounce consumed a lot of power when testing standing-start times. The tappets could have been adjusted more finely, the accelerator needs a steadier spring and there should be a rest pedal beside it. Speed and brake levers were rather distant, top speed was apt to jump out when the load came off, some wheel bounce and movement with such a short wheelbase is acceptable, the foot brakes pulled to the near-side. The lower cost of the new engine allowed the Minor to be sold for the magic £100 as a stripped-down two-seater. The S.V. 2-seater cars were priced exactly 25 per cent cheaper than the SOHC cars had been. For a while both overhead and side valve versions were produced. The overhead-camshaft unit survived until 1932 in the four-door model, which also gained hydraulic brakes. In August 1931 a new radiator shape was revealed. The overhead valve version was renamed Morris Family Eight and was given a 7 ft 7 inches wheelbase, an extra 13 inches. The Family Eight was placed within the range between the Minor and Cowley. This saloon has four doors and has enough room for four grown persons. 17 x 4.50-inch tyres were fitted to the new Magna type wire wheels. Magna wheels were now fitted throughout the entire Morris range. The saloon bodies were slightly restyled with a more rounded look being given an “eddyfree” front, the standard size was roomier, their front seats could be adjusted and their doors were widened and fitted with safety glass winding instead of sliding windows. New colour schemes were made available. The fuel tank moved from the scuttle area below the windscreen to the rear of the car. An electric fuel pump or “automatic petrol-lift” was fitted. These Morris Family Eight cars were fitted with hydraulic brakes. Their new smooth sloping screen and rounded front allowed smooth passage of air and less resistance. The use of hydraulics distinguished the Morris from the competing Austin 7 with its less reliable cable brakes. The S.V. cars continued now known as Morris Minors in contrast to the Morris Family Eight cars. Morris displayed at the next Motor Show in October 1932 a Minor chassis for £87.10.0. For £90 the same chassis came equipped with a four-speed twin-top gearbox (“silent” third), cam steering and deep radiator. The 2-door Minor coachbuilt saloon was £125 or with fixed head £122.10.0. By the end of August 1933 all Morris cars had synchromesh four-speed gearboxes, dipping headlights, hydraulic shock absorbers, leather upholstery, hydraulic brakes, rear petrol tank, direction indicators and safety glass. The Family Saloon and Minor added to that illuminated direction indicators and pneumatic upholstery. The Minor and Family Saloon were replaced by the Morris Eight in August 1934 with an entirely new body and a slightly larger 918 cc.

 photo Picture 035_zps7llru2tj.jpg  photo Picture 019_zpscypjcwex.jpg

There were a number of the smaller Morris Eight cars here. This was produced from 1935 to 1948, inspired by the sales popularity of the similarly shaped Ford Model Y. The success of the car enabled Morris to regain its position as Britain’s largest motor manufacturer. The Eight was powered by a Morris UB series 918 cc four-cylinder side-valve engine with three bearing crankshaft and single SU carburettor with maximum power of 23.5 bhp. The gearbox was a three-speed unit with synchromesh on the top two speeds and Lockheed hydraulic brakes were fitted. Coil ignition was used in a Lucas electrical system powered by a 6 volt battery and third brush dynamo. The body which was either a saloon or open tourer was mounted on a separate channel section chassis with a 7 feet 6 inches wheelbase. The tourer could reach 58 mph and return 45 mpg; the saloons were a little slower. The chrome-plated radiator shell and honeycomb grille were dummies disguising the real one hidden behind. In September 1934 the bare chassis was offered for £95. For buyers of complete cars prices ranged from £118 for the basic two-seater to £142 for the four door saloon with “sunshine” roof and leather seats. Bumpers and indicators were £2 10 shillings (£2.50) extra. Compared with the similarly priced, but much lighter and longer established Austin 7, the 1934/35 Morris Eight was well equipped. The driver was provided with a full set of instruments including a speedometer with a built in odometer, oil pressure and fuel level gauges and an ammeter. The more modern design of the Morris was reflected in the superior performance of its hydraulically operated 8 inch drum brakes. The Morris also scored over its Ford rival by incorporating an electric windscreen wiper rather than the more old-fashioned vacuum powered equivalent, while its relatively wide 45 inch track aided directional stability on corners. The series I designation was used from June 1935 in line with other Morris models, cars made before this are known as pre-series although the official Morris Motors designation was by the model year even though they were introduced in October 1934. Of the 164,102 cars produced approximately 24,000 were tourers.

 photo Picture 217_zpsjltjqxtr.jpg  photo Picture 530_zpsbjhtejtd.jpg  photo Picture 377_zpswie6ve95.jpg

PEUGEOT

his is a Bébé, the small car Peugeot made from 1905 to 1916. Vehicles under this name were known technically within Peugeot as the Type 69 and the Type BP1. The original Bébé was presented at the Paris Motor Show in 1904 and stole the show as a modern and robust creation that was cheap, small, and practical. Its weight was 350 kilograms (770 lb) and length was 2.7 metres (110 in), and these tiny dimensions meant that its small engine could propel it to 40 km/h (25 mph). Though selling price was deliberately kept as low as possible, technologies like rack and pinion steering and a driveshaft instead of a chain were included in the vehicle. Production began in Audincourt in 1905, and the car proved to be popular. Bébé sold 400 units in the first year, or 80% of Peugeot’s production. It was also exported, particularly to Britain. The Type 69 was sold only for the year 1905. The Type BP1 Bébé was a design by Ettore Bugatti, initially for the German car firm Wanderer, then also built under license by Peugeot for the French market. Peugeot displayed it under their marque at the Paris Motor Show in 1912. Production began in 1913 following discontinuation of the Type 69. Wanderer built their car with Bugatti’s own 4-speed transmission, but in order to keep production costs down for the French version, Peugeot fitted a 2-speed gearbox initially, which was then replaced by their own 3-speed. The engine was also Peugeot’s own, a tiny straight-4 that produced 10 bhp at 2000 rpm, which gave the small car a top speed of 60 km/h (37 mph). Weight was again below 350 kilograms (770 lb), though the track was wide enough for two to sit abreast. Bébé scored some racing success among small car classes, notably at Mont Ventoux in 1913, where it won in its class. This model ran until 1916. Advertising promoted its qualities as an economy product, in one case highlighting the comparison with more conventional transport in the case of a rural doctor, needing to cover approximately 40 km (25 miles) per day, for whom a Bébé would replace a team of two horses, while costing no more than one of them. With a total of 3,095 produced, and despite the dire economic conditions created by the war, the Bugatti designed Bébé was the first production Peugeot to breach the 3,000 units threshold.

 photo Picture 005_zpsxjmnqihp.jpg

RAILTON

Railton was a British marque, made by Fairmile Engineering Company in Cobham, Surrey between 1933 and 1940. There was an attempt to revive it by a new company between 1989 and 1994 in Alcester, Warwickshire. The company was started by Noel Macklin who was looking for a new car making venture after he sold his Invicta company in 1933. The name came from Reid Railton, the world speed record car designer, but his input was probably small although he did receive a royalty on each car sold. The first car was made by fitting a British body made by coachbuilder John Charles Ranalah to a 4010 cc, 100 bhp, 8-cylinder Hudson Terraplane chassis. The car seen here is a 1937 Cobham Saloon, a smaller six-cylinder car, also known as the 16.9 which was added to the range in 1937 using a 2723 cc Hudson 6-cylinder engine and chassis. Only 81 were made in saloon or drophead coupé form and priced at £399.

 photo Picture 579_zpsvpnwck5n.jpg  photo Picture 240_zpsvidbigf0.jpg

RILEY

By the 1930s, Riley had a vast array of different models on offer, something which turned against the Coventry company, as the costs of doing this got somewhat out of control, leading the firm’s bankruptcy and takeover by the Nuffield Group. Sports saloons were joined by a whole array of open tourers and two seater sports car. Rileys are probably the most popular of all vintage cars, with a decent survival rate, and the number of them here is evidence of that. It takes a marque expert to identify them all exactly, so some of these are grouped together.

Many of the cars come under the label of a Riley Nine, one of the most successful light sporting cars produced by the British motor industry in the inter war period. It was made with a wide range of body styles between 1926 and 1938. The car was largely designed by two of the Riley brothers, Percy and Stanley. Stanley was responsible for the chassis, suspension and body and the older Percy designed the engine. The 1,087 cc four-cylinder engine had hemispherical combustion chambers with the valves inclined at 45 degrees in a crossflow head. To save the expense and complication of overhead camshafts, the valves were operated by two camshafts mounted high in the crankcase through short pushrods and rockers. The engine was mounted in the chassis by a rubber bushed bar that ran through the block with a further mount at the rear of the gearbox. Drive was to the rear wheels through a torque tube and spiral bevel live rear axle mounted on semi elliptic springs. At launch in July 1926 two body styles were available, a fabric bodied saloon called the Monaco at £285 and a fabric four-seat tourer for £235. The saloon could reach 60 mph (97 km/h) and give 40 mpg. Very quickly a further two bodies were offered, the San Remo, an artillery wheeled basic saloon and a two-seater plus dickie open tourer and there was also the option of steel panelling rather than fabric for the four-seater tourer. After the car’s 1926 launch, Mark 1 production actually started in 1927 at Percy’s engine factory, due to some resistance in the main works to the new design. It was such a critically acclaimed success that after fewer than a thousand cars had been produced the works quickly shut down side-valve production and tooled up for the new Nine in early 1928. This switch to the main factory coincided with several modernisations of the Mark 1 – the cone clutch was dropped, the gear lever and handbrake were moved from the right to the centre of the car and a Riley steering box was adopted, thus making the car the Mark II. The Mark III was a gentle update of the II at the end of 1928, evolving stronger wheels and a different arrangement of rods to the rear brakes. The Mark IV was a thorough re working of the Nine. Heavier Riley-made 6-stud hubs and axles replaced the bought-in five-stud items. A new cable braking system was introduced with larger drums. The range of bodies was further extended in 1929 with the Biarritz saloon which was a de-luxe version of the Monaco. The improved brakes were fitted using the Riley continuous cable system and if the cable stretched it could be adjusted from the driver’s seat. More body variants were added over the next few years and in 1934 a Preselector gearbox was offered for £27 extra. The range was slimmed down in 1935 to the Monaco saloon, Kestrel streamlined saloon and Lynx four-seat tourer as the works started gearing up for production of the new 12 hp model. In an attempt to keep costs down Riley entered into an agreement with Briggs bodies to produce a steel (non coach-built) body for a newly designed chassis. This new chassis was introduced in 1936 and incorporated such features as Girling rod operated brakes and a prop shaft final drive for the Nine (though the 12 hp variant retained the torque tube). The Briggs body was named the Merlin and was available alongside the last nine Kestrel variant, also built on the “Merlin” chassis. The Briggs body evolved through 1937 with a large boot extension to be called the Touring Saloon and an additional body style was added on the same chassis – the higher specified special series Monaco (a completely new design from the previous car). The final version (and last Nine model) was the 1938 Victor also available with 1496 cc engine. The Victor had the engine further forward to increase interior room, with the battery moved to the engine bay and smaller diameter wheels were fitted.

 photo Picture 356_zpsandbjcij.jpg  photo Picture 351_zps8u69q1dm.jpg  photo Picture 359_zps9rkeowcg.jpg  photo Picture 323_zpsxk7fbhuj.jpg  photo Picture 256_zpsrkjuvxbr.jpg  photo Picture 321_zpsrjjj7qhj.jpg  photo Picture 318_zpsze7v2xas.jpg  photo Picture 263_zpsofawj9oi.jpg  photo Picture 261_zpsm5b3nzp4.jpg  photo Picture 260_zpssr3jaqhl.jpg  photo Picture 259_zpscdlexbcq.jpg  photo Picture 222_zpswfp7nspf.jpg  photo Picture 219_zpstut6uudj.jpg  photo Picture 215_zpstytkjwwf.jpg  photo Picture 213_zps8shfemrs.jpg photo Picture 038_zpsg75ap8z0.jpg  photo Picture 010_zpstzk5bo1u.jpg

Riley introduced a more powerful car, the 12/4 in 1935. From 1936 this was known as the Riley 1½-litre, and the car would be made until 1938, with saloon, touring, and sports/racing coachwork, These cars were powered by a four-cylinder 1,496 cc “12/4 Engine” with one or two Zenith carburettors. Designed by Hugh Rose, it was based on the Riley Nine engine but with some significant changes including the cylinder block and crankcase being cast as one unit. It was advanced for its day with twin camshafts mounted high in the engine block, cross flow head on some versions, and Zenith or twin SU carburettors. Production of the engine continued until 1955 and also powered the later RMA and RME. The chassis had half-elliptic leaf springs all round and drive was to the rear wheels through either a four-speed preselector or manual gearbox. Girling rod brakes were fitted. Three different wheelbases were made and two track options of 48 in on most versions or 51 in on the 1936 Adelphi, Continental and Kestrel saloons. At launch three body styles were available: the Kestrel 4 light fastback saloon, the Falcon saloon and the Lynx open tourer. In 1936 the Kestrel became a six light, the Falcon was replaced by the Adelphi six light saloon and the Continental touring saloon was introduced. Seen here was a Falcon and a Lynx.

 photo Picture 185_zpsnrxuunom.jpg  photo Picture 538_zpscsmknrh7.jpg  photo Picture 537_zpsz60qkcp7.jpg  photo Picture 536_zps3ksfsko5.jpg  photo Picture 143_zpsrhhsgvqf.jpg  photo Picture 332_zpsluxqda51.jpg  photo Picture 300_zps66m8kr52.jpg  photo Picture 262_zpsbbtisqjb.jpg  photo Picture 267_zpscaayvrrx.jpg  photo Picture 168_zps9iw8bsew.jpg photo Picture 041_zpsfxwvctzr.jpg

ROLLS ROYCE

This Alpine Eagle engined 40/50 “Ghost” was originally commissioned by Glasgow shipbuilder Arthur C.Connell, of Dougalston, Milngavie, Dumbartonshire, whose shipyard – Charles Connell & Company of Scotstoun – was a well-known builder of ocean liners whose clients included Titanic owner Bruce Ismay’s Asiatic Steam Navigation Company. This beautifully-proportioned tourer by master coachbuilders Park Ward has the unusual option of all-brass brightwork, including the radiator and the handsome bell-shaped headlamps. While brass radiators as a standard fitting had been discontinued by Rolls-Royce before the Great War, they were still available in the 1920s to special order. Other unusual demands made by Mr Connell were no ventilators and no mascot. Bidding in style from the driving seat of another lot , George Milligen acquired this Rolls-Royce at the sale of the John Cuthill Sword Collection at Balgray, Ayrshire, in March 1965, paying the second-highest price (£5,800) at that landmark auction which provided a number of significant vehicles for his collection. In remarkably original condition, this Rolls-Royce had covered less than 30,000 miles at the time of the Sword Sale. It was repainted by George Milligen’s favoured coachbuilder Robinson of Norwich soon after he had acquired it, and is now in a nicely-matured condition. This is the car on which George Milligen reckoned he covered his highest-ever daily mileage at the wheel of a vintage car, driving 415 miles from Monte Carlo to the North of France between morning and evening at the end of the 1987 summer Monte Carlo Retrospective Rally. He was, at the time 77 and the car 65 years old! From the “P” series of Silver Ghosts produced during 1922, and fitted with the coveted “Alpine Eagle” high compression engine, this car has rear wheel brakes only; consequently, George Milligen carried out his favoured conversion of fitting well-base wheels to the rear of the car, originally on beaded edge tyres all round, because, as he said: “Well-based wheels at the back give a much better grip of the road, while beaded-edge tyres on the front give much lighter steering.” This was a conversion made simple by this car’s original specification with twin-sidemounts, as both well-base and beaded edge spares could be carried.

 photo Picture 553_zpsqm4wwu9v.jpg  photo Picture 554_zpsuvwvb9im.jpg

Replacement for the 40/50 model was the Phantom. Rolls Royce still supplied the engine and chassis and the buyer then went to their favourite coachbuilder for the body.

 photo Picture 114_zpscibmi3it.jpg

This is a Twenty model from 1927. Built between 1922 and 1929, this was Rolls-Royce’s “small car” for the 1920s and was produced alongside the 40/50 Silver Ghost and the successor to the 40/50, the Phantom. It was intended to appeal to owner-drivers but many were sold to customers with chauffeurs. A new inline-6 cylinder overhead valve engine was designed for the car of 3127 cc with a bore of 76 mm and stroke of 114 mm. Unlike the Silver Ghost engine, the cylinders were cast in one block and the cylinder head was detachable. Both coil and magneto ignition were fitted. The early cars had 3-speed manual gearboxes with the change lever in the centre of the car, but this changed in 1925 to a four-speed unit with traditional right-hand change. The power was transmitted to the rear axle via a standard propeller shaft with a universal joint at each end. The substantial chassis had rigid front and rear axles suspended by half-elliptic springs, with braking initially only on the rear wheels. Four-wheel brakes with mechanical servo were introduced in 1925. The famous Rolls-Royce radiator with triangular top was fitted, and early examples had enamel-finished horizontal slats, later changing to a nickel finish and finally becoming vertical. In 1920 a chassis cost £1100 with, typically, a complete tourer-bodied car costing around £1600. With coachwork to the factory recommended weight the car could reach 60 mph, but many owners had large limousine bodies fitted, with the inevitable detrimental effect on performance. Only the chassis and mechanical parts were made by Rolls-Royce. The body was made and fitted by a coachbuilder selected by the owner. Some of the most famous coachbuilders who produced bodies for Rolls Royce cars are Barker, Park Ward, Thrupp & Maberly, Mulliner and Hooper. 2940 were made before the model was replaced by the 20/25.

 photo Picture 584_zpsmkxwovkn.jpg  photo Picture 373_zpsn3kgbhoj.jpg  photo Picture 372_zpsak3ipz6u.jpg  photo Picture 180_zpsivohcfql.jpg  photo Picture 357_zpsl2mwgofl.jpg  photo Picture 247_zps6hzbyrqz.jpg  photo Picture 315_zpslvuqpysl.jpg  photo Picture 270_zpskkxggcih.jpg

There were a number of examples of the Rolls-Royce 20/25 here, too, the second of Rolls-Royce Ltd’s pre-war entry level models. Built between 1929 and 1936, it was tremendously popular, becoming the most successful selling inter-war Rolls-Royce. Its success enabled Rolls-Royce to survive the economic difficulties of the Great Depression years and remain one of world’s great brands. A total of 3,827 20/25s were produced, of which over 70% are still on the road today.

 photo Picture 581_zpsfnzrtq44.jpg  photo Picture 526_zpsvweikgfi.jpg  photo Picture 186_zpsfjvqwdms.jpg  photo Picture 039_zps9zzu1diq.jpg

Also here was this 1948 Silver Wraith, the first post-war Rolls-Royce. It was made from 1946 to 1958 as only a chassis at Rolls-Royce’s former Merlin engine plant, their Crewe factory, alongside the shorter Bentley Mark VI. The Bentley too was available as a chassis for coachbuilders but also for the first time could be bought with a Rolls-Royce built standard steel body. It was announced by Rolls-Royce in April 1946 as the 25/30 hp replacement for the 1939 Wraith in what had been their 20 hp and 20/25 hp market sector, that is to say Rolls-Royce’s smaller car. The size was chosen to be in keeping with the mood of post-war austerity. Even very limited production of the chassis of the larger car, the Phantom IV, was not resumed until 1950 and then, officially, only for Heads of State. The straight six-cylinder postwar engine, which had been briefly made for the aborted by war Bentley Mark V, replaced conventional overhead valve gear with an F-head configuration of overhead inlet valves and side exhaust valves and reshaped combustion chambers. There were new main and big-end bearings and a more efficient drive to the timing gear. To this prewar mix Rolls-Royce added chromed bores. Initially, this engine retained the Mark V’s capacity of 4,257 cc increased from 1951 to 4,566 cc and in 1955, after the introduction of the (standard wheelbase) Silver Cloud, to 4,887 cc for the remaining Silver Wraiths. The first cars had an entirely new 127 inch (3226 mm) wheelbase chassis which differed considerably from that of the pre-war Wraith and was much nearer rigid. It matched the new Bentley chassis but with an extra 7 inch section added to the centre. The new chassis had coil sprung independent front suspension, which required a very rigid chassis to function properly, and at the rear conventional semi-elliptic springs and live axle. The braking system was a hybrid hydro-mechanical system with hydraulic front brakes and mechanical rears using the mechanical servo similar to that of the pre-war cars. The last short-wheelbase cars were delivered in November 1953. The long, 133 inch (3378 mm), wheelbase chassis was announced in 1951 and the first delivered in January 1952. 639 were made by the time of the last deliveries in October 1958. This was not quite the last Rolls-Royce model to be supplied as a “chassis only” ready for a wide variety of bespoke coachwork designed and made by a rapidly declining number of specialist coachbuilders. Most of the bodies selected used “formal” limousine designs. From 1949 until 1955 customers wishing to buy a Rolls-Royce fitted with a much smaller standard steel body could purchase the Silver Dawn. It rode on a chassis seven inches shorter than the Silver Wraith, and was almost identical to Rolls-Royce’s Bentley Standard Steel saloon available alongside the Silver Wraith since July 1946.

 photo Picture 049_zpszyfzp6ua.jpg

ROVER

Already established as a maker of quality cycles, the Rover Company of Coventry diversified into car and motorcycle production in the early 1900s. Its first efforts were tri-cars, the first four-wheeled Rover appearing in 1904. The best-selling Rover in the immediate post-war years was the economy class twin-cylinder Eight. This was succeeded by the 9/20, a larger car with four-cylinder, water-cooled, overhead-valve engine, which in turn gave way to the 10/25 for 1928. The six-cylinder overhead-valve 2-Litre model first appeared in 1929 and was revamped for 1931, gaining a shorter chassis and the 10/25 body. An unusual feature was the cover arch built into the rear doors to protect the rear passengers’ clothing. The 2-Litre shared its engine and running gear with the shorter-wheelbase Light Six – the car that famously out-sped the ‘Blue Train’ from St Raphael to Paris. The 2-Litre would turn out to be a short-lived model, with only 1,255 completed when production ceased at the end of 1932. Survivors are rare. The example offered here is believed by the Rover Sports Register to be the last short-chassis 2-Litre saloon in existence. ‘GO 1521’ comes with its original logbook recording seven owners, the last of whom, Terry Harrison of Mansfield, kept the Rover from 1974 until 2017 when it was purchased by the current vendor.

 photo Picture 533_zps6eyg9zpt.jpg  photo Picture 375_zpsvhlq6obo.jpg  photo Picture 149_zpsmq2opkju.jpg

This one is slightly earlier, dating from 1923. It is a Rover 8. This model was announced in October 1919. It was designed by Jack Sangster largely before he joined Rover. Built in a new factory in Tyseley, Birmingham it was driven to Coventry to have its body fitted. It was a great sales success for the company. The air-cooled, side valve, engine was a horizontally opposed twin and was originally of 998 cc capacity, but this was increased to 1134 cc in 1923. The original engine had a peak output of 13 bhp at 2600 rpm. Although there was a conventional looking radiator it was a dummy. Cooling was supplied through air scoops on the side of the bonnet and it was rumoured that after hard driving at night the cylinder heads could be seen glowing red through them,. Two cross-members of the frame supported at three points the assembled unit of engine and clutch and a three speed gearbox with reverse. The rear wheels were driven through a fabric joint and propellor shaft to a universal joint and an under-worm wheel type rear axle. A dynamo was belt driven from the propeller shaft. An electric starter was optional from 1923. A six volt lighting set was provided. The chassis was a simple perimeter frame with quarter-elliptic leaf springs all around. This cantilever springing and the rack and pinion steering were both regarded as unusual at the time. Wheels were steel and detachable. Brakes were fitted to the rear wheels only with a separate set of shoes for the handbrake. The wheelbase was extended from 88 inches (2,200 mm) to 94 inches (2,400 mm) in 1924 to allow genuine four seat bodies to be offered including a fabric four seat saloon.

 photo Picture 268_zpsiqspekgq.jpg

This is a 1937 Rover 12 from the P2 generation. The first Rover 12 had been launched in 1933 and then an updated version appeared in 1937 with mainly styling changes but the chassis was stiffened and Girling rod brakes replaced the hydraulic ones that had been fitted to earlier cars. Bodies were a 6-light saloon and a 4-light sports saloon. There were no more tourers pre war but 200 were made in 1947 and 1948 with the first four bodies by Rover and the remaining 196 by AP Coachbuilders of Coventry. The 1938 models had fixed bonnet sides and for 1939 synchromesh was added to the top two ratios on the gearbox. Disc wheels became an option to wire wheels in 1939 and standard on post war models. This final Rover 12 model was part of the Rover P2 range, along with Rover 10, Rover 14, Rover 16 and Rover 20 variants. The final cars were made in 1948 and there was no real replacements as subsequent models featured larger engines. 11,786 were made pre war and 4840 after.

 photo Picture 601_zpsqkvlekzr.jpg

This one of the post-war Rover 12s, dating from 1947. and with the Tourer body.

 photo Picture 292_zpsdcbowesd.jpg

Rover’s 14/6 model was launched in 1934 on a lengthened under-slung chassis but retained its predecessor’s 1,577cc, six-cylinder, overhead-valve engine. The new frame enabled the adoption of low-line bodies, among them attractive ‘streamline’ versions of both saloon and coupé. Chassis specification included a four-speed freewheel gearbox, hydraulic brakes, Luvax-Bijur automatic lubrication, and electric windscreen wipers. For 1939 the 14hp was revamped with a new 1,901cc ‘six’ developed from the four-cylinder unit of the contemporary Ten. This 1939 Rover 14 wears Tickford coachwork by Salmons & Sons of Newport Pagnell.

 photo Picture 317_zpsjlx4rdpj.jpg

Also from the P2 generation was this 1937 Rover 16, a medium-sized family car announced in mid-August 1936 and produced between 1936 and 1940 as a successor to the Rover Meteor 16. It was put back into production in 1945 following the Second World War and remained on sale until replaced by the Rover P3 in 1948. The 16 was part of the Rover P2 range, along with Rover 10, Rover 12, Rover 14 and Rover 20 models. The car, with its mildly streamlined form, resembled the existing Rover 10 and the Rover 12 but was slightly longer and featured a more rounded back end. The six-cylinder ohv engine had a capacity of 2,147 cc. A top speed of 124 km/h (77 mph) was claimed. In addition to a “six-light” saloon and a “four-light” “sports saloon, a two-door cabriolet was available, usually referred to as a drophead coupé, with bodywork by Tickfords. The sports saloon and the drophead coupé had slightly less length between the front and rear seats, but a longer bonnet, with the front footwell extending further beneath the bonnet. A version called the Rover 14 saloon combined the same body with (from 1938) a 1,901 cc six-cylinder engine. There was also a version called the Rover 20 with a 2512 cc. engine. Notable features included a “freewheel” system, Bijur-Luvax automatic lubrication of the chassis, and Girling rod actuated fully compensated mechanical brakes of exceptionally high efficiency.

 photo Picture 361_zpsshy3kgqd.jpg

SINGER

The Singer Nine was launched in 1932, to replace the Junior. It featured a larger 972 cc overhead cam engine, based on the 848 cc engine seen in the 8HP Junior. This variation had already been introduced in the Junior Special, a short-lived interim model shown at the 1931 Olympia Motor Show four months before the Nine’s introduction. Power output was 26.5 hp, and this was transmitted through a four-speed manual gearbox. As well as the conventional four door saloon models, Singer offered a stylish coupe body as seen here and a four-seat tourer model with abbreviated bumpers and no running boards called the “Nine Sports” from October 1932, and one of these managed to finish thirteenth at the 1933 24 Hours of Le Mans race. In 1933, celebrating this moderate success, a new underslung racy two-seat model called the Singer Le Mans appeared. With twin SU carburettors, the Sports offered 31 hp at 4600 rpm, providing a 66 mph with the wind screen down – impressive for the era and at a price considerably lower than the competition. The Nine Sports was also used in various other endurance races, finishing second in class in the 6-day Coupe Internationale des Alpes trial in 1933. For 1934 the front bumpers were elongated to protect the paintwork on the sides of the car, as the earlier short units were found wanting. For 1935, as the sportier Le Mans gained a four-seater option, running boards appeared on the Nine Sports along with larger doors and a curvier rear end. In 1936, the shorter and simpler Nine-engined Bantam Nine appeared, and in 1937 the Nine was discontinued in favour of this model. However, in 1939 the “Nine” name reappeared on a new Roadster model which depended heavily on the Bantam, meaning that the Nine was to continue in production until into 1949, and as the 4A/4AB until 1953.

 photo Picture 316_zps6km3rn3t.jpg

STAR

 photo Picture 368_zpszza6rfxz.jpg  photo Picture 367_zpsfy2kqpxa.jpg

STUDEBAKER

 photo Picture 524_zpsq7n6g5nn.jpg

SUNBEAM

Sunbeam made a series of large and expensive models in the 1920s. Best known of these is the 3 litre, a heavy 26 long cwt (2,912 lb; 1,321 kg) sports car introduced by Sunbeam in October 1925 at the London Motor Show, and was offered from 1926 until 1930. It was seen at the time and subsequently as the retort of Louis Hervé Coatalen, Sunbeam’s energetic chief engineer, to the Bentley 3 Litre which by then was beginning to make its mark, having won at Le Mans earlier that year. The Sunbeam’s engine was of 2,920 cc, distributed between six cylinders. It featured inclined valves operated via easily adjustable tappet levers by two overhead camshafts, an important innovation at the time. The detailed design of the engine followed many of the principles of the engines which were gathering plaudits for the company on European racing circuits. The cylinder head and block were formed from a single casting which was then considered normal for high-performance engines. One of the novel features of the engine was its use of dry-sump lubrication whereby engine oil was drawn from a tank positioned beside the engine. In 1929 a supercharger was added, increasing the power output to 135bhp. The cylinder bores translated into a fiscal horse-power rating of 20.9 hp which under the system operating in the 1920s attracted an annual Road Fund Tax of £21. The big four-cylinder engines of the competitor vehicles from Bentley incurred an annual Road Fund Tax of £16. The difference of £5 might be considered immaterial for anyone who could afford to purchase and run a car of this type, but £5 was at the time more than the average weekly wage in Britain, so the annual saving to the Bentley buyer may well have been significant even in this class. The Bentley gained a reputation as the more robust of the two cars, although in standard form the Sunbeam was reported to be marginally quicker. Two Sunbeams were entered in the 1925 Le Mans, one driven by Henry Segrave and George Duller, the other by Jean Chassagne and Sammy Davis. Segrave and Duller were forced to retire but Chassagne and Davis achieved second place, beaten only by the Lorraine-Dietrich of Rossignol and de Courcelles. In retrospect the Sunbeam’s achievement became eclipsed by the extent to which the race came to be dominated by Bentleys during the second half of the decade. Although the sturdily constructed chassis was based on that from earlier Sunbeams, the hitherto characteristic semi-elliptical leaf springs were, at the back, replaced by cantilever rear springs which during the second half of the decade became a Sunbeam hallmark. A variety of different bodies were available.

 photo Picture 573_zpsztzvlmft.jpg  photo Picture 365_zpsmmb8voge.jpg  photo Picture 364_zpspvwgk7z7.jpg  photo Picture 340_zpsm5vusadq.jpg  photo Picture 342_zps1ft25afe.jpg photo Picture 331_zpsqk5eqodm.jpg  photo Picture 227_zpsxgda9eup.jpg  photo Picture 226_zps2cfn9p3p.jpg  photo Picture 044_zpsdnfdb8tx.jpg  photo Picture 022_zpswetypdy3.jpg photo Picture 021_zpse6aepujf.jpg

TALBOT

The Talbot 105 was a high powered sports car developed by Talbot designer Georges Roesch. It was famously fast, described by one authority as the fastest four-seater ever to race at Brooklands. The first of the 6 cylinder Talbot cars made its debut at the London Motor Show in 1926, and at this stage it was formally named according to its fiscal and actual horsepower as the Talbot 14-45. The six-cylinder engine displaced a volume of 1,665 cc and was the basis for all Talbot engines until the Rootes takeover in 1935. The engine was repeatedly bored out further, giving rise to a succession of performance improvements. Throughout these developments, the exterior dimensions of the original 14-45 engine block remained unchanged. The 1930 London Motor Show saw the debut of the 20-70 model, bore and stroke both being increased to give an engine capacity increased to 2,276 cc. In this form the car was later called simply the Talbot 70 or 75. Higher compression ratios and power increases followed. An increase in the engine capacity, still without any change to the exterior dimensions of the engine block, yielded a cylinder displacement of 2,969 cc for the iconic Talbot 105 model. In 1931 four 105s were tuned to provide a reported 119 bhp, at 4,800 rpm. In “Brooklands trim” further tuning and in increased compression ratio of 10:1 gave rise to a claimed 125 bhp. The Talbot acquired its fame on the racing circuits, featuring prominently at Brooklands as well as gaining 3rd and 4th places at the 1930 Le Mans 24hour race. For 1931 Roesch further developed the engine enlarging it to 2,969cc and creating the Talbot 105. The 1931 Le Mans 24hour race saw a Talbot 105 in 3rd place, with prizes on the Alpine Trial in 1931 and 1932. In 1932 Talbot pulled out of racing, but a major Talbot dealer named Warwick Wright successfully ran a team of three 105s that year, and other teams operated by dealers and enthusiasts continued to race the cars at least till 1938. In 1935 Sunbeam-Talbot-Darracq fell on hard times inspite of the good sales provided by the Roesch-designed cars, and was acquired by the Rootes brothers. Three of these legendary cars, in the distinctive livery of apple green were competing here, including a “Special”.

 photo Picture 228_zpslrlrbhkb.jpg  photo Picture 013_zpspxffrdwl.jpg

Following on from the Talbot Ten of 1935/6, which was effectively the replacement for the sporting Hillman Aero Minx, from 1938 the Sunbeam-Talbot marque came into being and a revised 10hp range was announced, being billed as ‘Britain’s Most Exclusive Light Car’. Well equipped and available in saloon, drophead coupe and sports tourer versions, the Sunbeam-Talbot Ten was to prove very popular and was reintroduced after the war, continuing until 1948. Seen is a 1938 Drophead Coupe, with Coachworks by Abbott of Farnham.

 photo Picture 218_zpsayexhzes.jpg  photo Picture 192_zpskavphk9w.jpg

The Talbot Lago Record T26 was a large car with a fiscal horsepower of 26 CV and a claimed actual power output of 170 hp, delivered to the rear wheels via a four-speed manual gear box, with the option at extra cost of a Wilson pre-selector gear box, and supporting a claimed top speed of 170 km/h (105 mph). The car was commonly sold as a stylish four-door sedan, but a two-door cabriolet was also offered. There were also coachbuilt specials with bodywork by traditionalist firms such as Graber.

 photo Picture 036_zpsysrbkdzb.jpg

TRIUMPH

Having started off producing smaller models such as the SuperSeven to compete against the market dominating Austin and Morris models, by the early 1930s, Triumph came to the conclusion that they could not really compete against these bigger selling cars, so a new strategy was conceived to offer larger and more costly cars instead. The result was the Gloria, made between 1934 and 1938. The Gloria was available in a large and complex range of sporting saloons, coupés, tourers, 2-seater sports cars, drophead coupés and golfer’s coupés. All these Glorias, apart from the final two models (1.5-Litre Saloon and Fourteen (1767 cc) Six-Light Saloon of 1937-1938) were powered by 1087 or 1232 cc four-cylinder or 1467 or 1991 cc six-cylinder Coventry Climax overhead inlet and side exhaust valve designed engines (modified and built under licence by Triumph). The chassis came in two lengths, with an extra 8 in ahead of the passenger compartment depending on whether the four- or six-cylinder engine was fitted, and had conventional non-independent suspension with semi elliptic leaf springs. The brakes were hydraulically operated using the Lockheed system with large 12 in drums. A four-speed transmission was fitted with an optional free wheel mechanism allowing “clutchless” gear changing. Synchromesh was fitted to the gearbox on the final Fourteen and 1.5-litre models. From August 1934 to 1936 the Gloria range included ‘Gloria Vitesse’ models (not to be confused with later Vitesses) which were up-rated, with twin carburettor engine and equipment, versions of the equivalent Gloria and slightly different bodywork in the case of some saloons.

 photo Picture 223_zpsas0wy3ir.jpg  photo Picture 212_zps3pmeygb8.jpg  photo Picture 339_zpszutmtui4.jpg  photo Picture 374_zpsavbkfgoa.jpg  photo Picture 188_zpscusdeas0.jpg  photo Picture 552_zpsgup2cyub.jpg  photo Picture 551_zpsrgokcs57.jpg

The Dolomite name first appeared in 1934 as a sports car and the name was also used from 1937 on a series of sporting saloons and open cars until 1939 when the company went into receivership. All except the Straight 8 featured a “waterfall” grille styled by Walter Belgrove, versions of the saloons with conventional grilles were sold as Continental models. With the 1937 car, the car this time had a 1,767 cc four-cylinder engine and saloon body. The design was overseen by Donald Healey and the cars were marketed as “the finest in all the land” and targeted directly at the luxury sporting saloon market. Triumph had been moving progressively upmarket during the 1930s, and the 1938 Dolomites were very well equipped, with winding windows in the doors, automatic chassis lubrication, a leather-bound steering wheel adjustable for rake and reach, dual hydraulic brake circuits, twin trumpet horns, and spot lamps included in the price. There was even a tray of fitted tools slotted beneath the driver’s seat cushion, and for an extra 18 guineas buyers could specify a radio. The body was aluminium over a rot-proofed ash frame. Like many Triumphs of that time, the car followed the American trend of concealing its radiator behind a flamboyant shining metal grille. The British market, then as now, was in many ways a conservative one, however, and, before Dolomite production was suspended completely, Triumph had time to introduce a “Vitesse”-branded version of the Dolomite on which the grille had been removed and the car’s own radiator was exposed in the traditional manner. In April 1938 an increased compression ratio and mild further engine tuning justified a changed designation from 14/60 to 14/65 (where 14 was the fiscal horsepower and 65 was the claimed actual horsepower. There was an open version of the 14/65, announced 29 March 1938, with seating for three people on a single bench seat and “two additional outside seats in the tail, reminiscent of the dickey seat that was at one time common” for two more people behind. The hood folded completely into the body to give the appearance of an open sports car. The car was announced with the 1,767 cc engine with twin SU carburettors, and it is this version which is seen more often these days, with the Saloon a rare sighting.

 photo Picture 303_zpsgofvzyeh.jpg  photo Picture 304_zpsyvmvo89a.jpg  photo Picture 305_zpsxfrjjpmc.jpg  photo Picture 307_zps5t6hzess.jpg  photo Picture 308_zpsklpn1brm.jpg photo Picture 309_zpsjr6kjkdr.jpg  photo Picture 314_zpsz6tz9loq.jpg

VAUXHALL

This is an early Vauxhall, a Type A.

 photo Picture 582_zps5kyffdbt.jpg

The Prince Henry is widely credited with being one of the first “sports cars”, and there was an example of this model competing. The Prince Henry was a higher tuned version of the Vauxhall 20 hp that had been designed in the winter of 1907-08 by then draughtsman Laurence Pomeroy (1883–1941) when the company’s chief engineer F. W. Hodges was away on holiday. The engine was of 4-cylinder monobloc design with side valves and a capacity of 3054 cc giving 40 bhp output. Known to Vauxhall as their C-10, three specially prepared cars were entered in the 1200 mile long 1910 Motor Trials named in honour of Prince Henry of Prussia. They had their engine power increased to 60 bhp at 2800 rpm and as a result of the success replicas were put on the market at £580 with the chassis code C10 and known as the Prince Henry model. These proved popular and sold quickly. and became known as Prince Henry Vauxhalls. Prince Henry cars also competed in other international trials including the 1911 St Petersburg to Sebastopol Trial and so two cars were sold to Tsar Nicholas II. A sales and support and distribution branch was opened in Moscow with good results. Hampered by the First World War the office was finally closed after the 1918 revolution. Three of these cars were entered in the RAC 2,000-mile trial and one won the speed trials at Brooklands which was part of the event as well as winning the fuel economy award for its class. This victory helped Pomeroy to be promoted to Works Manager. In 1913 the engine capacity was increased to 3969 cc and the internal designation changed to C. Production continued until 1915.

 photo Picture 042_zpsya3yycgu.jpg  photo Picture 210_zpscgqaztbi.jpg

There were a significant number of examples of the imposing 30/98 here. This long running car was produced from 1913 to 1927, although it is believed that only 13 30/98s were made before war intervened and these were all for selected drivers, the last of these pre war cars, built in 1915 for Percy Kidner a joint Managing Director of Vauxhall. Actual production began in 1919. Also known as the E Type, the 30/98 name is believed to have been coined because the car had an output of 30 bhp at 1,000 rpm and 98 bhp at 3,000 rpm, though another explanation is that it had an RAC horsepower rating of 30 and a cylinder bore of 98 mm. Perhaps the most likely of all is that there was then a popular but heavier slower Mercedes 38/90. However it was found, the name 30-98 looked and sounded so well and the car proved popular. The 30/98s used the earlier Prince Henry chassis, but were distinguished by having more-or-less flat rather than V-shaped radiators. Laurence Pomeroy took the Prince Henry L-head side-valve engine, bored it out 3 mm, then cold-stretched the crankshaft throws 5 mm using a steam power hammer to lengthen the stroke. The camshaft was given a new chain drive at the front of the engine, high lift cams and new tappet clearances. The Prince Henry chassis was slightly modified and the whole given a narrow alloy four-seater body, a pair of alloy wings (front mudguards) and no doors. The first 30/98 was constructed at the behest of car dealer and motor sport competitor, Joseph Higginson—inventor of the Autovac fuel lifter—who won the Shelsley Walsh hill-climb motoring competition on 7 June 1913 in his new Vauxhall, setting a hill record in the process, having in previous weeks made fastest time of the day at Waddington Pike and Aston Clinton, but these were not racing machines but fast touring cars. The exhaust made a tranquillising rumble, there was no howl, no shriek, no wail, but there was the quiet satisfaction of knowing that if stripped for action, the car could lap Brooklands at 100 mph, and its makers guaranteed that. Most of them were built with a 4 seater open tourer body, though other body styles were produced as well.

 photo Picture 583_zpsw9ih03lx.jpg  photo Picture 287_zpsys2h11j1.jpg  photo Picture 237_zps18inuvu5.jpg  photo Picture 170_zpshkuoa0mz.jpg  photo Picture 162_zpsphcfq7p8.jpg photo Picture 043_zpsfwdyt00p.jpg

This is a 1937 Vauxhall Twenty Wingham Convertible. These were manufactured by Martin-Walter Ltd in the UK. The Wingham cabriolet coachwork was fitted to various chassis and offered “automatic” hood folding. It was spring operated and the hood could be raised or lowered in seconds from within the car. It is very rare with only five known in the world now.

 photo Picture 534_zpsenktz3ku.jpg  photo Picture 333_zpsgyavbcg2.jpg

Also from 1937 is this 14-6, a model which was produced from 1933 to 1948. Announced for the 1933 Earls Court Motor Show, the 14-6 was offered as a six-light, four door saloon and was powered by a four bearing, OHV, 1,781cc I6 engine. Vauxhall sold the car with a choice of two body styles: a 4-door 6-light saloon with sliding roof; or a 2-door coupé with sliding roof. There were also quite a lot of bodies by other coachbuilders but supplied by Vauxhall, which were included in their standard catalogue. These included: Tickford Foursome Coupé (by Salmons); Pendine 4-str Sports Tourer (by Holbrook); Suffolk Saloon Sports Tourer (by Holbrook); Stratford 4-str Sports (by Whittingham & Mitchel); Tourer (by Duple); and a 2-seater with Dickey (by Duple) Features included a unitary hull, independent front suspension and a three-speed gearbox in place of the four-speed “silent third” gearbox. Post-war models can be distinguished by bonnet-louvre and grille changes. 45,499 examples were produced, including 30,511 in the post-war period.

 photo Picture 254_zpssutiqpof.jpg  photo Picture 255_zpsntk5enqb.jpg

WOLSELEY

The Hornet is a six-cylinder 12 HP lightweight automobile which was offered as a saloon car, coupé and open two-seater as well as the usual rolling chassis for bespoke coachwork. Produced by Wolseley Motors Limited from 1930 to 1936, the Hornet was unveiled to the public at the end of April 1930. Wolseley had been bought from the receivers by William Morris in 1927. This car’s tiny six-cylinder engine, Motor Sport magazine described it as a miniature six, reflected the brief vogue for less vibratory 6, 8, 12 and 16 cylinder engines soon superseded by greatly improved flexible engine mountings. Their overhead camshaft engines were so good that cars built on their Hornet Special chassis developed an outstanding reputation on the road and in club competition. The initial offering was something of a quart in a pint pot, tiny but powerful for its size. Furthermore, four passengers might be fitted into the very lightly constructed car. However the market soon required more room and more comfort and the car’s nature changed. This was countered by making and selling the Special with a more highly tuned engine. Two sporting versions were sold only as Hornet Special “rolling” chassis. The first with Hornet’s 1271cc engine, the last with a Wolseley Fourteen 1604cc engine. They were sometimes referred to as Special Speed chassis. Saloon and Tickford coupé as well as sporting bodies were fitted. Later cars had a large S mounted on the radiator cap with a small H for hornet in its lower section, the S shaped to be like a striking snake or a preening swan. The new Special chassis was announced 18 April 1932. It had twin carburettors, higher compression (domed pistons) and numerous smaller modifications including a revised exhaust system (triple-piped manifold —2 inch pipe to the straight-through silencer), duplex valve springs, metal universal joints in the propeller shaft, three inches wider front track and specially large 12-inch brake drums. The long flexible gear-lever was replaced by a remote control and a small short-travel lever. Special front (3 inches wider track at 3″ 9″) and rear axles were supplied with the saloon’s large-hub stud-fixed Magna wire-wheels. Small knock-on hubs in Rudge-Whitworth wheels were optional and usually preferred. A particularly large speedometer (a quick-reading five inch dial), matching engine revolution counter, and ten inch headlights were supplied as part of the complete kit for the coachbuilder. The large headlights were supported by braced mountings included in the kit. In the autumn of 1933 to improve its breathing the engine was given a cross-flow head with inlet and exhaust manifolds on opposing sides. The block casting was redesigned to increase its stiffness and the Special received the long wheelbase underslung chassis and other modifications of the saloon including freewheel. The Special chassis was supplied to various specialist coachbuilders particularly Swallow, Whittingham & Mitchel, Jensen and, now also part of the Morris group, Cunard. 2307 were made.

 photo Picture 358_zpsbdetkd3j.jpg  photo Picture 245_zpsaafptt6y.jpg

THE VSCC PADDOCK

As this is a VSCC organised event, then it is only VSCC cars that compete on the hill over the weekend. Many of the cars that were entered for the 2015 event were ones which I have seen in action here, and at venues such as Shelsley Walsh and Chateau Impney before, but as always. there’s also stuff which is new, or rather different, and even if the cars are familiar, the action is always entertaining, with drivers trying their very best for a class-leading time. On the Friday, which was deemed to be a separate meeting, there were eighteen classes and the Long Course was used. For the Saturday and Sunday meeting, sixteen classes were defined, ranging from the Under 750cc class, which largely covered Austin Sevens of various types, through Edwardian Cars, Standard and Modified Sports cars by engine size, and Racing Cars again by engine size. Competitors used the mornings for practice runs and the afternoon were competitive, to determine class honours. The short course, that does not take in Ettore’s tricky curves was used.

 photo Picture 111_zpsa33ssfmo.jpg  photo Picture 110_zps6ha6oilc.jpg

ALVIS

 photo Picture 067_zpsygflsumb.jpg  photo Picture 176_zps4c4btpfi.jpg

This distinctive looking car is a 1930 Avon Alvis Special. It was constructed by the current engineer owner, an Alvis afficionado, and is well known on the historic race circuits of the UK. This special was built up using a Standard Avon chassis as the basis of the car. A highly tuned & race prepared Alvis 12/50 engine was built & fitted, enlarged to 1824cc and with a number of modifications.

 photo Picture 006_zpsagagmpba.jpg  photo Picture 200_zpstsgrr3ht.jpg

AUSTIN

With a class for cars of under 750cc, it was no surprise to find lots of the 747cc engined Austin Seven cars competing. Austin themselves produced sports versions of their baby car, called the Nippy and then as the regular cars aged, many owners removed the bodies and put something of their own design on, creating all manner of Specials, several of which were to be seen in action here, along with Ulster and Nippy versions.

 photo Picture 624_zps4ldagwxt.jpg  photo Picture 594_zpsgx4u3ffa.jpg  photo Picture 157_zpsy5hkezly.jpg

BENTLEY

 photo Picture 077_zpsmfbruvcq.jpg  photo Picture 075_zpsq1xans06.jpg  photo Picture 073_zpslpaesckq.jpg  photo Picture 064_zpswbrqfctn.jpg  photo Picture 076_zpszpj04uai.jpg  photo Picture 074_zpswmfmaur3.jpg

BIANCHI

This 28/40 model dates from 1906.

 photo Picture 053_zpsq1j7orrj.jpg  photo Picture 050_zpsjucxlxxh.jpg

BUGATTI

There were several examples of the distinctive Type 13 Brescia taking part. The Type 13 was the first real Bugatti car. The Bugatti automobile had been prototyped as the Type 10 in Ettore Bugatti’s basement in 1908 and 1909 while he was chief engineer at Deutz Gasmotoren Fabrik in Cologne, Germany. The Type 10 used a monobloc straight-four engine of Ettore’s own design. it was an overhead cam unit with 2 valves per cylinder, highly advanced for the time. A very-undersquare design, it had a 60 mm bore and 100 mm stroke for a total of 1131 cc. This was attached to an open roadster body with solid axles front and rear. Leaf springs suspended the front with no suspension at all in the rear. Cables operated rear drum brakes. On ending his contract with Deutz, Ettore loaded his family into the Type 10 and headed to the Alsace region, then still part of the German Empire looking for a factory to begin producing cars of his own. After World War I, Alsace became a part of France again, of course. The prototype car was preserved and nicknamed “la baignoire” (“the bathtub”) by the staff at Molsheim in later years due to its shape. Ettore restored it in 1939 and repainted it an orange-red color, earning it a new nickname, “le homard” (“the lobster”). It was moved to Bordeaux for the duration of World War II and remained there for decades before falling into private ownership. Today, the car is in California in the hands of a private collector. Upon starting operations at his new factory in Molsheim, Bugatti refined his light shaft-driven car into the Type 13 racer. This included boring the engine out to 65 mm for a total of 1368 cc. A major advance was the 4-valve head Bugatti designed — one of the first of its type ever conceived. Power output with dual Zenith Carburettors reached 30 hp at 4500 rpm, more than adequate for the 660 lb (300 kg) car. Leaf springs were now fitted all around, and the car rode on a roughly 79 in wheelbase. The new company produced five examples in 1910, and entered the French Grand Prix at Le Mans in 1911. The tiny Bugatti looked out of place at the race, but calmly took second place after seven hours of racing. World War I caused production to halt in the disputed region. Ettore took two completed Type 13 cars with him to Milan for the duration of the war, leaving the parts for three more buried near the factory. After the war, Bugatti returned, unearthed the parts, and prepared five Type 13s for racing. By the time production of the model ceased in 1920, 435 examples had been produced and the model had also formed the basis of the later Types 15, 17, 22, and 23. Most of the road cars used an 8-valve engine, though five Type 13 racers had 16-valve heads, one of the first ever produced. The road cars became known as “pur-sang” (“thoroughbred”) in keeping with Ettore Bugatti’s feelings for his designs. The car was brought back after World War I with multi-valve engines to bring fame to the marque at Brescia, which is why the model is often referred to as a Brescia Bugatti. The production “Brescia Tourer” also brought in much-needed cash.

 photo Picture 090_zpsvrotl7pw.jpg

Also well known as a model, indeed many would tell you that this is THE classic Bugatti, is the Type 35 and there were three of these models entered: a pair of Type 35B and a single Type 35C. The Type 35 was phenomenally successful, winning over 1,000 races in its time. It took the Grand Prix World Championship in 1926 after winning 351 races and setting 47 records in the two prior years. At its height, Type 35s averaged 14 race wins per week. Bugatti won the Targa Florio for five consecutive years, from 1925 through 1929, with the Type 35. The original model, introduced at the Grand Prix of Lyon on August 3, 1924, used an evolution of the 3-valve 1991 cc overhead cam straight-8 engine first seen on the Type 29. Bore was 60 mm and stroke was 88 mm as on many previous Bugatti models. 96 examples were produced. This new powerplant featured five main bearings with an unusual ball bearing system. This allowed the engine to rev to 6000 rpm, and 90 hp was reliably produced. Solid axles with leaf springs were used front and rear, and drum brakes at back, operated by cables, were specified. Alloy wheels were a novelty, as was the hollow front axle for reduced unsprung weight. A second feature of the Type 35 that was to become a Bugatti trademark was passing the springs through the front axle rather than simply U-bolting them together as was done on their earlier cars. A less expensive version of the Type 35 appeared in May, 1925. The factory’s Type 35A name was ignored by the public, who nicknamed it “Tecla” after a famous maker of imitation jewellery. The Tecla’s engine used three plain bearings, smaller valves, and coil ignition like the Type 30. While this decreased maintenance requirements, it also reduced output. 139 of the Type 35As were sold. The Type 35C featured a Roots supercharger, despite Ettore Bugatti’s disdain for forced induction. Output was nearly 128 hp with a single Zenith carburettor. Type 35Cs won the French Grand Prix at Saint-Gaudens in 1928, and at Pau in 1930. Fifty examples left the factory. The final version of the Type 35 series was the Type 35B of 1927. Originally named Type 35TC, it shared the 2.3 litre engine of the Type 35T but added a large supercharger like the Type 35C. Output was 138 hp, and 45 examples were made. A British Racing Green Type 35B driven by William Grover-Williams won the 1929 French Grand Prix at Le Mans. The Type 35 chassis and body were reused on the Type 37 sports car. Fitted with a new 1496 cc straight-4 engine, 290 Type 37s were built. This engine was an SOHC 3-valve design and produced 60 hp The same engine went on to be used in the Type 40. There was also one Type 37 entered.

 photo Picture 051_zpsgkivwvbd.jpg  photo Picture 629_zpsduysugiv.jpg  photo Picture 628_zpsi9esl3rh.jpg  photo Picture 156_zpsebsfgtyq.jpg  photo Picture 113_zpsofo1stff.jpg

Also entered here was a Type 51. This series succeeded the famous Type 35 as Bugatti’s premier racing car for the 1930s. Unlike the dominant Type 35s of the prior decade, the Type 51 (and later Type 53, Type 54, and Type 59) were unable to compete with the government-supported German and Italian offerings. The original Type 51 emerged in 1931. Its engine was a 160 hp twin overhead cam evolution of the supercharged 2262 cc single overhead cam straight-8 found in the Type 35B. A victory in the 1931 French Grand Prix was a rare case of success for the line. About 40 examples of the Type 51 and 51A were produced. The Type 51 is visually very similar to the Type 35. The obvious external differences of a Type 51 are: the supercharger blow-off outlet is lower the bonnet in the louvered section; one piece cast wheels instead of bolted on rims; twin fuel caps behind the driver and finally the magneto being off-set to the left on the dash. However many Type 35 cars have been fitted with later wheels, so that is not a reliable signal.

 photo Picture 565_zpsozgsksza.jpg  photo Picture 205_zpsp9qst8pl.jpg  photo Picture 206_zpsmthvcbjf.jpg  photo Picture 153_zpswaxneorb.jpg

ERA

It is always a pleasure to see the ERAs competing, and on this occasion there were three of them. As they do not have the same engines, they do not actually compete in the same classes here (or elsewhere), though they do tend to be grouped together when they go up the hill. This one is R12C, a car whose complete history of R12C gets a bit tricky. The story starts with R12B, which was a 1936 works car with a 2 litre engine and in the works black colour scheme. Raymond Mays successfully hill climbed R12B at Shelsley Walsh and raced at Brooklands. In 1937, the works rebuilt R12B to C-type specification with a 1.5 litre engine and a long-range fuel tank. Pat Fairfield was to be the main works driver of R12B/C for the year. After a win with R12B/C at Crystal Palace and Donington Park, Fairfield was killed in the Le Mans 24-hour sportscar race. R12B/C was successfully used by other drivers during the rest of the year. The Albi Grand Prix was won by Humphrey Cook/ Raymond Mays. The Berne Grand Prix, Switzerland and the JCC 200 mile race were won Arthur Dobson. The Brooklands Siam Trophy was won by Raymond Mays. In 1938 the car was sold to Prince Chula for “B.Bira” to drive R12B/C was painted with a light blue body and yellow chassis and wheels of the “White Mouse” stable and made the national racing colours of Siam (Thailand). In the tradition of “White Mouse” cars, following R2B “Romulus” and R5B “Remus” R12C was named “Hanuman”. “B.Bira” used R12C to gain wins at Brooklands, Donington Park and Cork, Ireland. In 1939, “B.Bira” raced R12B/C to win the Nuffield Trophy at Donington Park.Somewhat less successfully Bira crashed R12B/C at in practice for the Coupe de la Commission Sportive at Rheims, France. Bira suffered only minor injuries but the car was badly damaged, and it is what happened next which makes history a bit more complex, for as happens with many well raced cars repair and modification keeps cars on the track but complicates their history. R12B had been modified to C-type spec.and was now repaired with the only available chassis frame (a B-type, probably from R8B left over from its rebuild up to C-type spec.) so that the cars code letter reverted to “R12B” and its name was moved on to “Hanuman II”. The spare parts from sorting out the mess were set aside – see R12C “Hanuman”, below, for what happened to them. In 1982, respected car restorer and ERA expert W.R.G. “Bill” Morris rebuilt the wreckage left over from the R12B/C “Hanuman” crash and rebuild, useing the original mangled chassis frame from R12B/C, other R12B/C parts and other period parts with any gaps filled by remanufactured parts. The result was “R12C – Hanuman” a C-type ERA as if the 1939 Rheims accident had not happened. As at the time Bill Morris owned both “R12B – Hanuman II” and “R12C – Hanuman” the question of whether one or the other or both or neither was “genuine” was a matter he would have had to fight out with himself! These days R12C is owned by Terry Crabb, and it is a regular sight at Prescott and Shelsley (and doubtless other places that I’ve not yet visited) where both he, and his son Jamie, compete very successfully.

 photo Picture 104_zpsybcpwdeo.jpg  photo Picture 102_zpsw1i8i88a.jpg  photo Picture 098_zps70m2zbdr.jpg  photo Picture 097_zpsvhtkhnbd.jpg  photo Picture 103_zpsijqgubqa.jpg  photo Picture 105_zpsiaruqucz.jpg  photo Picture 108_zpsygmzy1co.jpg  photo Picture 100_zps9ez8ptnx.jpg  photo Picture 101_zps5qyfr8gt.jpg  photo Picture 107_zpszxjfopck.jpg  photo Picture 092_zpsdedm2c0x.jpg  photo Picture 091_zpsim8ka78w.jpg  photo Picture 635_zpsh06e6b3m.jpg  photo Picture 634_zps4evnek72.jpg  photo Picture 633_zpsrmutmsnk.jpg  photo Picture 632_zpsndakrtn4.jpg  photo Picture 631_zpsk71yecoq.jpg  photo Picture 084_zpsxeczavnr.jpg  photo Picture 082_zpsaldjfrpe.jpg  photo Picture 199_zpspbqedxqz.jpg photo Picture 201_zpsc17z0y0a.jpg  photo Picture 202_zpsptu7zt3g.jpg  photo Picture 203_zpsq1filg4v.jpg

R4D is the last development of this classic voiturette racing car, the only D-Type ever built. Originating as R4B in 1935, the car was rebuilt as a C-Type by modifying the front end of the chassis frame to accommodate independent Porsche-type torsion bar front suspension. Over the winter of 1937-38 the car was given a completely new fully boxed frame, and was designated R4D. This was the first ERA to be fitted with a Zoller supercharger (in 1935), and R4D accumulated a formidable competition record in its various guises, finally being purchased from the works by Raymond Mays, and running as a privately entered car in 1939. Mays set numerous pre-war records in R4D, including Prescott and Shelsley Walsh hill climbs, Brighton Sprints and Brooklands Mountain Circuit. Mays describes his history with the car in his book Split Second. After World War II R4D continued in active competition, but the demands on Mays’s time created by the evolving BRM project meant he competed less frequently. In 1952 Mays sold R4D to Ron Flockhart. In 1953 Flockhart had a phenomenally successful season, winning the Bo’ness hill climb in a record setting 33.82 seconds. The car was featured on the cover of Autosport magazine. This success led to his joining the BRM team as a works driver, and later successes at Le Mans and elsewhere. In 1954 Ken Wharton purchased R4D from Flockhart and used the car to win the RAC Hill Climb Championship. In 1955 he used R4D and his Cooper to finish equal first in the hill climb championship with Tony Marsh. Since Wharton was a multiple previous winner, the RAC awarded the championship to newcomer Marsh. An achievement of R4D in the post-war era is that it has won the Brighton Speed Trials seven times, driven by Raymond Mays four times and Ken Wharton three times, more wins than any other car at this event. The owner after Ken Wharton was the pseudonymous “T. Dryver,” creator of the aero-engined De Havilland-M.G. Special. He raced the ERA in the Brighton Speed Trials in 1957 but his chance of achieving fastest-time-of-the-day was spoiled by rain.From the mid-fifties onward, the car had a variety of owners, but achieved notable success in historic racing in the hands of Neil Corner and Willie Green (the latter driving for Anthony Bamford). R4D rose to pre-eminence again in the hands of Anthony Mayman, achieving many successes and setting many pre-war records at various venues. In recent years the car has been owned and driven by James Baxter and Mac Hulbert, and continues to be one of the most successful pre-war racing cars still active in competition, having set new pre-war records at numerous venues.

 photo Picture 081_zpsjhvcj3ma.jpg  photo Picture 563_zpspvogjapo.jpg  photo Picture 083_zps7mtmomtv.jpg  photo Picture 080_zpsuv4cfnlt.jpg  photo Picture 154_zps9vmrnjxf.jpg photo Picture 177_zpsjfhpumil.jpg  photo Picture 204_zpsfvzp05rd.jpg

Anthony J. Merrick prepared and raced R1A until its then owner sold the car. Being without a car the resourceful Merrick shuffled his stock of genuine ERA parts and came up with AJM1. The 1980s brand new 1930s car is said to be an 80% original ERA B-type car using a 1.5litre engine and light green early works colour scheme, though it has since been repainted in red.

 photo Picture 197_zpsysod8kvv.jpg  photo Picture 087_zpsz2cax9qz.jpg  photo Picture 625_zpshfx4rnof.jpg  photo Picture 626_zpsliwgrkju.jpg  photo Picture 088_zpsvz7lr7ii.jpg  photo Picture 089_zpse1wt6lr5.jpg  photo Picture 095_zpswenvsjtt.jpg  photo Picture 094_zpsv8vev9gk.jpg  photo Picture 093_zpsatxczcpp.jpg  photo Picture 198_zpszvkfrzwj.jpg  photo Picture 196_zpskxmljqe7.jpg  photo Picture 195_zpsohirncrq.jpg  photo Picture 630_zpsst1l4uvg.jpg  photo Picture 086_zpsuer8pyio.jpg  photo Picture 085_zpsj1ffah1n.jpg  photo Picture 564_zpsoj4c8kc9.jpg

FIAT

Ballila Sports

 photo Picture 159_zpsw1e6ivwl.jpg

FRAZER NASH

 photo Picture 061_zpsauo0hmne.jpg  photo Picture 060_zpsdwvgzgji.jpg  photo Picture 194_zpsx6yekwnr.jpg  photo Picture 062_zpsd2rhxq1u.jpg

GN

The GN cyclecar was made in Hendon, North London, between 1910 and 1925, then moving to Wandsworth, London. The name derives from its founders, H.R. Godfrey (1887-1968) and Archibald Frazer-Nash (1889-1965). Production ceased in 1923 but the company kept trading until 1925. After making several cars for their own use, the two founders launched the GN car in 1909, building them in the stables at the Frazer Nash family home. The car was powered by a V twin engine by JAP or Peugeot with belt drive to the rear wheels. By 1911, production had moved to Hendon and GN’s own 1100 cc engine, using some Peugeot parts being fitted. The engine was mounted in the chassis with the crankshaft parallel to the front axle, driving through a two-speed transmission by chain and dog clutch, then by belt to the rear wheels. The two-seat car was very light, weighing only about 180 kg (397 lb). Therefore, in spite of the low power available, 60 mph (97 km/h) was achievable, which was very respectable performance for the time. The engine was turned 90 degrees in 1913, with its cylinder heads protruding through the bonnet sides, and a team was entered into the French Cyclecar Grand Prix resulting, in sports models being added to the range. Some 200 cars had been made when production stopped with the outbreak of World War I. Production restarted in 1919, and shortly afterward the company was bought by British Grégoire Ltd and moved to East Hill, Wandsworth in south west London. The chassis changed from wood to steel, with the chain type transmission now with three speeds and reverse. At the peak, 500 staff were employed, making 55 cars a month. A licence to make the cars was agreed with the French maker Salmson who made about 1600 cars. By 1921, the cyclecar boom was on the wane and the company went into receivership, but was soon sold. The new owner, a Mr Black, wanted to move to much higher production levels and away from sports cars. A four-cylinder water-cooled model with 1098 cc DFP engine and shaft drive to a differential on the solid rear axle was introduced in 1922 as part of the new policy, and Godfrey and Frazer Nash left the company later that year. In 1923 a Chapuis-Dornier engine replaced the DFP, but production of the new car and the old V twin model stopped in May. About 4000 cars of all types were made by GN in the post war period. A new company was founded by some ex-employees and a few more cars were made from parts in 1924 and 1925, but the main business was spares and service. In 1925 the company became General Motors dealers. H.R. Godfrey went on to found a new car company, Godfrey-Proctor, and later HRG. Frazer Nash formed the car maker that took his name where he re-introduced his chain and clutch transmission system. A number of one-off specials were made, and these are the best known and most often seen GNs these days. Several of them were here: among them, Grannie, Spider, Gnat Special, Thunderbug and Wasp. These are exciting cars to watch as the drivers, showing great skill, achieve impressive times from such flimsy machines.

 photo Picture 109_zpsr2b54teu.jpg  photo Picture 106_zpszk5amirq.jpg  photo Picture 099_zpswqpacxzh.jpg  photo Picture 079_zpsqutefze8.jpg

HOTCHKISS

 photo Picture 071_zps4copuxog.jpg  photo Picture 072_zpsvehf2jhg.jpg  photo Picture 004_zpsw2tmjp9f.jpg

LAGONDA

 photo Picture 065_zpssuvwzxwx.jpg

Shortly before its 1935 Le Mans win, Lagonda had gone into liquidation and passed to new owners, but despite this in September 1935, the company was able to announce the LG45, a new model, building upon the successful Le Mans win, the old M45 and M45R models and the new owners’ enthusiasm. It was a much more sober vehicle offered in saloon, tourer and drophead coupé variants. Deliveries commenced in the spring of 1936. Under W O Bentley’s technical direction, the big Lagonda became more refined: the LG45 gaining synchromesh gears, flexible engine mounts and centralised chassis lubrication among many other improvements. Endowed with such an impeccable pedigree, the 4½-Litre Lagonda quickly established itself as a favourite among the wealthy sporting motorists of its day. Lagonda’s new owners were keen to build on the racing successes and commissioned Fox & Nicholl to produce cars for the ’36 Le Mans. Two four-seaters were built on the new LG45 10ft 9in chassis: registered as ‘EPB 101’ (chassis number ‘12108’) and ‘EPB 102’ (‘12109’). Additionally a couple of two-seater cars were built: ‘HLL 534’ (‘12100’) and ‘EPE 97’ (‘12111’). All four cars raced during 1936 but Le Mans was cancelled due to industrial action, the only occasion the race has not run in peacetime. The new Lagonda management was understandably disappointed and both four-seater cars were broken up in late 1936, leaving the two two-seaters to continue to the present day representing this great era of Lagonda racing history. Over a decade ago the owner of this LG45 set out to recreate a 1936 four-seater car, with the aim of getting as near as humanly possible to the original, with all the details correct, and yet have a useable car. The project started in earnest in July 2006 and it took almost three years to get the car on the road. Lagonda Club members, believing the project to be of some significance, provided the majority of the rare parts for this replica. Based on one of only 278 LG45s produced during 1936/37, this car, chassis number ‘12001’ is the second LG (Lagonda Motors) car made after the company was bought from the liquidators in June 1935. The car is now used for competitions all over Europe.

 photo Picture 003_zps2hpcv9yv.jpg

This is an examples of the smaller Rapier, in Special guise.

 photo Picture 566_zpsg2jpkpnq.jpg

LEA FRANCIS

There were Hyper models competing as well as those on display in the Orchard.

 photo Picture 589_zpspq3qlen1.jpg

MERCEDES-BENZ

 photo Picture 586_zpsjpyqhh12.jpg

MG

The MG N-type Magnette is a sports car that was produced by MG from October 1934 to 1936. The car was developed from the K-Type and L-Type but had a new chassis that broke away in design from the simple ladder type used on the earlier cars of the 1930s being wider at the rear than the front and with the body fitted to outriggers off the main frame. The engine was a further development of the 1271 cc 6-cylinder KD series overhead camshaft engine used in the K-type and originally used in the 1930 Wolseley Hornet. Modifications were made to the cylinder block and head and fitted with twin SU carburettors it produced 56 bhp at 5500 rpm, a near 25% improvement. Drive was to the rear wheels through a four-speed non-synchromesh gearbox. The car had a wheelbase of 96 inches (2439 mm) and a track of 45 inches (1143 mm). Semi elliptic leaf springs, wider and longer than those used on previous cars, were fitted all round and the body was mounted to the chassis using rubber pads. The factory-supplied body was new and taller than on earlier cars, the doors were rear hinged and featured cut-away tops. The slab type fuel tank at the rear which had featured on earlier models was no longer seen on the N-Type, being hidden in the tail. In addition to the solid color factory options, also offered were two tone combinations. The darker color was applied to the upper surfaces (bonnet, scuttle, rear deck and guards). As well as the open cars, an Airline Coupé model was also available but few were sold. Some cars were supplied in chassis form to outside coachbuilders including Allingham, (actually made by Carbodies) who made a 2/4-seater where the rear seats could be closed off by a removable deck to appear like a 2-seater, and Abbey. The NB, announced in 1935, had an updated body with lower lines and vertical slats on the radiator grille. The doors were now front hinged, better seats were fitted and the instruments re-arranged with the speedometer and tachometer now having separate dials. The factory supplied two tone color options were reversed, that is, the lighter color was on the upper surfaces. The Airline Coupé body was still available. The ND was a special model using unsold MG K2 bodies fitted to the N-Type chassis probably only available in 1934. The number made is uncertain as the model does not seem to have been officially listed. The NE was the competition variant built for the 1934 Tourist Trophy race. Lightweight 2-seat bodies were fitted and the engine was further tuned to give 68 bhp at 6500 rpm. In 1935 three of the cars were fitted with P-Type style bodies and formed the Musketeer racing team which with factory support gained considerable success in various trials.

 photo Picture 058_zpsx4r1wiww.jpg  photo Picture 059_zpsyyyjl5oo.jpg

MITCHELL

A car I first saw at this event in 2016, when it made its Prescott debut was this Mitchell Board Racer. Dating from 1916, it as a 4000cc Buick engine to power it.

 photo Picture 078_zpsyllkcuvt.jpg

MORGAN

Three-wheeler

 photo Picture 002_zpss022wh3f.jpg

MORRIS

There were a couple of Morris cars competing, one of them looking rather more fit for the part than the other. Earlier of the two was one of the well-known “Bullnose” cars, dating from 1926 and there was a later Cowley, with the flat radiator and a bespoke body, making it a “Special”.

 photo Picture 588_zpswwf6jd0v.jpg

NAPIER BENTLEY

Making another appearance here, much to the delight of the crowds who always enjoy seeing this car, was Chris Williams’ fabulous Napier-Bentley. This vintage racing car is a one-off special built in 1968 by David Llewellyn, based on a Sunbeam chassis but, after a serious accident, was re-built on the chassis of a 1929 8 Litre Bentley. It has a 24 Litre Napier Sea Lion W12 boat engine based on the Napier Lion aeroplane engine, the same as that used in the silver Napier-Railton, which it resembles closely, which develops approximately 550 bhp With its red bodywork and Napier-Railton-esque grille, it is spectacular and entertaining in action. Being a W12, the engine has three banks of four very large stub exhausts, one of which points straight out of the side of the car. The sound of the car has been likened to a World War I biplane or cluster or mortar bombs going off. Due to the immense torque of the engine (c.1,400 ft-lbs), the rear tyres can be made to produce clouds of smoke whenever the car is launched, while the exhausts produce sparks, flames and smoke. In the past, I have seen Chris making toast from the heat of the exhaust after he has taken the car out on track. It certainly tends to leave the grass under where it is parked looking somewhat singed. An amazing car – but it was not the only one of its type that was here.

 photo Picture 155_zpsedzphr9e.jpg  photo Picture 208_zpsfk5hom37.jpg  photo Picture 207_zpsuhaspbwu.jpg  photo Picture 636_zpsohrsnm9n.jpg  photo Picture 209_zpsuhxewmtj.jpg

RILEY

There were a large number of Riley models competing. Many of these were what are known as Specials, based on the original Riley Nine or Twelve but with bespoke bodywork replacing the factory metal at some stage in the past. There were some more standard cars entered, too.

 photo Picture 001_zpsimnskwek.jpg  photo Picture 593_zpssed5crfy.jpg  photo Picture 056_zpsrcrmdepa.jpg  photo Picture 096_zpsxnv924fv.jpg

Also a Riley was this Menasco Pirate, the creation of Dr Robin Tuluie, no stranger to turning his fantasy vehicles into reality. The ex-astrophysicist and Engineering Director at Bentley is renowned in the motorcycle-racing world as the creator of the 2001 Tul-Aris: a prototype ‘fusion’ race bike powered by a Polaris snowmobile engine capable of producing a GP-worthy 185 crankshaft horsepower. Robin’s passion for motorsport began in the mid-1980s, when he entered his first motorbike race in California on a Norton Commando. He went on to compete regularly, winning several National Championships, but didn’t become interested in racing cars until, in 2013, he took up a position at Renault Formula One as Head of Research and Development and came over to the UK. It was through his colleague and Bentley-enthusiast Robin Grant that Tuluie became involved with the VSCC and turned his attention and engineering prowess to building his very own vintage race car. Robin’s vision started to take shape when he found a Menasco Pirate engine: “It looked quite promising, and so I started reading up on it and learned that they were initially built for just airplane racing. Al Menasco was an aero-racing enthusiast and built the engine for that purpose. They were very successful – more races were won with a Menasco aero engine than with any other aero engine.” Robin decided that the six-litre Menasco Pirate was the perfect engine for his race car, and set to work looking at the different chassis options, eventually settling on a classic Riley chassis and gearbox. Having admired the work of fellow VSCC member Richard Scaldwell – who is returning to Chateau Impney this year with the De Dietrich – Robin commissioned him for the Menasco Pirate’s bodywork. Throughout the build, Robin’s aim was to create not the ultimate racing car, but something that evoked the feel of some of the Brooklands aero-engined racers. It was also important to him that the car was driveable both on the racetrack and the road, and to that end the car is a two-seater and slightly taller than traditional racing cars. The Menasco Pirate was completed in around two years – Robin’s determination and dedication never faltered, and it certainly paid off. The finished car not only looks incredible, but has proved itself on the track, although Robin admits there have been some low points amidst the many highs: “Racing a car you’ve built yourself brings the highest of highs and the lowest of lows. It’s fantastic when you win. You know, one year I entered 11 events, both races and hill climbs, and won 10 of them. I can’t describe what that feels like. But then other times, it’s a bit of a low – I brought the car back to Silverstone for the first time in three years a few weeks ago and was running in second place, but then first gear broke on the gearbox so I had to pull out.”

 photo Picture 052_zpsxubv7rur.jpg

ROSENGART

Lucien Rosengart (1881 – 1976) was a gifted engineer and businessman who had established a successful engineering business by the time he was 24. In the mid-1920s, he saw the opportunity to produce a very small car for a segment of the market in France that he believed was not being properly covered by any of the major players. He therefore purchased, in 1923, a license to build the English Austin 7 and with support from the engineer Jules Salomon he purchased the old Bellanger factory in the 17th arrondissement of Paris. The site was a large one and in the early years the business appeared set to fill it. At the plant on the Boulevard de Dixmude, in 1927 production began of the Rosengart LR2 automobile which appeared on the market in 1928, at the same time as the precursor of the first BMW automobile, also an Austin 7 built under licence, was appearing in Germany. Numerous variants of the Rosengart LR2 – which is the car seen here – were produced and the car remained in production at least till 1939. The LR2 was promoted for its reliability. A production car driven by François Lecot covered 900 km (560 mi) per day for more than three and a half months until it had notched up 100,000 km (62,000 mi) without any major mishap, and in the same period an LR2 achieved a class win in 80 of the 81 sporting trials in which it participated.

 photo Picture 158_zps2a4mraop.jpg

SALMSON

 photo Picture 627_zpswlucglme.jpg  photo Picture 160_zpse8bg5ptd.jpg  photo Picture 112_zpsfw5wevf2.jpg

SCAT

The SCAT (Società Ceirano Automobili Torino) was an Italian automobile manufacturer from Turin, founded in 1906 by Giovanni Battista Ceirano. The Ceirano brothers, Giovanni Battista, Giovanni, Ernesto and Matteo, were influential in the founding of the Italian auto industry, being variously responsible for: Ceirano; Welleyes (the technical basis of FIAT); Fratelli Ceirano; Società Torinese Automobili Rapid (STAR/Rapid); SCAT (Società Ceirano Automobili Torino); Itala and SPA (Società Piemontese Automobili). Giovanni’s son Giovanni “Ernesto” was also influential, co-founding Ceirano Fabbrica Automobili (aka Giovanni Ceirano Fabbrica Automobili) and Fabrica Anonima Torinese Automobili (FATA). In 1888, after eight years apprenticeship at his father’s watch-making business, Giovanni Battista started building Welleyes bicycles, so named because English names had more sales appeal. In October 1898 Giovanni Battista and Matteo co-founded Ceirano GB & C and started producing the Welleyes motor car in 1899. In July 1899 the plant and patents were sold to Giovanni Agnelli and produced as the first FIATs – the Fiat 4 HP. Giovanni Battista was employed by Fiat as the agent for Italy, but within a year he left to found Fratelli Ceirano & C. which in 1903 became STAR building cars badged as ‘Rapid’. In 1904 Matteo Ceirano left Ceirano GB & C to create his own brand – Itala. In 1906 Matteo left Itala to found SPA with chief designer, Alberto Ballacco. In 1906 Giovanni founded SCAT in Turin. In 1919 Giovanni and Giovanni “Ernesto” co-founded Ceirano Fabbrica Automobili (aka Giovanni Ceirano Fabbrica Automobili) and in 1922 they took control of FATA). The company was active from 1906 to 1932 and achieved Targa Florio wins in 1911, 1912 and 1914. The first produced models were the 12 HP, the 16 HP and the 22 HP of 1909, with 19 different types produced before manufacture ceased.

 photo Picture 587_zpsmbqqhfr7.jpg

TALBOT

There were further examples of the 105 series competing.

 photo Picture 590_zpscqikvupa.jpg

VAUXHALL

There were also a large number of the later 30/98 model competing. Combine these with the various examples I found in the main car park, and this has to be one of the best represented of all vintage model types.

 photo Picture 066_zps3hovcelj.jpg  photo Picture 063_zpsuxvg9kwh.jpg  photo Picture 068_zpsmvuu56qo.jpg  photo Picture 070_zps7srdjcyi.jpg  photo Picture 069_zpsjalzzeni.jpg  photo Picture 592_zpsnfdnevgl.jpg  photo Picture 591_zpshbtt0is9.jpg

WOLSELEY

There were a couple of Specials here based on Wolseley models.

 photo Picture 057_zpsqvkm8veg.jpg  photo Picture 054_zps4m6at7ij.jpg  photo Picture 055_zpstkwtjlz7.jpg

LUNCHTIME BAND

As a bit of fun, on the Sunday morning, there were some special events for the younger generation. Children were invited to take part on a bicycle race, and this always becomes a surprisingly competitive activity and there was also something for even younger children in an amazing array of old pedal cars.

At lunch time, there was a brass band that played, to the enjoyment of the crowds. Starting in the Paddock, they marched along the track almost as far as Ettores, and a few people decided that they would demonstrate their dancing prowess to accompany them.

 photo Picture 567_zpskvimhpxo.jpg  photo Picture 562_zpshx7z5oqh.jpg  photo Picture 561_zpsfal4ka9z.jpg

PORSCHE TEWKESBURY

Local dealer Porsche Tewkesbury has been a sponsor of the Prescott location for three years now, which means that they tend to have a significant and often prominent display at any of the major events. On this occasion they were on the raised ground to the side of the track, just beyond the footbridge. They were showing examples of all six of the different models in the current range here. The latest Cayman and Macan SUV vehicles, the biggest sellers these days, were joined by a second generation Panamera, and the sports cars were represented by a 911 Cabriolet Carrera 4S as well as the smaller 718 Cayman and a used-model Boxster.

 photo Picture 427_zpsl5pmvo3r.jpg  photo Picture 424_zpssq2b9fdz.jpg  photo Picture 420_zpsxxgbxy7g.jpg  photo Picture 426_zpsvohx5esc.jpg  photo Picture 421_zpsbcvnnrnf.jpg photo Picture 422_zpsjxdr7ywq.jpg  photo Picture 429_zpsnqrfe8lj.jpg  photo Picture 430_zpsh3i5zvjn.jpg  photo Picture 428_zpsgmch2d0d.jpg  photo Picture 423_zpss7a10xvt.jpg photo Picture 425_zpsiucugbmf.jpg

BONHAMS AUCTIONS

There is no auction held at this venue, but renowned Auction House Bonhams had once again brought along a quintet of cars that they will be trying to sell at high profile sales later in the year, and this was a great chance to get see each of them up close.

This is a 1932 Aston Martin 1½-Litre Mark II Special Saloon. Manufactured by Robert Bamford and Lionel Martin, the first Aston-Martins (the hyphen is correct for the period) rapidly established a reputation for high performance and sporting prowess in the years immediately following The Great War. Unfortunately, the management’s concentration on motor sport, while accruing invaluable publicity, distracted it from the business of manufacturing cars for sale, the result being just 50-or-so sold by 1925 when the company underwent the first of what would be many changes of ownership. The foundations were laid for the commencement of proper series production with the formation of Aston Martin Motors Ltd in 1926 under the stewardship of Augustus ‘Bert’ Bertelli and William Renwick. Bertelli was an experienced automobile engineer, having designed cars for Enfield & Allday, and an engine of his design – an overhead-camshaft four-cylinder of 1,492cc – powered the new 11.9hp Aston. Built at the firm’s new Feltham works, the first ‘new generation’ Aston Martins were displayed at the 1927 London Motor Show at Olympia. These new Astons were available on long and short chassis, the former being reserved for saloons and tourers and the latter for the sports models. The early 1930s was a period of economic recession, and with sales of expensive quality cars falling off, some serious rethinking had to be done at Feltham. The prudent decision was taken to redesign the chassis using proprietary components to reduce cost. A Laycock gearbox was adopted, mounted in unit with the engine, and the worm drive rear axle, which had never been completely satisfactory, was replaced by an ENV spiral bevel. There was a redesigned chassis frame and many other modifications, including a counter-balanced crankshaft, resulting in what was virtually a new car, although it carried the same coachwork. The original line-up of what would become known as the ‘2nd Series’ did not last long, disappearing from the range in 1934, by which time the chassis numbers were being suffixed ‘S’ or ‘L’ depending on wheelbase length (8′ 7″ and 10′ respectively). This known history of this 1½-Litre model can be traced back as far as 1936 when it was entered in the RAC Rally by its first owner F A Rhodes Esq, receiving a 2nd Class Award. A copy of the factory record card on file lists one F Angell of Holcombe Garage, Leeds as the next owner (from 1947) while a notebook on file records Dr A S W Egerton of Wallasey, Cheshire as the owner from 1955. Some years later, in the 1970s, this car was one of a perfectly matched pair owned by Dr Dudley Heath, whose other Aston Martin was Ulster ‘L4/525/U’ (sold by Bonhams in 2013), the next example completed. Both cars are featured in Michael Bowler’s book ‘Aston Martin – The Legend’. Dr Heath displayed ‘CML 242’ at various concours events, albeit with a redesigned boot enclosing the rear wheel. In 1983 the car featured in Automobile Quarterly (Vol. XXI No.4) and on the poster ‘Aston Martin – The Pre-war Years’. After Victor Gauntlett took over Aston Martin, he acquired ‘CML 242’ as he had hopes of assembling a collection of every model that the company had made. Soon realising that this was a hopeless ambition, he donated the car to the Great Ormond Street Hospital Wishing Well Appeal charity auction of 1988 where it failed to sell. Soon after, the Aston was acquired by the current vendor, at which time it had a recorded mileage of around 81,000, believed genuine. The car was in poor condition; the sunroof had been filled in with plaster, all the windows had had lugs brazed onto them and were screwed into the bodywork, and the stanchions inside the bonnet had been cut down with a hacksaw so that a gravity-feed fuel tank could be installed. The spare wheel had been repositioned inside the car, which gave it a much smoother boot profile but weakened the body, as a main timber had to be cut away to make room. As a result the door pillars were bulging outwards. There was also a fair amount of rot in the frame. In 1989, a rebuild of the body and chassis was commenced by Messrs J&B Young. An original body (taken from a saloon that had been cut down to make an Ulster replica) was found; this had all the correct window fittings and a sunroof. Its frame was skinned in aluminium to complete a replacement saloon body, with the spare wheel in its original position and all six windows opening. The rebuild was completed in 1993. The engine was also in poor condition, registering just 10psi oil pressure at cruising speed, but the car completed several Club tours to Europe in this state, and in 1997 covered 2,000 miles from Vancouver via the Rockies to Monterey, where the owner entered it for the Pebble Beach Concours. It won its class. The engine was then rebuilt. ‘CML 242’ is still used occasionally, and in April this year successfully completed a three-day tour of Devon.

 photo Picture 408_zpsybdvdktl.jpg  photo Picture 409_zpsngvfy629.jpg  photo Picture 410_zpsnifjroca.jpg  photo Picture 411_zpsbh5e3zvt.jpg

Even rarer is this 1910 Sheffield-Simplex 45 HP LA2 Tourer., the oldest of just three survivors of the marque The Sheffield-Simplex had its origins in the Brotherhood-Crocker motor car that had been made in London. It was manufactured in a new model factory at Tinsley, a suburb in the east of the city, which had been financed by the wealthy coal magnate, Lord Fitzwilliam. After a few cars had been completed, the Brotherhoods (Peter and Stanley) pulled out of the venture, and the firm had been re-titled as the ‘Sheffield-Simplex Motor Works Ltd’ by the time its first catalogue was published in November 1907. Its first offering was the six-cylinder 45hp LA1 (designed by Percy Richardson, also responsible for the Brotherhood) which was powered by a 7.0-litre engine driving via a conventional three-speed gearbox. In 1908 it was joined by the LA2, intended for lighter open coachwork, which was advertised as sold ‘without gear box’. In fact, there was a simple two-speeds-and-reverse transmission, with direct-drive top, located at the back of the torque tube immediately ahead of the rear axle. Its maker claimed that this arrangement effected a net saving of over 150 parts and over 300lbs in weight. One of only three Sheffield-Simplex automobiles known to still exist, and the only 45hp ‘gearbox-less’ model, this example was registered with the factory trials car and press demonstrator’s number (‘W 1110’) when it returned to the UK from Australia in the late 1970s. The original ‘W 1110’ featured in the company’s illustrated catalogue for 1909 (copy on file). Published on 1st November 1908, the catalogue contains a detailed account and photographs of the 5,000-mile test around England and Scotland in ‘W 1110’, which involved ascents of all the famous test hills of the day, then merely dirt roads. It records that on hills steeper than 1 in 7 (including Amulree in Perthshire at 1 in 3.75) they used the low gear and ascended easily at 20mph including a stop and restart. The objective was achieved of proving that a large-engined car with a lightweight body and only two gears could cope on steep hills, and that the design of the LA2 chassis was well tested. As well as quoting numerous testimonials from such luminaries as The Rt Hon The Earl of Mar and Kellie, and Sir Bache Cunard (‘the nicest car I have ever driven’), the sales catalogue reproduced The Autocar’s road test of ‘W 1110’ in full. This arduous test involved an 80-mile route around the hills of South Yorkshire and the Derbyshire Peak District: ‘To our surprise the car took Mam Tor on the top gear without falter, and without the least suggestion of hammering or harshness, and of course without any attempt to slip the clutch.’ ‘W 1110’ also dealt summarily with the steep ascent from Buxton to the Cat & Fiddle Inn, rushing to the summit on top gear. Indeed, Autocar’s tester remarked that the only time they used any gear other than top was when starting from rest, concluding: ‘We need hardly say we were delighted with the performance of the car’. They even found the unusual sideways sliding-plate throttle easy to master. Other famous climbs successfully ascended by the Sheffield-Simplex – all on top gear – included Kirkstone Pass, Snake Pass, Bath Street (Frome), Alnwick Hill, and the forbidding 1-in-9 gradient Trinafour on the Scottish Trials circuit. It is not surprising, given its phenomenal on-the-road performance, that the 45hp Sheffield-Simplex was considered a worthy rival for the Rolls-Royce Silver Ghost. Supervised by the RAC, the 1911 Land’s End to John o’Groats top-gear trial consisted of a 906-mile route, commencing on 28th August and taking six days to complete. Before setting off for Land’s End, Sheffield-Simplex’s already well-used test car had lapped Brooklands under RAC scrutiny at an average speed of 60.68mph, and then at an average speed of 3.67mph in the same direct top gear without clutch manipulation. The RAC’s record of the 1911 Land’s End to John o’Groats top-gear trial by the ‘gearbox-less’ Sheffield-Simplex records that on Shatterford Hill they were baulked by ‘four timber wagons and a coal cart … in a hopeless tangle across a fair gradient beyond a curve’ and had to roll back down the hill, wait until the hill was clear, and then climb it ‘without hesitation’ in top gear, which was permitted by the RAC scrutineer. The Sheffield-Simplex completed the trial at an average speed of 19.8mph using 54.771 gallons of fuel. Unlike Rolls-Royce’s later attempt using a Silver Ghost, Sheffield-Simplex did this without stopping the engine, and in a well-used car made in 1909. Reputedly, Sammy Davis was The Autocar’s correspondent who witnessed and reported this run. Relatively few Sheffield-Simplex cars were sold after WWI, however, and production seems to have petered out during the early 1920s. Of the estimated circa 1,500 cars made, there are only three known survivors: the unique 50hp prototype of 1920, the 45hp model offered here, and a 30hp example of 1913 in the Powerhouse Museum in Sydney, Australia. Its VCC Dating Application (dated 22nd July 1981) states that chassis number ‘548’ was exported to Australia directly from the manufacturers and first owned by one Henry Dutton, a sheep farmer of Medende Station, north of Adelaide. Prior to its acquisition by Lord Riverdale in the late 1970s, the Sheffield-Simplex had been owned by one Wally Reeve of Adelaide. Original components listed on the VCC form are as follows: chassis, engine, clutch, cooling system, ignition system including radiator, lights (except tail), front axle, wheels, steering column and controls. The torque tube, gearbox, rear axle, carburettor, taillights and most of the instruments are listed as not original, the gearbox/rear axle assembly being described as ‘replica’. Following a five-year restoration, the rebuilt Sheffield-Simplex was unveiled by Lord Riverdale in 1983. The Sheffield Morning Telegraph carried a report on the car in its 28th November edition, revealing that the rebuild had been undertaken by John Cockayne of Coldwell Engineering, with replica coachwork by Phil Kneller. It was said that during its time ‘down under’ the Sheffield-Simplex had been driven across Australia from Adelaide to Sydney and back (a round trip of around 1,700 miles) and during WW2 had been used to deliver bricks to building sites. Before his family parted with the car, Lord Riverdale successfully completed a trip from Land’s End to John o’Groats in it using only top gear. The current vendor has owned ‘548’ since 2002, and has undertaken numerous improvements to the car’s mechanical workings to make it more reliable and easier to use. While in the present ownership, the Sheffield-Simplex has been used actively on many VCC events, five Gordon Bennett Rallies in Ireland, and two Ardennes Rallies, being driven there and back from the vendor’s home in Pontefract.

 photo Picture 414_zpsg5dhlmum.jpg  photo Picture 413_zpsbkvocvqi.jpg  photo Picture 412_zpsjhlict7g.jpg

This 1913 Vauxhall 30/98 4.5 litre as built during 1990-1993 as a re-creation of one of 12 pre-WWI Vauxhall 30-98s, its body being modelled on that of the 30-98 raced at Brooklands by Wing Commander Mordecai. The Vauxhall 30-98 is considered by many knowledgeable enthusiasts to be the finest British sporting car of the Vintage period. Its adherents will maintain that while Bentley generated greater publicity – thanks largely to their victories at Le Mans – the Vauxhall company (which raced at both Grand Prix and Tourist Trophy level before the Great War) had produced a car that could run rings around 3-Litre Bentleys on cross-country journeys. The ‘big engine/lightweight car’ formula has been repeated to good effect many times throughout the history of the sporting motor car, and Vauxhall’s famous 30-98 was one of its earliest successful applications. As has so often been the case, the spur behind this particular combination was the desire for competition success; the first 30-98 being constructed at the behest of car dealer and motor sport competitor, Joseph Higginson, in 1913. Higginson’s first objective was victory in the Shelsley Walsh hill climb in June of that year, and the Laurence Pomeroy-designed 30-98 duly obliged, setting a hill record in the process which was to stand for 15 years. Laurence Pomeroy’s tenure as Vauxhall’s Chief Engineer saw the Luton-based concern produce some of the truly outstanding designs of the Edwardian period, commencing with the 20hp Prince Henry in 1910. A larger version of the Prince Henry’s four-cylinder side-valve engine was developed for its successor, the D-type, which, with some 70bhp on tap, was good for 70mph-plus when not overburdened by formal coachwork. Pomeroy’s 30-98 was powered by a 4.5-litre, four-cylinder, side-valve engine – in effect a stretched version of the Prince Henry/D-type’s – mounted in a conventional but lightweight chassis; suspension being by beam axle at the front and live axle at the rear, with semi-elliptic springs all round. Power was transmitted via a multi-plate clutch to a robust four-speed gearbox, and thence via a short prop-shaft to the straight-cut bevel rear axle. The braking system consisted of a foot-operated transmission brake and a handbrake operating on the two rear drums, the front wheels being un-braked. At first glance this unremarkable specification seems an unlikely one for a performance car – even an ‘Edwardian’ example – but the 30-98’s 90bhp-plus power output, combined with a weight of only 24cwt (with the factory-built, four-seater ‘Velox’ tourer coachwork) gave it a formidable power-to-weight ratio for the time. A fully road-equipped 30-98 was capable of around 85mph, and when stripped for racing, the company guaranteed a top-speed in excess of 100mph for the later overhead-valve models, a capability demonstrated at Brooklands on numerous occasions. Only a handful of cars was sold before the outbreak of WWI interrupted production, and when manufacture resumed in 1919, the model was given the designation ‘E-type’ – its Prince Henry predecessor having been the ‘C’ and the 25hp Tourer the ‘D’. Manufacture of the E-type ceased in September 1922 after 287 cars had been constructed, there then being a slight hiatus in production before its successor, the overhead-valve ‘OE’, commenced delivery to customers in early 1923. Despite a reduction in capacity to 4.2 litres, the power of the OHV motor went up to 110bhp-plus, although this increase made little difference to the car’s performance. Prior to designing the Prince Henry, Pomeroy had drawn up a new 20hp 3.0-litre model: the A-type, which was produced from around 1909 to 1914. Completed in 1993, ‘DK 1045’ uses an A-type chassis and running gear, while the D-type engine has been enlarged to 4.5-litres, just like Vauxhall did to create the 30-98. Previously owned by Vauxhall expert Julian Ghosh, this car is listed in the Vauxhall 30-98 Register in the section devoted to ‘Other Prince Henry and Sporting Vauxhalls’. Built by the enthusiast vendor – a professional engineer – the Vauxhall is a delight to drive having been setup correctly over many years of active use. Sharing a garage with two other 30-98 Vauxhalls this car is offered from a private collection due to a lack of use in recent years. Winner of the VSCC’s Edwardian Trophy in 1996, ‘DK 1045’ is a formidable trials car as well as a highly competitive sprint and hill climb weapon, its best times for Prescott, Shelsley Walsh, and Curborough being 55, 52, and 50 seconds respectively.

 photo Picture 415_zps0gdpocfu.jpg

There was a second Vauxhall here, a 1926 14/40 Princeton Tourer. Prior to 1925, when Vauxhall was taken over by General Motors, the company was renowned for producing handsome, finely engineered cars that put it on a par with Bentley or Sunbeam. Laurence Pomeroy’s tenure as Chief Engineer saw the firm, which had relocated from London to Luton, produce some of the truly outstanding designs of the Edwardian period, commencing with the 20hp Prince Henry in 1910. A larger (4.0-litre) version of the Prince Henry’s four-cylinder sidevalve engine was developed for its successor, the D-Type, which is perhaps best remembered for its role as a WWI military staff car. With the return of peacetime production at the end of The Great War, the D-Type’s 30-98 successor proved itself to be one of the greatest of all fast tourers, and in 1922 Vauxhall matched its great rival – the Sunbeam company of Wolverhampton – in offering an alternative, smaller and less expensive car: the 2.3-litre 14-40hp M-Type. The latter featured a four-cylinder detachable-head engine, three-speed in-unit gearbox (instead of the four-speed separately mounted type of the larger models), single-plate clutch, and rear brakes only. It sold for around £750 against some £1,600 for the 30-98. From 1925, the 14-40 adopted a four-speed gearbox and for 1926 gained front-wheel brakes. In 1927 – its last year of production – this attractive mid-range model was also offered with a Wilson-type pre-selector gearbox. This exceptional 14-40hp Princeton tourer was purchased new by William Pearson, a marine engineer of Northwich, Cheshire, who served in the Merchant Navy during the transition period of sail to steam propulsion. Upon retirement he purchased ‘TU 4404’, collecting it directly from Vauxhall’s Luton factory and driving home to Northwich in the company or a local agent. Various relatives and friends ran Lagonda, Sunbeam, and Bentley cars, and William had great satisfaction in demonstrating the 14-40’s competitive performance against them. After completion of his new cottage, ‘Sorbie’ in Waste Lane, Oakmere by Delamere, William relocated the car in 1936 to an adjoining single garage. He married a schoolteacher, Doris Johnson, in 1943, and her Singer Sports shared the driveway and often the garage. During WW2, the Vauxhall was laid up while petrol was rationed. Petrol was not immediately available after 1945 but William was able to obtain lighter fluid in sufficient quantity to re-commission the 14-40 and run it until regular petrol supply resumed! Back in service again, the Vauxhall was used for touring North Wales and the Lake District, and for model yacht sailing at Llandudno, New Brighton, and other venues, the rear compartment being used for carrying the craft. Doris proved equally competent at sailing and at handling the Vauxhall, much to William’s great satisfaction. She became the main driver for weekend outings, while a Volkswagen ‘Beetle’ was acquired to replace the Singer. Following William’s death in 1963 at the age of 78, Doris continued to run and maintain the 14-40 in accordance with his wishes. During 1976, Keith Lidgerwood took over maintenance of the car, enabling Doris to continue its enjoyment. Over a period of many years, Doris hosted a widely acclaimed picnic at the VSCC’s Oulton Park meeting, always parking the Vauxhall close to a particular oak tree so that friends would have no trouble finding it. Regular attendance at Shelsley Walsh, Prescott and Loton Park events – with picnic standards maintained – continued into the early 1990s. In the late 1980s, the Vauxhall featured in two magazines: Cheshire Life (July 1988 edition) and Old Car (July 1989), copies of which are on file. The latter article states that the Vauxhall had been repainted once and that the leather hood covering had been replaced with lighter canvas; other than that, the car was said to be almost completely original, serving as a guide for other owners and restorers of the model. Doris eventually surrendered her driving license but continued to enjoy travelling around the Cheshire lanes in ‘TU 4404’ as passenger/navigator. Re-commissioning the car after winter storage was always a major enjoyment, which she monitored appreciatively. Reaching 100 years of age in 2008, Doris was then the oldest member of the Vauxhall Owners Club; she died soon afterwards and the car was acquired in 2010 by the current vendor, only its second owner from new. Since then the engine has been rebuilt by Brewster Mudie Limited of Bromsgrove (less than 500 miles ago) – the original dural conrods, a spare cylinder block and head are included in the sale – while the electrics have been professionally rewired within the last five years. There are many other cars in the vendor’s private collection and ‘TU 4404’ has seen relatively little use since acquisition, hence the decision to sell.

 photo Picture 416_zpsrkgmqqzr.jpg

This is a 1931 Lagonda 2 litre low chassis. Having established its reputation by winning the Moscow – St Petersburg Reliability Trial of 1910 with a 30hp six, Lagonda concentrated mainly on the production of light cars before reverting to sporting and luxury models in the mid-1920s with the introduction of the 14/60. The latter abandoned the firm’s traditional in-unit gearbox in favour of a midships-mounted transmission, but of greater technical interest was the engine. Designed by Arthur Davidson, the 2-litre ‘four’ featured twin camshafts, mounted high in the block, operating inclined valves in hemispherical combustion chambers. Power output of this advanced design was a highly respectable 60bhp. For the 1929 season, a ‘low chassis’ Speed Model was introduced, featuring revisions to the frame’s front end and a higher-compression engine fitted with twin carburettors. The Speed Model had resulted from the factory’s Le Mans effort of 1928, when the 2-Litre driven by Andre D’Erlanger and Douglas Hawkes had finished 11th overall in the 24-Hour endurance classic. A classic example of racing improving the breed, the ‘low chassis’ 2-Litre possessed markedly superior handling characteristics courtesy of its lower centre of gravity. For all its virtues, Davidson’s engine was limited by its tortuous induction tracts, and in 1930 a supercharged version was introduced to overcome this deficiency. The ‘blower’ was mounted vertically in front of the engine, which was fitted with a stronger crankshaft, while a 3-Litre rear axle beefed up the transmission. A Powerplus supercharged was specified at first, but most ‘blown’ 2-Litres came with a Cozette. Thus equipped, a ‘low chassis’ 2-Litre was capable of up to 90mph. For the 1931 season a deeper radiator was fitted for better cooling at sustained high speeds but the most obvious change was the up-to-the-minute styling of the T3 coachwork. The spare wheel was moved to the off-side front wing while the rear of the car was remodelled to incorporate a luggage boot with drop-down lid, thus furthering enhancing the 2-Litre’s qualities as a superior sporting tourer. This supercharged low-chassis tourer was supplied new by Dobson Bridge Garage, close to the Lagonda works in Staines. The car was first registered on 23rd September 1931, although Dobson stated it was September 1930. The chassis number ‘OH 9764’ is a 1930 one, and it is suspected that the car was Dobson’s demonstrator, which he would not register until he sold it a year later. Dobson Bridge Garage was on the Middlesex side of Staines Bridge, hence the Middlesex registration number. The engine shows a casting date of 24/3/1930 and the bulkhead a casting date of 17/6/1930. The Lagonda’s first owner was Captain G Barlow of Kingsley Green, Surrey, who traded it in at Dobson’s on 4th July 1934 for £47. Dobson spent £3 1s 3d on repairs and sold it for £250 on 10th July ’34 to R W B Davies from R Davies & Co of 4 New Court, Lincoln. There is then the usual wartime gap before the car appears in the Lagonda club records with entry dated 3rd January 1949, the owner being recorded as W T Walker of Great Malvern, Worcestershire. It was next owned, in 1960, by Dr W Bardsley, also of Great Malvern, remaining in his possession until July 2005 when it was rediscovered at his Beacon Lodge home and bought by the previous owner. The Lagonda was then completely rebuilt over the next eight years.

 photo Picture 417_zps1v3dou4s.jpg

Final car on show here was a spectacular 1952 Bentley Continental Type R. Described by The Autocar as, ‘A new stage in the evolution of the post-war Bentley,’ the magnificent Continental sports saloon has been synonymous with effortless high speed cruising in the grand manner since its introduction in 1952 on the R-Type chassis. Of all-welded construction, the latter enabled the incorporation of a much-needed improvement to Rolls-Royce’s standard bodywork in the shape of an enlarged boot together with associated changes to rear wings and suspension. The standard R-Type was a lively performer, achieving 106mph in silence and reaching 50mph from standstill in 10 seconds despite a kerb weight approaching two tons. The Continental raised this already superlative combination of high performance and exceptional refinement to hitherto unattained levels. Unlike the ordinary ‘standard steel’ R-Type, the Continental was bodied in the traditional manner and first appeared with what many enthusiasts consider to be the model’s definitive style of coachwork – the lightweight, aluminium, wind tunnel-developed fastback of H J Mulliner. In developing the Continental, Bentley Motors made every effort to keep its weight to the minimum, knowing that this was the most effective way to achieve the maximum possible performance. Rolls-Royce’s six-cylinder, inlet-over-exhaust engine had been enlarged from 4,257cc to 4,556cc in 1951, and as installed in the Continental benefited from an increase in compression ratio – the maximum power output, of course, remained unquoted but has been estimated at around 153bhp. As the Continental matured, there was – inevitably – an increase in weight, which was offset by the introduction of a 4,887cc engine on the ‘D’ and ‘E’ series cars, commencing in May 1954. The Continental’s performance figures would have been considered excellent for an out-and-out sports car but for a full four/five seater saloon they were exceptional: a top speed of 120mph, 100mph achievable in third gear, 50mph reached in a little over 9 seconds and effortless cruising at the ‘ton’. Built for export only at first, the Continental was, once delivery charges and local taxes had been paid, almost certainly the most expensive car in the world as well as the fastest capable of carrying four adults and their luggage. As Autocar observed: ‘The Bentley is a modern magic carpet which annihilates great distances and delivers the occupants well-nigh as fresh as when they started.’ When production ceased in 1955 a total of 208 cars had been completed, the left-hand/right-hand drive split being 43/165. The example offered here – right-hand drive chassis number ‘BC10A’ – is the tenth R-Type Continental built (the ninth with right-hand drive) and represents the model in its original conception, without the chromed waist moulding adopted later. This car is pictured in Martin Bennett’s book on the marque, ‘Bentley Continental, Corniche and Azure’ carrying its State of Victoria registration, ‘JJC 777’ (page 37). ‘BC10A’ was first owned by Georges Filipinetti, founder of the famous Swiss racing team, Scuderia Filipinetti, and was delivered to him via Garage de l’Athénée in Geneva, Switzerland. The Continental was shipped to Zeebrugge via the Norfolk ferry on 14th December 1952, having been displayed on H J Mulliner’s stand at that year’s London Motor Show. Accompanying build details show that the Continental was originally finished in Circassian Blue with red leather interior trim, while special features included a speedometer in kilometres, high-frequency horns, and Wilmot Breeden bumpers (changed from the Mulliner type). ‘BC10A’ also has the manual gearbox and right-hand gear lever, the latter considered to be far superior to both the steering column and central gear changes, which have the disadvantage of additional linkages resulting in less precise shifting. A published road test of the right-hand gear change on an R-Type Continental noted that the expression, ‘like a hot knife through butter!’ was especially apt. Georges Filipinetti did not keep the Continental for very long, and in February 1954 the car passed into the ownership of one Jacques Bordier in Switzerland, the selling agent again being Garage de l’Athénée. On 1st January 1960, the Bentley was acquired by one R Jelbart in Australia, having been re-sprayed silver and had a sunroof added. ‘BC10A’ has remained in Australia ever since, its subsequent owner’s being M Ricketson (from October 1965), T Parkinson (from November 1971) and the lady vendor’s late husband, who bought the car in November 1975 from a fellow lecturer at the Royal Melbourne Institute of Technology. In 1966, during the Ricketson ownership, Baker & Tait had restored the car, removing the sunroof and fitting the current tail lamps. At the time of acquisition, the late owner was setting up his own architectural practice while his wife was at home looking after three young children; it was a big financial commitment for them, but his heart was set on it. He joined the Victoria Branch of the Rolls-Royce Owners Club of Australia, quickly making contact with other enthusiasts in order to learn how to maintain this beautiful and iconic car. The family was living in Melbourne at the time and was able to attend several club events. The old club newsletters were recycled recently, but a few remain in the history file together with the draft of an article for the R-ROCA’s journal, Praeclarum. Its owner loved driving the Bentley around Victoria’s countryside while managing two architectural practices in country centres. When the family moved to Dunkeld in the Western District, he continued to drive the car to his various jobs and back to Melbourne for his work with the Anglican Church. He kept a logbook only when required by law to do so for taxation purposes (July 1986-1992, with the occasional later entry until 2014) and then as a Vintage Car Club registration (2015-2016). In the 1990s, the late owner closed his architectural practice to become a full time farmer and ‘wool politician’, championing the rights of the individual sheep farmer. He became a member of the Australian Wool Council, a job that demanded much travel and gave him further opportunities to drive the Bentley. He was delighted that all four daughters used the Continental for their weddings, as did a few other young friends. The car also went on family holidays to Canberra, New South Wales, Tasmania, and South Australia, while in more recent years it has undertaken a few journeys to Bundella in northern NSW. As he grew older and had more spare time, the late owner loved to talk to anyone that showed an interest in his beautiful Continental. In 2008 he joined the South Australian Bentley Drivers’ Club and enjoyed a number of very pleasant and enjoyable outings with them. He was always tinkering with the Bentley. There were a couple of major dramas: one in 1987 when the windscreen cracked, which necessitated obtaining a new one from the UK. The owner supervised/helped install the new screen, and the cracked original was kept as a pattern in case of another failure, together with two pages of written notes on how to do the job (his files tell the story). Then in 1984, while speeding home from Melbourne one night, a piston holed. This required a major engine rebuild, which the late owner did himself with assistance from two engineering workshops in Hamilton and the now much consulted Service Handbook (in file). All this and more is described in the aforementioned Praeclarum article (No.4-02, August 2002, pp. 3,946-48) and there are also typed notes in the history file: ‘Restorations To Date (1.12.88)’. Later records are sparse. Two years ago, because of the increasingly dense traffic in cities and the increasing age of its owner, the Bentley was semi-retired on a Vintage Registration, though it has continued to be driven regularly enjoying on country runs in South Western Victoria.

 photo Picture 418_zpsagf6v40f.jpg  photo Picture 419_zpsajmfwsds.jpg

IN THE “MODERNS” CAR PARK

Of course, the majority of attendees do not come in a pre-war car, but something more modern. Those who are Bugatti Owners Club members get the chance, on a first come, first serve basis to park in apart of the Orchard on the Saturday, but on the Sunday when the whole area is reserved for pre-war cars, everyone else is asked to park in the adjoining field which serves as the public car park. Needless to say, nestled among rows of modern cars, the sort that you see on the roads everyday, were a considerable number of more interesting machines, a mix of classics and rarities. It was well worth a stroll up and down the field at least once a day. Interestingly, when I compared the cars in this section of the report with those I photographed for inclusion in the 2016 report, there is a surprising correlation, suggesting that a lot of the attendees are people who come to this event year after year.

 photo Picture 151_zpsqaucnqgq.jpg

ABARTH

On the Saturday, I came across just one Abarth, a 595 Turismo and when I found it, it was not a surprise, as this car belongs to enthusiast Alec McFie, and I had already bumped into elsewhere on site.

 photo Picture 130_zpshvqv3gkw.jpg

On the Sunday there were two further Abarths in the car park, a Podium Blue and an earlier 2010 car that was almost certainly registered around the same time as I bought my first car, and from the same dealer, Thames of Slough.

 photo Picture 480_zpstxa8ojqm.jpg  photo Picture 481_zpsihmp61bh.jpg  photo Picture 612_zpsqtu855vc.jpg  photo Picture 613_zps4nxkkfev.jpg

AC

Based on the open two-seat AC Ace, the Aceca was a hand-built grand tourer in the British tradition, with ash wood and steel tubing used in their construction. One notable feature was the hatchback at the rear, making the Aceca only the second car, after the 1953 Aston Martin DB2/4, to incorporate this element. It was produced from 1954 until 1963. The car originally had an AC engine but the similar Bristol-engined Aceca-Bristol was also available alongside the original from 1956 to 1963 when production of the engine ceased. A few cars were built from 1961 to 1963 with a 2553 cc tuned Ford Zephyr engine and sold as the Aceca 2.6. The main difference between the Aceca and Aceca-Bristol was the engine. Both used a straight-6 unit, but the Aceca shared its 90 hp 1,991 cc overhead camshaft AC engine with the lighter AC Ace, while the Aceca-Bristol used a 125 hp “D-Type” 1971 cc unit sourced from Bristol Cars. The Aceca-Bristol was also available with a milder “B-Type” Bristol engine of 105 hp. In the UK, the basic car cost £1722. The front-end styling of the Ace and Aceca reportedly traces back to a design done by Pinin Farina for AC in the late 1940s. An alternative theory is that it was inspired by the Ferrari Barchetta of the day. The car is rather light owing to a tubular frame, aluminium engine block and aluminium body panels. Large 16″ spoked road wheels and near 50/50 weight distribution allowed exceptional handling on substandard road surfaces. Later Acecas feature front-wheel disc brakes (added in 1957), while all share transverse leaf spring IRS, articulated rear half-axles, worm-gear steering, an optional overdrive on 2nd, 3rd and 4th gears, curved windscreen, and leather-covered bucket seats. The suspension is independent at the front and rear using transverse leaf springs. 151 Acecas, 169 Aceca-Bristols and 8 Ford-engined models had been built when production halted in 1963.

 photo Picture 389_zpsxnp1jcm2.jpg

ALFA ROMEO

Oldest Alfa Romeo here was this 1900C. The Alfa Romeo 1900 was designed by Orazio Satta and was an important development for Alfa Romeo as the marque’s first car built entirely on a production line and first production car without a separate chassis. It was also the first Alfa Romeo offered with left-hand drive. The car was introduced at the 1950 Paris Motor Show. The 1900 was offered in two-door or four-door models, with a new 1,884 cc 90 bhp 4-cylinder twin cam engine. It was spacious and simple, yet quick and sporty. The slogan Alfa used when selling it was “The family car that wins races”, not-so-subtly alluding to the car’s success in the Targa Florio, Stella Alpina, and other competitions. In 1951, the short wheelbase 1900C (c for corto (Italian for short)) version was introduced. It had a wheelbase of 2,500 mm (98.4 in). In the same year the 1900TI with a more powerful 100 bhp engine was introduced, it had bigger valves, a higher compression ratio and it was equipped with a double carburettor. Two years later the 1900 Super and 1900 TI Super (also 1900 Super Sprint) with 1975 cc engine were introduced. The TI Super had two double carburettors and 115 bhp. Transmission was a 4-speed manual on basic versions and 5-speed manual in Super Sprint version, the brakes were drum brakes. The 1900 had independent front suspension (double wishbones, coil springs and hydraulic telescopic shock absorbers) and live rear axle. The chassis was designed specifically to allow coachbuilders to rebody it, the most notable of which was the Zagato designed, 1900 Super Sprint coupé, with an improved engine and custom body design. The Alfa Romeo 1900M AR51 (or “Matta”) is a four-wheel drive off-road vehicle based on the 1900-series.Iginio Alessio, then general manager of Alfa Romeo, was concerned for the viability of the independent Italian Coachbuilding industry–the advent of the unibody chassis design was threatening to put the carrozzerie out of business. Alessio was also a personal friend of Gaetano Ponzoni co-owner of Carrozzeria Touring Superleggera, thus from 1951-1958 Alfa Romeo built five different variations of the 1900 unibody chassis specifically for independent coachbuilders. Alfa Romeo gave official contracts to Touring to build the sporty 1900 Sprint coupé and to Pinin Farina to build an elegant four seat Cabriolet and Coupé. The availability of a suitable chassis led to many other coachbuilders to build versions of the 1900. Carrozzeria Zagato built a small series of coupés with the unofficial designation of 1900 SSZ, designed for racing with an aerodynamic lightweight aluminium body and Zagato’s trademark double bubble roof. One-off specials where numerous from the famous Bertone BAT series of aerodynamic studies, to an infamous sci-fi like Astral spider designed by Carrozzeria Boneschi for Rafael Trujillo the dictator of the Dominican Republic. There was a Barchetta or “Boat Car” made by Ghia-Aigle in Lugano Switzerland designed by Giovanni Michelotti at the request of a wealthy Italian who had two passions: the ‘Riva’ boats and a woman, his mistress, the car has no doors or windscreen wipers. Production at the company’s Milan plant continued until 1959: a total of 21,304 were built, including 17,390 of the saloons.

 photo Picture 476_zpswuk7rzdg.jpg  photo Picture 475_zpsa2viyd5i.jpg  photo Picture 474_zpsh8chdsx5.jpg  photo Picture 477_zpsmlgllcoy.jpg  photo Picture 611_zpsphxcdbak.jpg photo Picture 610_zpsxmy0l9ue.jpg

Alfa followed up the 1950 launch of the 1900 Berlina with a smaller model, the Giulietta. Known as the Type 750 and later 101 Series, the Giulietta evolved into a family of models. The first to be introduced was the Giulietta Sprint 2+2 coupé at the 1954 Turin Motor Show. Designed by Franco Scaglione at Bertone, it was produced at the coachbuilder’s Grugliasco plant near Turin. A year later, at the Turin Motor Show in April 1955, the Sprint was joined by the 4-door saloon Berlina. In mid 1955, the open two-seat Giulietta Spider, featuring convertible bodywork by Pininfarina, and it was a couple of examples of this achingly pretty car that were to be seen here. Alfa replaced the Giulietta with the Giulia in 1962, but as the Coupe and Spider were not ready, the Giulietta based models were kept in production, and renamed as Giulia. They gained a larger 1600cc engine, and this meant that the bonnet need to be raised a little to accommodate the new unit, so the easy recognition beyond Giulietta and Giulia Spiders is whether there is a flat bonnet or one with a slight hump and a vent in it.

 photo Picture 463_zps321xfa68.jpg

Far more commonly seen wherever classic Alfa models are gathered are the 105 Series cars and unsurprisingly, there were plenty of examples of this very elegant design here. It dates from 1963, and evolved over a 14 year production life, with plenty of different models, though the basic design changed little. The first car was called the Alfa Romeo Giulia Sprint GT, and was revealed at a press event held at the then newly opened Arese plant on 9 September 1963, and displayed later the same month at the Frankfurt Motor Show. In its original form the Bertone body is known as scalino (step) or “step front”, because of the leading edge of the engine compartment lid which sat 1/4 an inch above the nose of the car. The Giulia Sprint GT can be distinguished from the later models by a number of features including: Exterior badging: Alfa Romeo logo on the front grille, a chrome script reading “Giulia Sprint GT” on the boot lid, and rectangular “Disegno di Bertone” badges aft of the front wheel arches; flat, chrome grille in plain, wide rectangular mesh without additional chrome bars; single-piece chrome bumpers; no overriders. Inside the cabin the padded vinyl dashboard was characterised by a concave horizontal fascia, finished in grey anti-glare crackle-effect paint. Four round instruments were inset in the fascia in front of the driver. The steering wheel was non-dished, with three aluminium spokes, a thin bakelite rim and a centre horn button. Vinyl-covered seats with cloth centres and a fully carpeted floor were standard, while leather upholstery was an extra-cost option. After initially marketing it as a four-seater, Alfa Romeo soon changed its definition of the car to a more realistic 2+2. The Giulia Sprint GT was fitted with the 1,570 cc version of Alfa Romeo’s all-aluminium twin cam inline four (78 mm bore × 82 mm stroke), which had first debuted on the 1962 Giulia Berlina. Breathing through two twin-choke Weber 40 DCOE 4 carburettors, on the Sprint GT this engine produced 105 hp at 6,000 rpm. Like all subsequent models, the Sprint GT was equipped with an all-synchromesh 5-speed manual transmission. The braking system comprised four Dunlop disc brakes and a vacuum servo. The rear brakes featured an unusual arrangement with the slave cylinders mounted on the axle tubes, operating the calipers by a system of levers and cranks. According to Alfa Romeo the car could reach a top speed of “over 180 km/h (112 mph)”. In total 21,902 Giulia Sprint GT were produced from 1963 to 1965, when the model was superseded by the Giulia Sprint GT Veloce. Of these 2,274 were right hand drive: 1,354 cars fully finished in Arese, and 920 shipped in complete knock-down kit form for foreign assembly. For 1966, the Giulia Sprint GT was replaced by the Alfa Romeo Giulia Sprint GT Veloce, which was very similar but featuring a number of improvements: a revised engine—slightly more powerful and with more torque—better interior fittings and changes to the exterior trim. Alongside the brand new 1750 Spider Veloce which shared its updated engine the Sprint GT Veloce was introduced at the 36th Geneva Motor Show in March 1966, and then tested by the international specialist press in Gardone on the Garda Lake. Production had began in 1965 and ended in 1968. The Giulia Sprint GT Veloce can be most easily distinguished from other models by the following features: badging as per Giulia Sprint GT, with the addition of round enamel badges on the C-pillar—a green Quadrifoglio (four-leaf clover) on an ivory background—and a chrome “Veloce” script on the tail panel; black mesh grille with three horizontal chrome bars; the grille heart has 7 bars instead of 6; stainless steel bumpers, as opposed to the chromed mild steel bumpers on the Giulia Sprint GT. The bumpers are the same shape, but are made in two pieces (front) and three pieces (rear) with small covers hiding the joining rivets. Inside the main changes from the Giulia Sprint GT were imitation wood dashboard fascia instead of the previous anti-glare grey finish, front seats revised to a mild “bucket” design, and a dished three aluminium spoke steering wheel, with a black rim and horn buttons through the spokes. The Veloce’s type 00536 engine, identical to the Spider 1600 Duetto’s, featured modifications compared to the Giulia Sprint GT’s type 00502—such as larger diameter exhaust valves. As a result it produced 108 hp at 6,000 rpm, an increase of 3 hp over the previous model, and significantly more torque. The top speed now exceeded 185 km/h (115 mph). Early Giulia Sprint GT Veloces featured the same Dunlop disc brake system as the Giulia Sprint GT, while later cars substituted ATE disc brakes as pioneered on the GT 1300 Junior in 1966. The ATE brakes featured an handbrake system entirely separate from the pedal brakes, using drum brakes incorporated in the rear disc castings. Though the Sprint GT Veloce’s replacement—the 1750 GT Veloce—was introduced in 1967, production continued throughout the year and thirty final cars were completed in 1968. By then total Giulia Sprint GT Veloce production amounted to 14,240 examples. 1,407 of these were right hand drive cars, and 332 right hand drive complete knock-down kits. The 1750 GT Veloce (also known as 1750 GTV) appeared in 1967 along with the 1750 Berlina sedan and 1750 Spider. The same type of engine was used to power all three versions; this rationalisation was a first for Alfa Romeo. The 1750 GTV replaced the Giulia Sprint GT Veloce and introduced many updates and modifications. Most significantly, the engine capacity was increased to 1779 cc displacement. Peak power from the engine was increased to 120 hp at 5500 rpm. The stroke was lengthened from 82 to 88.5 mm over the 1600 engine, and a reduced rev limit from 7000 rpm to 6000 rpm. Maximum torque was increased to 137 lb·ft at 3000 rpm. A higher ratio final drive was fitted (10/41 instead of 9/41) but the same gearbox ratios were retained. The result was that, on paper, the car had only slightly improved performance compared to the Giulia Sprint GT Veloce, but on the road it was much more flexible to drive and it was easier to maintain higher average speeds for fast touring. For the United States market, the 1779 cc engine was fitted with a fuel injection system made by Alfa Romeo subsidiary SPICA, to meet emission control laws that were coming into effect at the time. Fuel injection was also featured on Canadian market cars after 1971. Carburettors were retained for other markets. The chassis was also significantly modified. Tyre size went to 165/14 from 155/15 and wheel size to 5 1/2J x 14 instead of 5J x 15, giving a wider section and slightly smaller rolling diameter. The suspension geometry was also revised, and an anti-roll bar was fitted to the rear suspension. ATE disc brakes were fitted from the outset, but with bigger front discs and calipers than the ones fitted to GT 1300 Juniors and late Giulia Sprint GT Veloces. The changes resulted in significant improvements to the handling and braking, which once again made it easier for the driver to maintain high average speeds for fast touring. The 1750 GTV also departed significantly from the earlier cars externally. New nose styling eliminated the “stepped” bonnet of the Giulia Sprint GT, GTC, GTA and early GT 1300 Juniors and incorporated four headlamps. For the 1971 model year, United States market 1750 GTV’s also featured larger rear light clusters (there were no 1970 model year Alfas on the US market). Besides the chrome “1750” badge on the bootlid, there was also a round Alfa Romeo badge. Similar Quadrofoglio badges to those on the Giulia Sprint GT Veloce were fitted on C pillars, but the Quadrofoglio was coloured gold instead of green. The car also adopted the higher rear wheelarches first seen on the GT 1300 Junior. The interior was also much modified over that of earlier cars. There was a new dashboard with large speedometer and tachometer instruments in twin binnacles closer to the driver’s line of sight. The instruments were mounted at a more conventional angle, avoiding the reflections caused by the upward angled flat dash of earlier cars. Conversely, auxiliary instruments were moved to angled bezels in the centre console, further from the driver’s line of sight than before. The new seats introduced adjustable headrests which merged with the top of the seat when fully down. The window winder levers, the door release levers and the quarterlight vent knobs were also restyled. The remote release for the boot lid, located on the inside of the door opening on the B-post just under the door lock striker, was moved from the right hand side of the car to the left hand side. The location of this item was always independent of whether the car was left hand drive or right hand drive. Early (Series 1) 1750 GTV’s featured the same bumpers as the Giulia Sprint GT Veloce, with the front bumper modified to mount the indicator / sidelight units on the top of its corners, or under the bumper on US market cars. The Series 2 1750 GTV of 1970 introduced other mechanical changes, including a dual circuit braking system (split front and rear, with separate servos). The brake and clutch pedals on left hand drive cars were also of an improved pendant design, instead of the earlier floor-hinged type. On right hand drive cars the floor-hinged pedals were retained, as there was no space for the pedal box behind the carburettors. Externally, the series 2 1750 GTV is identified by new, slimmer bumpers with front and rear overriders. The combined front indicator and sidelight units were now mounted to the front panel instead of the front bumper, except again on the 1971-72 US/Canadian market cars. The interior was slightly modified, with the seats retaining the same basic outline but following a simpler design. 44,269 1750 GTVs were made before their replacement came along. That car was the 2000GTV. Introduced in 1971, together with the 2000 Berlina sedan and 2000 Spider, the 2 litre cars were replacements for the 1750 range. The engine displacement was increased to 1962 cc. Oil and radiator capacities remained unchanged. The North American market cars had fuel injection, but everyone else retained carburettors. Officially, both versions generated the same power, 130 hp at 5500 rpm. The interior trim was changed, with the most notable differences being the introduction of a separate instrument cluster, instead of the gauges installed in the dash panel in earlier cars. Externally the 2000 GTV is most easily distinguished by its grille with horizontal chrome bars, featuring protruding blocks forming the familiar Alfa heart in outline, smaller hubcaps with exposed wheel nuts, optional aluminium alloy wheels of the same size as the standard 5. 1/2J × 14 steel items, styled to the “turbina” design first seen on the alloy wheels of the Alfa Romeo Montreal, and the larger rear light clusters first fitted to United States market 1750 GTV’s were standard for all markets. From 1974 on, the 105 Series coupé models were rationalised and these external features became common to post-1974 GT 1300 Junior and GT 1600 Junior models, with only few distinguishing features marking the difference between models. 37,459 2000 GTVs were made before production ended and these days they are very sought after with prices having sky-rocketed in recent years. To be seen here was a 2000 GTV.

 photo Picture 404_zpsvvkuqrk5.jpg  photo Picture 166_zpsjijuradk.jpg

Based on the Coupe, but with a model designation of its own, was the GTC, a stunningly pretty open topped model which was only produced for a year in 1965, in very limited numbers making them rare today with a total production of just 1000 cars in right and left hand drive versions. Only 99 were made for the British and South African market. It was based on the Giulia Sprint GT, with the cabriolet modification carried out by Touring of Milan. Besides the cabriolet top, a distinguishing feature is the dashboard finished in black instead of grey crackle. The model was badged with a script reading “Giulia Sprint GTC” on the bootlid. To restore some of the bodyshell rigidity lost by removing the fixed roof and pillars, Carrozzeria Touring added reinforcement to several areas of the bodyshell. Through the production life of the model, several modifications to the reinforcement applied were made by Touring, apparently in an effort to improve the stiffening achieved. Carrozzeria Touring was in financial trouble when the Giulia Spring GTC went into production. The company went out of business shortly after production of this model ended.

 photo Picture 519_zpsb6lotyk1.jpg  photo Picture 518_zpswbbtrcb4.jpg  photo Picture 517_zpse8gujswr.jpg

Alfa replaced the Giulia-based Spider model with an all-new design which finally made its debut in 1966 together with the Giulia Sprint GT Veloce at an event organised in Gardone Riviera. With its boat tailed styling, it quickly found favour, even before taking a starring role in the film “The Graduate”. The original 1600cc engine was replaced by a more powerful 1750cc unit at the same time as the change was made to the rest of the range, and the car continued like this until 1970, when the first significant change to the exterior styling was introduced on the 1750 Spider Veloce, with the original’s distinctive elongated round tail changed to a more conventional cut-off tail, called the “Kamm tail”, as well as improving the luggage space. Numerous other small changes took place both inside and out, such as a slightly different grille, new doorhandles, a more raked windscreen, top-hinged pedals and improved interior trim. 1971 saw the Spider Veloce get a new, larger powerplant—a 1962 cc, 132 hp unit—and consequently the name was changed from 1750 Spider Veloce to 2000 Spider Veloce. The 1600 Spider restarted production a year later as the Spider 1600 Junior, and was visually identical to the 1300. 1974 saw the introduction of the rare, factory request, Spider-Targa. Based upon the Spider, it featured a Porsche style solid rear window and lift out roof panels, all made out of black GRP type material. Less than 2,000 models of such type were ever made and was the only part solid roof Spider until the introduction of the factory crafted hard top. The 1300 and 2000 cars were modified in 1974 and 1975 respectively to include two small seats behind the front seats, becoming a “two plus two” four seater. The 1300 model was discontinued in 1977. Also, between 1974 and 1976, the early-style stainless-steel bumpers were discontinued and replaced with black, rubber-clad units to meet increasingly stringent North American crash requirements. 4,557 examples of the 1300 Junior were made and 4,848 of the 1600 Junior as well as 16,320 2000 Spider Veloces and 22,059 of 2000 Spider Veloce US version. There were also 4,027 1750 Spider Veloces produced. Examples of the Series 1 and Series 2 cars were to be seen here.

 photo Picture 405_zpsu8qnqqzg.jpg  photo Picture 464_zpsyzzaq2cd.jpg  photo Picture 465_zps7rfav8js.jpg

It was more than 10 years after the Montreal had ceased production before Alfa offered another high-end and costly Coupe model, and the result, seen for the first time in 1989, could hardly have been more different than its forebear. That car had been praised for its looks, whereas this one, the SZ, and cruelly nicknamed “Il Mostro”, was almost wilfully, well, “different”. First seen at the 1989 Geneva Show, the car was also first shown simply as a concept, called the ES-30, for Experimental Sports car 3 litre. It was produced by Zagato. Robert Opron of the Fiat design studio was responsible for the initial sketches while Antonio Castellana was largely responsible for the final styling details and interior. Only the ‘Z’ logo of Zagato was kept. The car possessed unusual headlights positioned in a trio on each side – a styling used more subtly on later Alfa Romeos in the 2000s. Mechanically and engine-wise, the car was based on the Alfa 75, production being carried out by Zagato at Terrazzano di Rho near the Alfa factory in Arese. The thermoplastic injection moulded composite body panels were produced by Italian company Carplast and French company Stratime Cappelo Systems. The suspension was taken from the Alfa 75 Group A/IMSA car, and modified by Giorgio Pianta, engineer and team manager of the Lancia and Fiat rally works team. A hydraulic damper system was made by Koni. The SZ was originally equipped with Pirelli P Zero tyres (front 205/55 ZR 16, rear 225/50 ZR 16) and is able to sustain over 1.1 G in cornering, some drivers have measured a cornering force of 1.4 G, which remains an excellent performance figure. Low volume production got underway late in 1989, and over the next three years, 1036 were built, slightly more than planned. With the exception of a black car made for Zagato, all of them were red. Subsequently a convertible version, the RZ (for Roadster Zagato), was produced from 1992 until December 1994. Although almost identical to look at the two cars had completely different body panels save for the front wings and boot. The RZ had a revised bumper and door sills to give better ground clearance and the bonnet no longer featured the aggressive ridges. Three colours were available as standard: black, yellow and red, with black and yellow being the more popular choices. Yellow and red cars got a black leather interior and black cars burgundy. Although the interior layout was almost unchanged from the SZ, the RZ had a painted central console that swept up between the seats to conceal the convertible roof storage area. 350 units were planned but production was halted after 252 units when the Zagato factory producing the cars for Alfa Romeo went in to receivership, a further 32 cars were then completed under the control of the receivers before production finished at 284 units. Of those final three were painted silver with burgundy interior and another pearlescent white.

 photo Picture 135_zps2vpw5acj.jpg  photo Picture 134_zpspgfztsc4.jpg  photo Picture 133_zpsse1xz3bd.jpg

Final Alfa was a 916 Series GTV Cup. The 916 Series cars were conceived to replace two very different models in the Alfa range. First of these was the open topped 105 Series Spider which had been in production since 1966 and by the 1990s was long overdue a replacement. Alfa decided to combine a follow on to the Alfetta GTV, long out of production, with a new Spider model, and first work started in the late 1980s. The task was handed to Pininfarina, and Enrico Fumia’s initial renderings were produced in September 1987, with the first clay models to complete 1:1 scale model made in July 1988. Fumia produced something rather special. Clearly an Italian design, with the Alfa Romeo grille with dual round headlights, recalling the Audi-based Pininfarina Quartz, another design produced by Enrico Fumia back in 1981, the proposal was for a car that was low-slung, wedge-shaped with a low nose and high kicked up tail. The back of the car is “cut-off” with a “Kamm tail” giving improved aerodynamics. The Spider would share these traits with the GTV except that the rear is rounded, and would feature a folding soft-top with five hoop frame, which would completely disappear from sight under a flush fitting cover. An electric folding mechanism would be fitted as an option. Details included a one-piece rear lamp/foglamp/indicator strip across the rear of the body, the minor instruments in the centre console angled towards the driver. The exterior design was finished in July 1988. After Vittorio Ghidella, Fiat’s CEO, accepted the design, Alfa Romeo Centro Stile under Walter de Silva was made responsible for the completion of the detail work and also for the design of the interiors, as Pininfarina’s proposal was not accepted. The Spider and GTV were to be based on the then-current Fiat Group platform, called Tipo Due, in this case a heavily modified version with an all new multilink rear suspension. The front suspension and drivetrain was based on the 1992 Alfa Romeo 155 saloon. Chief engineer at that time was Bruno Cena. Drag coefficient was 0.33 for the GTV and 0.38 for the Spider. Production began in late 1993 with four cars, all 3.0 V6 Spiders, assembled at the Alfa Romeo Arese Plant in Milan. In early 1994 the first GTV was produced, with 2.0 Twin Spark engine. The first premiere was then held at the Paris Motor Show in 1994. The GTV and Spider were officially launched at the Geneva Motor Show in March 1995 and sales began the same year. The cars were well received. At launch, many journalists commented that Alfa had improved overall build quality considerably and that it came very close to equalling its German rivals. I can vouch for that, as I owned an early GTV for eighteen months, and it was a well built and reliable car. In 1997 a new engine, a 24-valve 3.0 litre V6, was available for the GTV along with bigger, 12.0 inch brakes and red four-pot calipers from Brembo. The console knobs were changed from round central to rectangle ones and to a three-spoke steering wheel. Some versions were upgraded with different front bumper mesh to bring the wind noise down to 74 dBA. In May 1998 the cars were revamped for the first time, creating the Phase 2 models. Most of the alterations were inside. The interior was changed with new centre console, painted letters on skirt seals, changed controls and switches arrangement and different instrument cluster. Outside, the main changes included chrome frame around the grille and colour-coded side skirts and bumpers. A new engine was introduced, the 142 hp 1.8 Twin Spark, and others were changed: the 2.0 Twin Spark was updated with a modular intake manifold with different length intakes and a different plastic cover. Power output of the 2.0 TS was raised to 153 hp. Engines changed engine management units and have a nomenclature of CF2. The dashboard was available in two new colours in addition to the standard black: Red Style and Blue Style, and with it new colour-coded upholstery and carpets. The 3.0 24V got a six-speed manual gearbox as standard and the 2.0 V6 TB engine was now also available for the Spider. August 2000 saw the revamp of engines to comply with new emission regulations, Euro3. The new engines were slightly detuned, and have a new identification code: CF3. 3.0 V6 12V was discontinued for the Spider and replaced with 24V Euro3 version from the GTV. 2.0 V6 Turbo and 1.8 T.Spark were discontinued as they did not comply with Euro3 emissions. By the 2001-2002 model year, only 2 engines were left, the 2.0 Twin.Spark and 3.0 V6 24V, until the Phase 3 engine range arrived. The Arese plant, where the cars had been built, was closing and, in October 2000, the production of GTV/Spider was transferred to Pininfarina Plant in San Giorgio Canavese in Turin. In 2003 there was another and final revamp, creating the Phase 3, also designed in Pininfarina but not by Enrico Fumia. The main changes were focused on the front with new 147-style grille and different front bumpers with offset numberplate holder. Change to the interior was minimal with different centre console and upholstery pattern and colours available. Instrument illumination colour was changed from green to red. Main specification change is an ASR traction control, not available for 2.0 TS Base model. New engines were introduced: 163 hp 2.0 JTS with direct petrol injection and 237 hp 3.2 V6 24V allowing a 158 mph top speed. Production ceased in late 2004, though some cars were still available for purchase till 2006. A total of 80,747 cars were made, and sales of the GTV and Spider were roughly equal. More V6 engined GTVs than Spiders were made, but in 2.0 guise, it was the other way round with the open model proving marginally more popular.

 photo Picture 487_zpsoenzrqkz.jpg  photo Picture 489_zps2lgftjel.jpg

ALVIS

Produced between 1953 and 1955, the TC was an update of the 3 Litre. The car was available in four-door saloon and drophead versions essentially the same as the TA 21. The saloon bodies were made for Alvis by Mulliners of Birmingham) and the dropheads by Tickford. A sunshine roof remained standard as did “separately adjustable front seats; heater and air-conditioning unit; Trico windscreen washers” drawing the comment from Autocar “In detail fittings . . . this car leaves little to be desired. The 2,993 cc engine was upgraded to produce 100 bhp by modifying the cylinder head and fitting twin SU carburettors. Suspension was the same as the TA 21, independent at the front using coil springs with leaf springs at the rear. The 11 in drum brakes using a Lockheed system were also retained. However this update found few buyers during a very difficult year for the British Motor Industry and though it remained in the catalogue and continued to be advertised it was in practice replaced by the Grey Lady. The TC.21/100 or Grey Lady was announced on 20 October 1953 came with a guarantee of a speed of 100 mph resulting from an improved exhaust system and an engine compression ratio raised from 7:1 to 8:1 to take advantage of the availability of better petrol. The final drive ratio was raised from 4.09:1 to 3.77:1. A paired front fog lamp and matching driving lamp became a standard fitting. The bonnet gained air scoops and wire wheels were fitted to try to enliven the car’s image. A heater was fitted as standard but a radio remained an expensive option. A saloon version tested by The Motor magazine in 1954 had a top speed of 100.1 mph and could accelerate from 0-60 mph in 15.4 seconds. A fuel consumption of 20.6 mpg was recorded. The test car cost £1,821 including taxes. Nevertheless just 18 months later the Times’ Motoring Correspondent tested and reported on the Grey Lady under the headline “Few Concessions to Fashion Trends”. His opening gambit was that this Alvis was now one of the few British cars that did not look American and, he said, there was little concession to the cult of streamlining beyond the two air scoops in the bonnet. He wrote that spacious internal headroom and wire wheels completed that picture. It was noted the instruments were not in front of the driver but in the centre of the dashboard (instrument panel) and so the speedometer was apt to be masked by the driver’s left hand. However the front seats were comfortable and rear seat passengers received padding on the wheel arches surmounted by armrests. Leather upholstery, pile carpets and walnut facings for the dashboard and lower parts of the window frames completed the traditional picture. He did however say that “the driver who is sensitive to the “feel” of his car will enjoy every moment of his motoring irrespective of the traffic” and reported the car’s behaviour on corners was extremely stable though potholes like those caused by recessed manhole covers proved very heavy going for the springing. Nonetheless, 7576 examples of the model were produced.

 photo Picture 401_zpsqfungrjn.jpg

ARMSTRONG SIDDELEY

Largely forgotten these days are the Armstrong Siddeley cars that were made in Coventry. Car production ceased in 1960, so many will not have heard of this marque, I fear, but those who do know something of the company will recall a series of post war models named after British fighter planes, and a series of distinguished pre-war cars which appealed to the very upper middle class buyer who wanted something special but could not quite stretch to a Bentley or a Rolls Royce. Like many companies, the early years were marked by merger and acquisition. The story starts with Siddeley Autocars, of Coventry, founded by John Davenport Siddeley in 1902. Its products were heavily based on Peugeots, using many of their parts but fitted with English-built bodies. This company merged with Wolseley in 1905 and made stately Wolseley-Siddeley motorcars. They were used by Queen Alexandra and the Duke of York later King George V. In 1909 J. D. Siddeley resigned from Wolseley and took over the Deasy Motor Company, and the company became known as Siddeley-Deasy. In 1912, the cars used the slogan “As silent as the Sphinx” and started to sport a Sphinx as a bonnet ornament, a symbol that became synonymous with descendent companies. During the Second World War the company produced trucks, ambulances, and staff cars. In 1915 airframes and aero-engines started to be produced as well. In April 1919 Siddeley-Deasy was bought out by Armstrong Whitworth Development Company of Newcastle upon Tyne and in May 1919 became Armstrong Siddeley Motors Ltd, a subsidiary with J. D. Siddeley as managing director. In 1927, Armstrong Whitworth merged its heavy engineering interests with Vickers to form Vickers-Armstrongs. At this point, J. D. Siddeley bought Armstrong Siddeley and Armstrong Whitworth Aircraft into his control. In 1928, Armstrong Siddeley Holdings bought Avro from Crossley Motors. Also that year Siddeley partnered with Walter Gordon Wilson, inventor of the pre-selector gearbox, to create Improved Gears Ltd, which later became Self-Changing Gears – the gearbox that should be credited with enabling the marketing tagline “Cars for the daughters of gentlemen”. Armstrong Siddeley manufactured luxury cars, aircraft engines, and later, aircraft. In 1935, J. D. Siddeley’s interests were purchased for £2 million by Tommy Sopwith owner of Hawker Aircraft to form – along with the Gloster Aircraft Company and Air Training Services – Hawker Siddeley, a famous name in British aircraft production. Armstrong Whitworth Aircraft became a subsidiary of Hawker. The aviation pioneer Thomas Octave Murdoch Sopwith – Tommy, later Sir Thomas, Sopwith – became chairman of Armstrong Siddeley Motors, a Hawker Siddeley subsidiary. Armstrong Siddeley was merged with the aircraft engine business of Bristol Aeroplane Company (Bristol Aero Engines) to form Bristol Siddeley as part of an ongoing rationalisation under government influence of the British aircraft and aircraft engine manufacturers. Armstrong Siddeley produced their last cars in 1960. Bristol Siddeley and Rolls-Royce merged in 1966, the latter subsuming the former which remained for a while as an aircraft engine division within Rolls-Royce. In June 1972, Rolls-Royce (1972) Ltd sold all the stock of spares plus all patents, specifications, drawings, catalogues and the name of Armstrong Siddeley Motors Ltd to the Armstrong Siddeley Owners Club Ltd. This meant that “Armstrong Siddeley” and “A-S Sphinx Logo” are trademarks and copyright of the Armstrong Siddeley Owners Club Ltd. The “Siddeley” name survived a while longer in aviation; in Hawker Siddeley Aviation and Hawker Siddeley Dynamics before they joined with others to become British Aerospace (BAe) which with further mergers is now BAE Systems. The first car produced from the 1919 union was a fairly massive machine, a 5-litre 30 hp. A smaller 18 hp appeared in 1922 and a 2-litre 14 hp was introduced in 1923. 1928 saw the company’s first 15 hp six; 1929 saw the introduction of a 12 hp vehicle. This was a pioneering year for the marque, during which it first offered the Wilson preselector gearbox as an optional extra; it became standard issue on all cars from 1933. In 1930 the company marketed four models, of 12, 15, 20, and 30 hp, the last costing £1450. The company’s rather staid image was endorsed during the 1930s by the introduction of a range of six-cylinder cars with ohv engines, though a four-cylinder 12 hp was kept in production until 1936. In 1933, the 5-litre six-cylinder Siddeley Special was announced, featuring a Hiduminium aluminium alloy engine; this model cost £950. Car production continued at a reduced rate throughout 1940, and a few were assembled in 1941. The week that World War II ended in Europe, Armstrong Siddeley introduced its first post-war models; these were the Lancaster four-door saloon and the Hurricane drophead coupe. The names of these models echoed the names of aircraft produced by the Hawker Siddeley Group (the name adopted by the company in 1935) during the war. These cars all used a 2-litre six-cylinder engines, increased to 2.3-litre engines in 1949. The Whitley, which is the model seen here, was a large sports saloon, a version of the 16/18 hp series, made between 1946 and 1954 and was the last of the range to enter production, first appearing in 1949. It only used the larger 2309 cc overhead valve engine with a tax rating of 18hp that had first appeared on export versions of the Tempest coupled with a choice of synchromesh or pre-selector gearbox. The front suspension was independent using torsion bars, while at the rear was a live axle and leaf springs. A Girling hydro-mechanical braking system was fitted, with the front drums hydraulically operated, while those at the rear were cable. A variety of body styles were made, of which the most common are the 4 or 6 light saloons, but limousines were also made on a long-wheelbase chassis from 1950 to 1952. The Utility Coupe and Station Coupe were pick up versions made for the export market and in particular for Australia. The former had a conventional front seat only and the latter had an extended cabin with a small additional seat at the rear. 4321 examples of the Whitley were made in a 5 year period. They are understandably rare these days.

 photo Picture 491_zpsoke4euqx.jpg

ASTON MARTIN

Oldest of the post-war Astons here were a number of versions of the DB2 family of cars. This was the first new post-war design, and the first car to adopt the now legendary DB naming convention, reflecting the fact that in 1947 David Brown had bought the Aston Martin and Lagonda companies and incorporated them as Aston Martin Lagonda Ltd. Lagonda’s 2.6 litre dual overhead cam, straight-six engine, more powerful than the pushrod 1.9 litre unit in the Aston Martin 2-Litre Sports, was the main objective in Brown’s acquisition of the company. W. O. Bentley had supervised the engine’s design, which was largely by William (Willie) Watson, an engineer with the pre-war Invicta company who had collaborated on Lagonda’s pre-war V12 and also designed the short-lived post-war version. Work then started on producing a new car, which was called the DB2. This new model would utilise a version of the Lagonda engine in a shortened version of the tube-frame chassis designed by Claude Hill for the Aston Martin 2-Litre Sports, with a fastback coupé body designed by Frank Feeley. Three pre-production cars were entered for the 1949 24 Hours of Le Mans. One, which would become the development car for the production DB2, had the Lagonda straight-6, while the four-cylinder Aston Martin 2-litre unit powered the other two. After six laps the Lagonda-powered car, driven by Leslie Johnson, retired with overheating caused by failure of the water pump. One of the 2-litre cars was in 4th place and running without brakes when it crashed two hours short of the finish, fatally injuring driver Pierre Maréchal. The other finished 7th, crewed by Arthur Jones and Nick Haines. A month later, the larger-engined car, driven by Leslie Johnson and Charles Brackenbury, finished 3rd in the Spa 24-hour race, where one of the 2-litre cars was driven to 5th by Nick Haines and Lance Macklin. For 1950 all three factory team cars were equipped with the Lagonda engine. At the 1950 Le Mans race the one driven by George Abecassis and Lance Macklin finished 5th, with Brackenbury and Reg Parnell bringing another home 6th, which won Aston Martin 1st and 2nd in the 3-litre class. Across the Atlantic, Briggs Cunningham drove his DB2 to 2nd in its class at the inaugural Sebring race meeting in December 1950. The factory team cars continued racing in Europe throughout 1951, including at Le Mans, where Macklin and Eric Thompson took 3rd overall, with Abecassis and Brian Shawe-Taylor 5th. David Brown soon embarked on a series of Aston Martins designed specifically for competition use, starting with the DB3. Meanwhile, the production DB2 debuted at the New York Auto Show in April 1950 and continued in production until April 1953, by which time 411 had been made. The first 49 had a chrome-framed front grille in three separate parts, and large rectangular cooling vents in the front wings. Subsequent cars had a one-piece grille with horizontal chrome slats, and no side vents. The single-piece bonnet was hinged at the front. At the rear of the fixed-head coupé (FHC) a small top-hinged lid gave access to the spare wheel, and luggage space was behind the front seats, accessible only from inside the car. Later in 1950, a Drophead Coupé (DHC) variant was introduced. At least 102 were built. In April 1950, an engine with larger carburettors, inlet camshaft the same as the exhaust (for increased duration), and higher compression ratio pistons (8.16:1) was made available. Aston Martin’s first Vantage upgrade option offered 125 hp. Initially the higher compression ratio made the engine unsuitable for the British market, as the postwar austerity measures of the early 1950s restricted UK vehicles to 72 octane “Pool petrol”. The first DB2 Vantage, LML 50/21, was delivered to, and raced by, Briggs Cunningham in the United States. A revised version of the DB2 was launched in 1953, called the DB2/4. It was available as a 2+2 hatchback, marketed as a Saloon, as a Drophead Coupé (DHC) and as a 2-seat Fixed Head Coupe. A small number of Bertone bodied spiders were commissioned by private buyers. A further update in 1957 created the Mark III, and this was produced until the launch of the DB4 in 1958.

 photo Picture 167_zpssseh3xjp.jpg  photo Picture 454_zpswfkki3om.jpg  photo Picture 614_zpsbem25h5q.jpg  photo Picture 615_zps2snzwun9.jpg  photo Picture 470_zpscizxxfl7.jpg 

Representing the longest lived design in Aston Martin’s history were the DBS and V8 range of cars. By the mid 1960s, Aston Martin’s customers had been clamouring for an eight-cylinder car, so Aston Martin designed a larger car. The engine was not ready, however, so in 1967 the company released the DBS with the straight-six Vantage engine from the DB6. Two years later, Tadek Marek’s V8 was ready, and Aston released the DBS V8. Though the body and name was shared with the six-cylinder DBS, the V8 sold for much more. The body was a modern reinterpretation of the traditional Aston Martin look, with a squared-off grille and four headlights (though some consider the styling derivative of the early Ford Mustang). Distinguishing features of the V8 model are the larger front air dam and lack of wire wheels, though some six-cylinder DBS cars also used the V8’s alloy wheels. The tail lights were taken from the Hillman Hunter. A road test report of the time noted that the car had gained 250 lb in weight with the fitting of the V8 in place of the previously used six-cylinder unit, despite the manufacturer’s assurance that the engine weighed only 30 lb more than the older straight-six. Other contributions to the weight gain included heavier ventilated brake discs, air conditioning, fatter tyres, a new and stronger ZF gearbox as well as some extra bodywork beneath the front bumper. Marek’s V8 engine displaced 5,340 cc and used Bosch fuel injection. Output was not officially released, but estimates centre around 315 hp. The DBS V8 could hit 60 mph in 5.9 seconds and had a top speed of nearly 160 mph. 402 DBS V8s were built. In April 1972, the DBS V8 became just the Aston Martin V8 as the six-cylinder DBS was dropped, leaving just this car and the six-cylinder Vantage in production. The V8 became known as the AM V8, a model retroactively referred to as the Series 2 V8 to separate it from later models. Visual differences included twin quartz headlights and a mesh grille, a front design which was to last until the end of production in 1989. AM V8 cars, produced from May 1972 through July 1973, used a similar engine to the DBS V8, albeit with Bosch fuel injection rather than the earlier carburettors. Just 288 Series 2 cars were built. Although David Brown had left the company, he had overseen development of this model. The first 34 cars still carried leftover “DBS V8” badging. The car switched back to Weber carburettors for the Series 3 in 1973, ostensibly to help the car pass new stricter emissions standards in California but most likely because Aston Martin was unable to make the Bosch fuel injection system work correctly. These cars are distinguished by a taller bonnet scoop to accommodate four twin-choke (two-barrel) Weber carbs. The car produced 310 hp and could reach 60 mph in 6.1 seconds with an automatic transmission or 5.7 with a manual. Performance suffered with emissions regulations, falling to 288 hp in 1976. The next year, a more powerful “Stage 1” engine with new camshafts and exhaust brought it up to 305 hp. Production of Series 3 cars lasted from 1973 through October 1978, but was halted for all of 1975. 967 examples were produced in this time. While earlier V8 cars have louvers cut into the little panel mounted beneath the rear windshield, the Series 3 and later cars instead have a small lip at the bottom of this panel, just ahead of the leading edge of the bootlid. The “Oscar India” specification was introduced in October 1978 at the Birmingham International Motor Show. Visually, the former scoop on the bonnet gave way to a closed “power bulge”, while a spoiler was integrated into the tail. Most Oscar India cars were equipped with a Chrysler “Torqueflite” three-speed automatic transmission, with wood trim fitted for the first time since the DB2/4 of the 1950s. Just 352 Oscar India models were built from 1978 through 1985. The power of the now de-smogged engines kept dropping on American market cars, down to a low of 245 hp in the early eighties. The convertible “Volante” was introduced in June 1978, but featured the Series 4 bonnet a few months before the coupé received the Oscar India update. The Volante Series 1 weighs 70 kg (155 lb) more than the coupé, due to the necessity of reinforcing the frame. US market cars received much larger bumpers beginning with the 1980 model year, adding weight and somewhat marring the car’s lines. Owners of US-specified cars often modify them to have the slimmer European bumpers. By 1981, the success of the Volante meant that the coupé model was only built on individual demand. The fuel-injected Series 5 cars were introduced in January 1986 at the New York International Auto Show. The compact Weber/Marelli system no longer needed the space of the previous carburettors, so the bonnet bulge was virtually eliminated. 405 Series 5 cars were built before production ceased in 1989. The Volante Series 2 received the same changes; 216 were built. Seen here were a DBS and the much later V8 Vantage.

 photo Picture 175_zpsvfxbzqnc.jpg  photo Picture 437_zps9jz6ajht.jpg  photo Picture 436_zpss9zqf5o8.jpg

AUSTIN

In September 1954, Austin dusted off the Cambridge name that they had used on some of their Ten models in the late 1930s, and applied it to a new pairing of A40 and A50 models which replaced the Somerset. The A40 and A50 Cambridge models were entirely new, with modern unibody construction and new styling with integrated wings and a full width grille which was initially quite rounded, though a facelift in 1957, creating the first A55 changed that somewhat, before the more significant new look came in 1959 with the Farina styled cars. Initially the Austin Cambridge was only offered with a 4-passenger, 4-door saloon body, although a few pre-production 2-door models were also made. A van derivative introduced in November 1956 and a pick up that followed in May 1957 remained available until 1974. The A40 had a 1.2 litre straight-4 pushrod engine B-Series engine based on the one used in the previous Austin Somerset, although sharing no parts. A maximum power output of 42 bhp was claimed, transmitted to the wheels by means of a four-speed gear box controlled with a column-mounted lever. Only 30,666 A40 Cambridge models were produced, as it was the A50 version of the Cambridge, introduced at the same time, but with a new 1489 cc B-Series four-cylinder engine with single Zenith carburettor which was good for 50 hp which would prove far more popular . It sold better and remained in production through to 1957 with 114,867 A50s being produced The de luxe version had a heater, leather seat facings, carpets replacing the standard rubber matting, armrests on the doors, twin-tone horns, a passenger sun visor, and some extra chrome including overriders. Technical advances in the A50 Cambridge included an optional Borg-Warner overdrive unit for the top three (of four) gears. A semi-automatic transmission (branded “manumatic” and providing pedal-free clutch operation) was also offered, but it was unpopular with buyers. A number of modifications were introduced in October 1956 including smaller 13 in wheels and increased compression ratio (8.3:1). A de luxe version tested by The Motor magazine in 1955 had a top speed of 73.6 mph and could accelerate from 0–60 mph in 28.8 seconds. A fuel consumption of 28.0 mpg was recorded. The test car cost £720 including taxes. Austin updated the model in 1957 with new styling front and rear and a more powerful engine, creating the A55 Cambridge.

 photo Picture 576_zpsuiovmkpq.jpg  photo Picture 575_zpsc5u7efsr.jpg  photo Picture 574_zpsfob19vte.jpg

It was March 1983 when LM10, the new mid-sized Austin-Rover Group car was finally revealed. Design work on this one had started back in the mid 70s, even before the Metro, but the decision had been taken to prioritise the smaller car, with the result that by the time the Maestro appeared, it already looked a bit old-fashioned. There was no doubting its roominess, though, which was achieved partly because this was an attribute that BL always focused on, and also because it was a physically larger car than many of its rivals, straddling the C-segment cars like the Golf and Escort and the larger D-Segment machines such as the Sierra and Cavalier. Delayed it may have been, but the new engine for the more potent models was still not ready, so the first 1600cc cars came with the R Series unit, a hasty update on the E Series, which lasted only a year or so. 1300cc models still had the A+ unit, and still had the four speed gearbox, or the 3+E in the case of the 1.3 HLE economy model, which was disappointing as five speed units were at least an option on all the car’s rivals. The British press gave it a cautious welcome, but you could tell that they were a little disappointed. No amount of promoting the talking dashboard, a new technology gimmick was going to get over that, sadly. Nor was the fact that there was a lively MG version which hit the streets a few months later. Installation of the new S series engines in 1984, the announcement of the 2 litre MG version (which was widely praised as being a very good car) and upgraded trim over the years did little to change the car’s image and reputation, and although sales were steady, they never got close to the volumes an over-optimistic maker had forecast at launch. Nonetheless the car achieved a decent number of sales in the UK (it never really did that well anywhere else), with over 600,000 finding buyers, offering honest motoring from what was a relatively simple package. The cars changed little throughout their product life, and no amount of jazzy two tone paint finishes were ever going to make the car particularly stylish and trendy, but the adoption of the better quality Montego dashboard eliminated most of the rattles and from late 1988, the interior trim was quite plush, certainly a cut above rival Ford and Vauxhall products. Seen here was a late model Maestro Clubman D.

 photo Picture 452_zpsf9xmwtdd.jpg  photo Picture 453_zpsplfl6lpn.jpg

AUSTIN HEALEY

There were several examples of the “Big Healey” here, one of Britain’s most popular classics, in both the earlier 100 and later 3000 guises. Donald Healey had been producing a range of expensive sports cars from the 1940s, cars such as the Silverstone, the Abbott and the Farnham. For the 1952 London Motor Show, he produced a new design, which was called the Healey Hundred, based on Austin A90 mechanicals, which he intended to produce in-house at his small car company in Warwick. It was one of the stars of the 1952 Show, and it so impressed Leonard Lord, the Managing Director of Austin, who was looking for a replacement to the unsuccessful A90. that Lord struck a deal with Healey on the spot, to build it in quantity. Bodies made by Jensen Motors would be given Austin mechanical components at Austin’s Longbridge factory. The car was renamed the Austin-Healey 100, in reference to the fact that the car had a top speed of 100 mph. Production got under way in 1953, with Austin-Healey 100s being finished at Austin’s Longbridge plant alongside the A90 and based on fully trimmed and painted body/chassis units produced by Jensen in West Bromwich—in an arrangement the two companies previously had explored with the Austin A40 Sports. By early 1956, production was running at 200 cars a month, 150 of which were being sold in California. Between 1953 and 1956, 14,634 Austin-Healey 100s were produced, the vast majority of them, as was the case for most cars in this post war era, going for export. The car was replaced by an updated model in 1956, called the 100-6. It had a longer wheelbase, redesigned bodywork with an oval shaped grille, a fixed windscreen and two occasional seats added (which in 1958 became an option with the introduction of the two-seat BN6 produced in parallel with the 2+2 BN4), and the engine was replaced by one based on the six-cylinder BMC C-Series engine. In 1959, the engine capacity was increased from 2.6 to 2.9 litres and the car renamed the Austin-Healey 3000. Both 2-seat and 2+2 variants were offered. It continued in this form until production ceased in late 1967. The Big Healey, as the car became known after the 1958 launch of the much smaller Austin-Healey Sprite, is a popular classic now. You come across the 3000 models more frequently than the 100s, as they accounted for more than 60% of all Big Healey production.

 photo Picture 148_zpspawlmfab.jpg  photo Picture 403_zpscwbzulzk.jpg  photo Picture 448_zpsx1vdixbp.jpg  photo Picture 447_zpsr3gm2ejy.jpg  photo Picture 529_zpsbdepaqdd.jpg photo Picture 608_zpswyqy1axy.jpg

There was also a nice example of the smaller stablemate, the “Frog Eye”. Known officially as the Sprite, it was announced to the press in Monte Carlo by the British Motor Corporation on 20 May 1958, just before that year’s Monaco Grand Prix. It was intended to be a low-cost model that “a chap could keep in his bike shed”, yet be the successor to the sporting versions of the pre-war Austin Seven. The Sprite was designed by the Donald Healey Motor Company, with production being undertaken at the MG factory at Abingdon. It first went on sale at a price of £669, using a tuned version of the Austin A-Series engine and as many other components from existing cars as possible to keep costs down. It was produced for a little over 3 years before being replaced by a Mark 2 version, which was then joined by a badge-engineered MG version, the Midget, reviving a model name used by MG from the late 1920s through to the mid 1950s. Enthusiasts often refer to Sprites and the later Midgets collectively as “Spridgets.” The first Sprite quickly became affectionately known as the “frogeye” in the UK and the “bugeye” in the US, because its headlights were prominently mounted on top of the bonnet, inboard of the front wings. The car’s designers had intended that the headlights could be retracted, with the lenses facing skyward when not in use; a similar arrangement was used many years later on the Porsche 928. But cost cutting by BMC led to the flip-up mechanism being deleted, therefore the headlights were simply fixed in a permanently upright position, giving the car its most distinctive feature. The body was styled by Gerry Coker, with subsequent alterations by Les Ireland following Coker’s emigration to the US in 1957. The car’s distinctive frontal styling bore a strong resemblance to the defunct American 1951 Crosley Super Sport. The problem of providing a rigid structure to an open-topped sports car was resolved by Barry Bilbie, Healey’s chassis designer, who adapted the idea provided by the Jaguar D-type, with rear suspension forces routed through the bodyshell’s floor pan. The Sprite’s chassis design was the world’s first volume-production sports car to use unitary construction, where the sheet metal body panels (apart from the bonnet) take many of the structural stresses. The original metal gauge (thickness of steel) of the rear structure specified by Bilbie was reduced by the Austin Design Office during prototype build, however during testing at MIRA (Motor Industry Research Association) distortion and deformation of the rear structure occurred and the original specification was reinstated. The two front chassis legs projecting forward from the passenger compartment mean the shell is not a full monocoque. The front sheet-metal assembly, including the bonnet (hood) and wings, was a one-piece unit, hinged from the back, that swung up to allow access to the engine compartment. The 43 bhp, 948 cc OHV engine (coded 9CC) was derived from the Austin A35 and Morris Minor 1000 models, also BMC products, but upgraded with twin 11⁄8 inch SU carburettors which gave it 43 hp at 5200 rpm and 52 lb/ft at 3300 rpm. When tested by “The Motor” magazine in 1958. It had a top speed of 82.9 mph and could accelerate from 0-60 mph in 20.5 seconds. Fuel consumption of 43 mpg was recorded. The rack and pinion steering was derived from the Morris Minor 1000 and the front suspension from the Austin A35. The front suspension was a coil spring and wishbone arrangement, with the arm of the Armstrong lever shock absorber serving as the top suspension link. The rear axle was both located and sprung by quarter-elliptic leaf springs, again with lever-arm shock absorbers and top links. There were no exterior door handles; the driver and passenger were required to reach inside to open the door. There was also no boot lid, owing to the need to retain as much structural integrity as possible, and access to the spare wheel and luggage compartment was achieved by tilting the seat-backs forward and reaching under the rear deck, a process likened to potholing by many owners, but which resulted in a large space available to store soft baggage. The BMC Competition Department entered Austin Healey Sprites in major international races and rallies, their first major success coming when John Sprinzel and Willy Cave won their class on the 1958 Alpine Rally. Private competitors also competed with much success in Sprites. Because of its affordability and practicality, the Austin Healey Sprite was developed into a formidable competition car, assuming many variants by John Sprinzel, Speedwell and WSM. The Sebring Sprite became the most iconic of the racing breed of Austin Healey Sprites. Many owners use their Austin Healey Sprites in competition today, fifty years after its introduction. 48,987 “frogeye” Sprites were made and the car remains popular to this day.

 photo Picture 394_zpsedtrxr2k.jpg

BENTLEY

Following the war, Bentley introduced a completely new car, the Mark VI. Announced in May 1946, and produced from 1946 to 1952 it was also both the first car from Rolls-Royce with all-steel coachwork and the first complete car assembled and finished at their factory. These very expensive cars were a genuine success, long-term their weakness lay in the inferior steels forced on them by government’s post-war controls. The chassis continued to be supplied to independent coachbuilders. Four-door Saloon, two-door saloon and drophead coupe models with bodies by external companies were listed by Bentley along with the Bentley-bodied saloon. This shorter wheelbase chassis and engine was a variant of the Rolls-Royce Silver Wraith of 1946 and, with the same standard steel body and a larger boot became the cautiously introduced Silver Dawn of 1949. The same extended-boot modification was made to the Mark VI body in 1952 and the result became known as the R type Bentley. The R type is regarded by some as a stop-gap before the introduction of the S series cars in 1955. As with its predecessor, a standard body was available as well as coachbuilt versions by firms including H. J. Mulliner & Co., Park Ward, Harold Radford, Freestone and Webb and others. During development it was referred to as the Bentley Mark VII; the chassis cards for these cars describe them as Bentley 7. The R Type name which is now usually applied stems from chassis series RT. The front of the saloon model was identical to the Mark VI, but the boot was almost doubled in capacity. The engine displacement was approximately 4½ litres, as fitted to later versions of the Mark VI. An automatic choke was fitted to the R-type’s carburettor. The attachment of the rear springs to the chassis was altered in detail between the Mark VI and the R Type. For buyers looking for a more distinctive car, a decreasing number had custom coachwork available from the dwindling number of UK coachbuilders. These ranged from the grand flowing lines of Freestone and Webb’s conservative, almost prewar shapes, to the practical conversions of Harold Radford which including a clamshell style tailgate and folding rear seats. All R Type models use an iron-block/aluminium-head straight-6 engine fed by twin SU Type H6 carburettors. The basic engine displaced 4,566 cc with a 92 mm bore and 114.3 mm stroke. A 4-speed manual transmission was standard with a 4-speed automatic option becoming standard on later cars. The suspension was independent at the front using coil springs with semi elliptic leaf springs at the rear. The brakes used 12.25 in drums all round and were operated hydraulically at the front and mechanically at the rear via a gearbox driven servo. Other than the radiator grilles and the carburation there was little difference between the standard Bentley R Type and the Rolls-Royce Silver Dawn. The R Type was the more popular marque, with some 2,500 units manufactured during its run to the Silver Dawn’s 760. The survival rate is not that great, as the bodies had a habit of rusting. Seen here were an example of the regular factory saloon body and a Drophead.

 photo Picture 472_zpsl7ygld0r.jpg  photo Picture 471_zpsdwud9av5.jpg  photo Picture 485_zpskywyu6o6.jpg

The S Type Saloon, a close relative of the Rolls Royce Silver Cloud, was first revealed in April 1955. It represented a complete redesign of the standard production car, the R Type (which had started off as the Mark VI). It was a more generously sized five- or six-seater saloon with the body manufactured in pressed steel with stressed skin construction, with the doors, bonnet and boot lid made of aluminium. The external appearance was very different, although the car still had the traditional radiator grille. Compared to the outgoing R Type, the new model had a three inch longer wheelbase, was lower of build without reducing headroom and with an enlarged luggage boot, softer suspension with electrically operated control of rear dampers, lighter steering and improved braking. The engine, still a clear descendants of the one originally used in the Rolls-Royce Twenty from 1922 to 1929, had its capacity increased to 4887cc, and a four-speed automatic gearbox was standard, with the ability to select individual ratios if desired, which was enough to give the Bentley a top speed of just over 100 mph and 0 – 60 acceleration times of around 13 seconds. Standard and from 1957, long wheelbase saloons were offered and some were sent to the coachbuilders for alternative bodies to be fitted. An upgrade in 1959, creating the S2, saw the installation of a new V8 engine, and in 1962, the S3 cars gained four round headlights. 3072 S Types were made, 145 of them with coachbuilt bodies as well as 35 of the long wheelbase cars, before the model was replaced by the new T Type in 1965. Seen here was a standard Series 3 Saloon and one with a rather stylish Freestone and Webb body.

 photo Picture 484_zpsu9ziwmpf.jpg  photo Picture 132_zpsaheaoevv.jpg  photo Picture 508_zpsslf7uuc7.jpg  photo Picture 507_zpsqf34qbhn.jpg  photo Picture 506_zpsaijrjsxq.jpg photo Picture 509_zpsdqmifghs.jpg

More recent was this Mulsann, the Bentley version of the Silver Spirit. Taking its name from Bentley’s motorsport history, which included five victories at the 24 Hours of Le Mans between 1924 and 1930 — the ‘Mulsanne Straight’ being the stretch of the Le Mans racecourse where cars reach their highest speeds – the car was launched in October 1980, sharing the traditional 6750 cc Rolls-Royce V8 with aluminium alloy cylinder heads with the Silver Spirit. Things got more interesting at the Geneva Motor Show in 1982 when Bentley announced the Mulsanne Turbo, which had a 50% increase in power thanks to the Garrett AiResearch turbocharger. There was the usual highly polished walnut veneered fascia, blemish-free leather and carpets and headlining of pure wool for the interior. 498 short wheelbase and 18 long wheelbase Mulsanne Turbos were built in the following three years. The Mulsanne Turbo was replaced by the Turbo R, which used a fuel injected version of the same engine. A British racing green Turbo has been used in the two James Bond stories Nobody Lives Forever and Role of Honour by John Gardner. The Mulsanne needed a refresh by 1987, so the company spiced it up with the introduction of the Mulsanne S. Although this model lacked its turbocharger, many of its other details were similar to the Turbo R, including that car’s alloy wheels and interior, and the suspension was firmed up for a more sporting ride. The rectangular headlamps from the 1980s gave way to quad round units for 1989, and the model lasted until 1992.

 photo Picture 585_zpsofb8nw6n.jpg

The success of the Mulsanne Turbo and Turbo R brought new life to Bentley, changing the position of the preceding 15 years where sales of the marque’s badge-engineered Rolls Royce cars had been only a very small percentage of the company’s sales. The obvious next step would be further to enhance the distinctive sporting nature of the Bentley brand and move away from a Bentley that was merely a re-badged Rolls Royce. Bentley appointed stylists John Heffernan and Ken Greenley to come up with ideas for a new, distinctive, Bentley coupé. The fibreglass mock up was displayed at the 1984 Geneva Motor Show in Rolls-Royce’s “Project 90″ concept of a future Bentley coupé. The concept was met with an enthusiastic reception, but the Project 90 design was largely shelved as the company began to work towards a replacement for the Rolls-Royce Corniche. During this process, Graham Hull, chief stylist in house at Rolls Royce, suggested the designs before the board for the Corniche, would suit a Bentley coupé better. From this point it was decided the Corniche could continue as it was, and efforts would once again be channelled into a new Bentley coupé. In 1986 Graham Hull produced a design rendering of a new Bentley coupé which became the Continental R. Based on the Rolls Royce SZ platform (which was an evolution of the SY platform), an aerodynamically shaped coupé body had been styled. John Heffernan and Ken Greenley were officially retained to complete the design of the Continental R. They had run the Automotive Design School at the Royal College of Art and headed up their own consultancy, International Automotive Design, based in Worthing, Southern England. Greenley and Heffernan liaised constantly throughout the styling process with Graham Hull. The interior was entirely the work of Graham Hull and the small in house styling team at Rolls Royce. The shape of the car was very different from the somewhat slab sided four door SZ Rolls-Royce and Bentley vehicles of the time and offered a much improved 0.37 coefficient of drag. The Continental R also featured roof-cut door frames, a necessity to allow easier access into the car which had a lower roof line than its 4-door contemporaries. A subtle spoiler effect was also a feature of the rear. The finished car is widely acknowledged as a very cleverly styled vehicle, disguising its huge dimensions (The Continental R is around 4” longer than a 2013 long wheelbase Mercedes S Class) and a very well proportioned, extremely attractive, car. The “Continental” designation recalls the Bentley Continental of the post-war period. The “R” was meant to recall the R Type Bentleys from the 1950s as well as the Turbo R of the 1980s and 90’s where the “R” refers to “roadholding”. 1504 Continental R and 350 Continental T models were made before production finally ceased in 2003. The revival of the Bentley marque following the introduction of the Bentley Mulsanne Turbo, and then the Continental R, is widely acknowledged to have saved Rolls Royce Motor cars and formed the groundwork which led to the buyout and parting of the Rolls Royce and Bentley brands in 1998. Bentley was once again capable of standing alone as a marque in its own right.

 photo Picture 502_zpsdhyc8fnx.jpg

BMW

The first car to bear the 6 Series nomenclature was the E24, which was launched in 1976, as a replacement for the E9 model 3.0 CS and CSL coupés first produced in 1965. The 3.0 CS was almost changed by adding a few centimeters in height to make it easier for customers to get into the car. However, Bob Lutz rebelled against the decision and rough drafted an alternative version that soon became the 6 series. Production started in March 1976 with two models: the 630 CS and 633 CSi. Originally the bodies were manufactured by Karmann, but production was later taken in-house to BMW. In July 1978 a more powerful variant, the 635 CSi, was introduced that featured as standard a special close-ratio 5-speed gearbox and a single piece black rear spoiler. The bigger bore and shorter stroke facilitated max 218 hp at 5200rpm and a better torque curve. For the first year, the 635 CSi was offered in three colours (Polaris, Henna Red, Graphite), and could also be spotted by the front air dam that did not have attached fog lights. These simple cosmetic changes reportedly worked to reduce uplift on the car at high speeds by almost 15% over the non-spoiler body shape. This early model shared suspension components with the inaugural BMW 5-series, the E12. In 1979 the carburettor 630 CS was replaced with the 628 CSi with its fuel injected 2.8 litre engine taken from the BMW 528i. In 1980 the 635 CSi gained the central locking system that is also controlled from the boot. Also, the E24 body style converted from L-jetronic injection to a Bosch Motronic DME. In 1982 (Europe) and 1983 (US), the E24 changed slightly in appearance, with an improved interior and slightly modified exterior. At the same time, the 635 CSi received a new engine, a slightly smaller-bored and longer-stroked 3430 cc six to replace the former 3453 cc engine and became available with a wide-ratio 5-speed manual or an automatic. This slight change was in fact a major change as pre-1982 cars were based on the E12 5-series chassis; after mid-1982, E24s shared the improved E28 5-series chassis. The only parts that remained the same were some of the exterior body panels. E24s produced after June 1987 came with new, ellipsoid headlamps which projects beam more directly onto road surface (newly introduced E32 7-series also sporting them). The sleeker European bumpers were also discontinued. Previous cars had either a European-standard bumper or a larger, reinforced bumper to meet the US standard requiring bumpers to withstand impact at 5 mph without damage to safety-related components. 1989 was the last year for the E24 with production stopping in April. The E24 was supplanted by the considerably heavier, more complex, and more exclusive 8 Series. BMW Motorsport introduced the M 635 CSi in Europe at the Frankfurt Motor Show in 1983. It is essentially an E24 powered by the powerplant of the BMW M1 – the M88 with 286 PS). Most of the cars were equipped with special metric 415 mm diameter wheels requiring Michelin TRX tyres. A catalysed, lower compression ratio version of the car with the S38 engine (260 PS ) was introduced in the U.S. in 1987. All M6 cars came standard with a 25% rear limited slip differential. U.S. models included additional comforts that were usually optional on models sold in Europe such as Nappa leather power seats and a dedicated rear A/C unit with a centre beverage chiller. 4,088 M635CSi cars were built between 1983 and 1988 with 1,767 U.S. M6 built. Seen here was a rather nice M635 CSi.

 photo Picture 458_zpshudfzez8.jpg

BRISTOL

There were a couple of Bristol cars that I saw here. This is an example of the first car to bear the Bristol name, the 400. After World War II, the Bristol Aeroplane Company decided to diversify and formed a car division, which would later be the Bristol Cars company in its own right. BAC subsequently acquired a licence from Frazer Nash to build BMW models. Bristol chose to base its first model on the best features of two outstanding pre-war BMWs, namely the 328’s engine, and the 326’s frame. These were covered with a neat mainly steel body but with aluminium bonnet, door and boot skins and inspired by the BMW 327’s. Launched in 1947, the Bristol 400 featured a slightly modified version of BMW’s six-cylinder pushrod engine of 1,971 cc This engine, considered advanced for its time due to its hemispherical combustion chambers and very short inlet and exhaust ports, developed 80 horsepower at 4,500 revs per minutes and could carry the 400 to a top speed of around 92 mph with acceleration to match. In order to maintain a hemispherical combustion chamber, the valves had to be positioned at an angle to the head. In order to drive both sets of valves from a single camshaft, the Bristol engine used a system of rods, followers and bell-cranks to drive the valves on the far side of the engine from the camshaft. Owners soon found that setting and maintaining the numerous clearances in the system was difficult but vital to keep the engine in tune. The gearbox was a four-speed manual with synchromesh on the upper three ratios and a freewheel on first. The model 400 was the only Bristol to be fitted with a steel and aluminium skin, and had all flat glass, but for the curved rear window, glazed in perspex, which was available to specification with a top hinge. This feature was very welcome on warmer climate export markets, where the sliding door windows provided only marginal ventilation to the passengers. The 400 featured independent front suspension with a transverse leaf spring and a live axle, located by an A-bracket over the differential case and longitudinal torsion bars with transverse arms and brackets at the rear. It featured a lengthy 114 inch wheelbase and a very BMW-like grille at the front of its long bonnet. The passenger area was very short, with the spare tyre mounted inside the boot on the first cars, but eventually mounted on the rear hinged boot lid, inside an aluminium cover. 487 examples were made.

 photo Picture 616_zpsm7x1dgq1.jpg

This 403 is an example of the second body design produced by Bristol Cars. First seen on the 401 model, which replaced the first ever Bristol model, the 400, a program of updates saw the car morph into the 403 (the 402 having been an open topped version of the 401) and this car was then produced between 1953 and 1955, the third of the eventual five series of Bristols powered by the BMW-derived pushrod straight-six engine. It replaced both the Bristol 401 and 402 in 1953 and whilst it retained much the same styling as the 401, the new 403 featured many mechanical improvements compared to its predecessor. The 1971 cc six-cylinder engine was modified through the use of bigger valves and larger main bearings with a diameter of 54 mm as against 51 mm on the 400 and 401, which increased the power output to 100 hp as against 85 hp in the 401. The acceleration was markedly improved: the 403 could reach 60 mph in 13.4 seconds as against 16.4 seconds for the 401. The 403 had a top speed of 104 mph. To cope with this increased power, an anti-roll bar was fitted on the front suspension and improved drum brakes known as “Alfins” (Aluminium finned) were fitted. Early models had them on all wheels, but Bristol thought the car was over-braked and they were thus restricted to the front wheels on later 403s. The 403 was the last Bristol to feature a BMW-style radiator grille. It is also noteworthy for having two extra headlamps at the side, almost pre-dating the adoption of the four-headlamp layout in larger cars (Bristol themselves adopted it with the 411 in the late 1960s).

 photo Picture 129_zpsglqcuxlk.jpg  photo Picture 395_zpsk70eprgs.jpg

CATERHAM

 photo Picture 392_zpsfyxhjsop.jpg

CHEVROLET

Chevrolet first used the Impala name in 1958, when it was applied to a new model which sat above the Bel Air as a top of the line model. It differed from the cheaper models in the range from behind the windscreen with a longer wheelbase even though the overall length was the same, as well as upgraded trim. It proved popular, accounting for 15% of total Chevrolet sales for the year. For 1959, Chevrolet completely redesigned their entire product range, and once again there was an Impala included. Sharing bodyshells with lower-end Buicks and Oldsmobiles as well as with Pontiac, part of a GM economy move, the Chevrolet’s wheelbase 1-1/2 inches longer. Using a new X-frame chassis, the roof line was three inches lower, bodies were two inches wider, and curb weight increased. Its tailfins protruded outward, rather than upward. The taillights were a large “teardrop” design at each side and were the largest yet (and indeed, ever) seen. The Impala became a separate model in its own right, adding a four-door hardtop and four-door sedan, to the two-door Sport Coupe and convertible. Sport Coupes featured a shortened roof line and wrap-over back window. The standard engine was an inline 6, while the base V8 was the carryover 283 cu in (4,640 cc), at 185 hp Optional were a 283 cu in with 290 hp and 348 cu in (5,700 cc) V8 up to 315 hp. Standard were front and rear armrests, an electric clock, dual sliding sun visors, and crank-operated front vent windows. A contoured hooded instrument panel held deep-set gauges. A six-way power seat was a new option, as was “Speedminder”, for the driver to set a needle at a specific speed and a buzzer would sound if the pre-set was exceeded. The model continued into 1960, though there were styling changes, with the tail fins reduced somewhat, as well as a reinstatement of three round taillights on each side, a nonfunctional front air intake scoops, and a white band running along the rear bumper. The available V8s were reduced to seven, in 283-cu in or 348-cu in displacements. The Turbo-Fire 283 cu in V8 could have either 170 or 230 hp. The 348 cu in was available in 250 to 320 hp with a 350 hp Super Turbo-Thrust Special with triple two-barrel carburettors, 11.25:1 compression ratio, and dual exhausts. Fuel injection was no longer an option on full-size Chevrolets. New to the options list was speed and cruise control. Production was 490,000 units before a completely new model appeared for 1961. Right hand drive models were made in Oshawa, Ontario in Canada, for New Zealand, Australia, and South Africa which were then assembled locally from CKD or SKD kits. The right-hand drive dashboard was a mirror image of the 1959 Chevrolet panel and shared with equivalent right-hand drive Pontiac models. Australian models were assembled by hand on the GMH Holden assembly lines. Seen here is a 1959 four-door hardtop with those amazing tail fins. This car is something of a regular at Prescott.

 photo Picture 117_zpsg5ufczbp.jpg  photo Picture 532_zps7kfqncof.jpg

CITROEN

It is hard to imagine just how revolutionary the DS must have seemed when it was unveiled at the Paris Show in 1955. 18 years in secret development as the successor to the Traction Avant, the DS 19 stole the show, and within 15 minutes of opening, 743 orders were taken. By the end of the first day, that number had risen to 12,000. Contemporary journalists said the DS pushed the envelope in the ride vs. handling compromise possible in a motor vehicle. To a France still deep in reconstruction after the devastation of World War II, and also building its identity in the post-colonial world, the DS was a symbol of French ingenuity. It also posited the nation’s relevance in the Space Age, during the global race for technology of the Cold War. Structuralist philosopher Roland Barthes, in an essay about the car, said that it looked as if it had “fallen from the sky”. An American advertisement summarised this selling point: “It takes a special person to drive a special car”. Because they were owned by the technologically aggressive tyre manufacturer Michelin, Citroën had designed their cars around the technically superior radial tyre since 1948, and the DS was no exception. The car featured a novel hydropneumatic suspension including an automatic levelling system and variable ground clearance, developed in-house by Paul Magès. This suspension allowed the DS to travel quickly on the poor road surfaces common in France. In addition, the vehicle had power steering and a semi-automatic transmission (the transmission required no clutch pedal, but gears still had to be shifted by hand though the shift lever controlled a powered hydraulic shift mechanism in place of a mechanical linkage, and a fibreglass roof which lowered the centre of gravity and so reduced weight transfer. Inboard front brakes (as well as independent suspension) reduced unsprung weight. Different front and rear track widths and tyre sizes reduced the unequal tyre loading, which is well known to promote understeer, typical of front-engined and front-wheel drive cars. As with all French cars, the DS design was affected by the tax horsepower system, which effectively mandated very small engines. Unlike the Traction Avant predecessor, there was no top-of-range model with a powerful six-cylinder engine. Citroën had planned an air-cooled flat-6 engine for the car, but did not have the funds to put the prototype engine into production. The 1955 DS19 was 65% more expensive than the car it replaced, the Citroën Traction Avant. This did impact potential sales in a country still recovering economically from World War II, so a cheaper submodel, the Citroën ID, was introduced in 1957. The ID shared the DS’s body but was less powerful and luxurious. Although it shared the engine capacity of the DS engine (at this stage 1,911 cc), the ID provided a maximum power output of only 69 hp compared to the 75 hp claimed for the DS19. Power outputs were further differentiated in 1961 when the DS19 acquired a Weber-32 twin bodied carburettor, and the increasing availability of higher octane fuel enabled the manufacturer to increase the compression ratio from 7.5:1 to 8.5:1. A new DS19 now came with a promised 83 hp of power. The ID19 was also more traditional mechanically: it had no power steering and had conventional transmission and clutch instead of the DS’s hydraulically controlled set-up. Initially the basic ID19 was sold on the French market with a price saving of more than 25% against the DS, although the differential was reduced at the end of 1961 when the manufacturer quietly withdrew the entry level ID19 “Normale” from sale. An estate version was introduced in 1958. It was known by various names in different markets: Break in France, Safari and Estate in the UK, Wagon in the US, and Citroën Australia used the terms Safari and Station-Wagon. It had a steel roof to support the standard roof rack. ‘Familiales’ had a rear seat mounted further back in the cabin, with three folding seats between the front and rear squabs. The standard Break had two side-facing seats in the main load area at the back. During the 20 year production life, improvements were made on an ongoing basis. In September 1962, the DS was restyled with a more aerodynamically efficient nose, better ventilation and other improvements. It retained the open two headlamp appearance, but was available with an optional set of driving lights mounted on the front bumpers. A more luxurious Pallas trim came in for 1965 Named after the Greek goddess Pallas, this included comfort features such as better noise insulation, a more luxurious (and optional leather) upholstery and external trim embellishments. The cars were complex, and not always totally reliable, One of the issues that emerged during long term use was addressed with a change which came in for 1967. The original hydropneumatic system used a vegetable oil liquide hydraulique végétal (LHV), similar to that used in other cars at the time, but later switched to a synthetic fluid liquide hydraulique synthétique (LHS). Both of these had the disadvantage that they are hygroscopic, as is the case with most brake fluids. Disuse allows water to enter the hydraulic components causing deterioration and expensive maintenance work. The difficulty with hygroscopic hydraulic fluid was exacerbated in the DS/ID due to the extreme rise and fall in the fluid level in the reservoir, which went from nearly full to nearly empty when the suspension extended to maximum height and the six accumulators in the system filled with fluid. With every “inhalation” of fresh moisture- (and dust-) laden air, the fluid absorbed more water. For the 1967 model year, Citroën introduced a new mineral oil-based fluid liquide hydraulique minéral (LHM). This fluid was much less harsh on the system. LHM remained in use within Citroën until the Xantia was discontinued in 2001. LHM required completely different materials for the seals. Using either fluid in the incorrect system would completely destroy the hydraulic seals very quickly. To help avoid this problem, Citroën added a bright green dye to the LHM fluid and also painted all hydraulic elements bright green. The former LHS parts were painted black. All models, including the Safari and ID, were upgraded at the same time. The hydraulic fluid changed to the technically superior LHM (Liquide Hydraulique Minéral) in all markets except the US and Canada, where the change did not take place until January 1969, due to local regulations. Rarest and most collectable of all DS variants, a convertible was offered from 1958 until 1973. The Cabriolet d’Usine (factory convertible) were built by French carrossier Henri Chapron, for the Citroën dealer network. It was an expensive car, so only 1,365 were sold. These DS convertibles used a special frame which was reinforced on the sidemembers and rear suspension swingarm bearing box, similar to, but not identical to the Break/Safari frame. Seen here was a DSuper 20.

 photo Picture 457_zpsaizjfl3s.jpg  photo Picture 456_zpsgx2nljxe.jpg  photo Picture 531_zpsx1aqc1np.jpg

DAIMLER

Launched late in 1962, the Daimler V8 Saloon was essentially a rebadged Jaguar Mark 2 fitted with Daimler’s 2.5-litre 142 bhp V8 engine and drive-train, a Daimler fluted grille and rear number plate surround, distinctive wheel trims, badges, and interior details including a split-bench front seat from the Jaguar Mark 1 and a black enamel steering wheel. Special interior and exterior colours were specified. Most cars were fitted with power-assisted steering but it was optional. Automatic transmission was standard; manual, with or without overdrive, became an option in 1967. The 2.5 V8 was the first Jaguar designed car to have the Daimler badge. A casual observer, though not its driver, might mistake it for a Jaguar Mark 2. The Daimler’s stance on the road was noticeably different from a Mark 2. In April 1964 the Borg-Warner Type 35 automatic transmission was replaced by a D1/D2 type, also by Borg-Warner. A manual transmission, with or without an overdrive unit usable with the top gear, became available on British 2.5 V8 saloon in February 1967 and on export versions the following month. Cars optioned with the overdrive had the original 4.55:1 final drive ratio. In October 1967, there was a minor face-lift and re-labelling of the car to V8-250. It differed only in relatively small details: “slimline” bumpers and over-riders (shared with the Jaguar 240/340 relabelled at the same time), negative-earth electrical system, an alternator instead of a dynamo and twin air cleaners, one for each carburettor. Other new features included padding over the instrument panel, padded door cappings and ventilated leather upholstery, reclinable split-bench front seats and a heated rear window. Power steering and overdrive were optional extras. Jaguar replaced its range of saloons—the 240, the 340, the 420, and the 420G—with the XJ6 at the end of 1968. The company launched the XJ6-based Daimler Sovereign the following year to replace the Daimler saloons—the 240-based V8-250 and the 420-based Sovereign. Henceforth all new Daimlers would be re-badged Jaguars with no engineering links to the pre-1960 Daimlers.

 photo Picture 027_zps6ow808mm.jpg  photo Picture 026_zpsuxjnlsa5.jpg

FERRARI

Firmly placed in Ferrari’s history as one of their finest big GTs, the 550 Maranello’s combination of stylish Pininfarina lines and front mounted 12-cylinder engine meant this car had the potential to become an instant classic, following in the footsteps of its forebear, the 365 GTB/4 ‘Daytona’, and if you look at the way the prices are steading to go, it’s clear that the potential is being realised. Launched in 1996, and with modern styling cues, a 5.5 litre V12 engine producing around 485bhp and a reported top speed of 199mph, the 550 Maranello was a serious motor car. A less frenetic power delivery, the six speed manual box and excellent weight distribution were all factors in the 550 becoming the perfect European Grand Tourer. Ferrari updated the car to create the 575M.

 photo Picture 467_zpsncikkkjf.jpg

The Ferrari 365 GTC/4, a 2+2 grand tourer, was only produced by Ferrari from 1971 to 1972. It was based on the chassis of the Ferrari 365 GTB/4 “Daytona”. In the very short two-year production run 505 examples of the GTC/4 were produced. Its chassis and drivetrain, however, were carried over mostly unaltered (apart from a wheelbase stretch to provide more satisfying rear seat room) on its successor, the 1972 365 GT4 2+2. The GTC/4’s coupé bodywork by Pininfarina enclosed two front and two rear seats, as on the 365 GT 2+2 it replaced directly. However, the rear seats were small and the slanting rear window limited rear headroom, so it can also be seen to trace to the two-seat 365 GTC that had been discontinued in 1970. With its wedge shape, fastback silhouette, sharp creases and hidden headlamps the GTC/4’s styling clearly reflects the 365 GTB/4 “Daytona” it was based on. Power steering, electric windows and air conditioning were standard. The cabin was upholstered in mixed leather and tartan fabric, unique to this model and unusual for a Ferrari, with full leather upholstery an option. The 365 GTC/4 shared the chassis and engine block as the 365 GTB/4 Daytona, riding on the same wheelbase and suspension. Many changes were made to make it a more comfortable grand tourer than its two-seat predecessor and sibling. These included softer spring rate and a hydraulic power steering. The chassis was a tubular spaceframe, mated to a steel body with aluminium doors and bonnets; as was customary in this period, the bodies were made and finished by Pininfarina in Turin, then sent to Ferrari in Modena for the assembly. The suspension system used transverse A-arms, coil springs coaxial with the shock absorbers (double at the rear), and anti-roll bars on all four corners. Wheels were cast magnesium on Rudge knock-off hubs, while Borrani wire wheels were optional; the braking system used vented discs front and rear. The engine was a Tipo F 101 AC 000 Colombo V12, displacing 4,390 cc. Engine block and cylinder heads were aluminium alloy, with cast iron pressed-in sleeves; chain-driven two overhead camshafts per bank (four in total, as noted by the “4” in the model designation) commanded two valves per cylinder. The V12 was detuned to 340 PS (335 bhp) from the Daytona, to provide a more tractable response suited to a GT-oriented Ferrari. In place of the Daytona’s downdraft setup, six twin-choke side-draft Weber carburetors were used, whose lower profile made possible the car’s lower and sloping bonnet line. The 5-speed all-synchronised manual transmission was bolted to the engine, another difference from the Daytona which used a transaxle. However the set back placement of the engine and transmission still allowed the car to achieve a near perfect 51:49 weight distribution. The gearbox was rigidly connected to the alloy housing of the rear differential through a torque tube. There are a handful of them in the UK.

 photo Picture 571_zpstidcgkc6.jpg

FIAT

Developed as the Tipo 175, the Coupe was introduced at the Brussels Motor Show in 1993. It is perhaps best remembered for its distinctive, angular design, with unique scalloped side panels. The body was designed by Chris Bangle from Centro Stile Fiat, while the interior was designed by Pininfarina, and the car media headlines in auto magazines during 1992 after several spy shots were taken revealing the car on test. On its launch in 1993, the Coupé was available with a four-cylinder, 2.0 litre 16V engine, in both turbo (190 PS) and normally aspirated (139 PS) versions. Both engines were later versions of Fiat’s twin-cam design and inherited from the Lancia Delta Integrale. 1996 brought in a 1.8 lire 131 PS 16V engine (not available in the UK), along with a 2.0-litre 5-cylinder 20V (147 PS), and a 5-cylinder 2.0-litre 20V turbo (220 PS). The turbocharged 16 and 20 valve versions were equipped with a very efficient Viscodrive limited-slip differential to counter the understeer that plagues most powerful front wheel drive cars. Additionally, the coupe featured independent suspension all round: at the front MacPherson struts and lower wishbones anchored to an auxiliary crossbeam, offset coil springs and anti-roll bar; at the rear, trailing arms mounted on an auxiliary subframe, coil springs and an anti-roll bar. The car was well received at launch, and the 5 cylinder engines just made it even better, with sales increasing slightly for a couple of years, but then they started to drop off, as Coupe models in general fell from favour. 1998 saw the release of the Limited Edition which featured red Brembo brake calipers at the front and standard red calipers at the back, a body kit, push-button start, six-speed gearbox, strut brace to make the chassis more rigid and Recaro seats with red leather inserts which offered better support than the standard 20VT seats. The LE was produced in Black, Red, Vinci Grey (metallic), Crono Grey and Steel Grey (metallic). The bodywork of the LE also benefitted from titanium coloured insert around the light bezels and the wing mirrors. Each Limited Edition (‘LE’) Coupé was manufactured with a badge located by the rear-view mirror which contained that car’s unique number (it is rumored that Michael Schumacher was the original owner of LE No. 0001, however when the question was raised to him personally he confirmed he had owned one, but a red one, while LE No. 0001 is a Crono Grey one). Originally a spokesman from Fiat stated only approximately 300 Limited Editions would be built. The final number was much higher, perhaps as many as 1400. This angered many of the owners of the original 300 cars and almost certainly impacted residual values. The original number however was quoted by a Fiat UK spokesman, so probably that number only applied to the UK market. The numbered plaque on every Coupe features enough space for 4 numbers. In 1998 the 2.0-litre 5-cylinder 20V got a Variable Inlet System which brought the power to 154 PS. The 2.0-litre 5-cylinder 20V Turbo received a 6-speed gearbox and a large, satin gloss push starter button. In addition, the sills of the Turbo version were colour matched with the body paintwork. Fiat also released the 2.0 litre 5 cylinder Turbo ‘Plus’. This model came with an option kit that made it virtually identical to the LE, except for minor interior design changes and without the unique identification badge of the LE. In 2000 Fiat released another special version of the Fiat Coupé. Featuring the 1.8-litre engine, it was only available throughout mainland Europe and marketed as an elegant and affordable edition. Fiat also made changes throughout the rest of the range: new seats, side skirts and wheels for the 2.0-litre 20V model, ‘Plus’ edition wheels on turbo models and Fiat manufactured seats on the ‘Plus’ that were virtually identical to the original Plus Recaro seats with the addition of extra airbags. The 2.0-litre 20V Turbo model is capable of accelerating from 0–100 km/h (0 to 62 mph) in 6.5 seconds and 6.3 seconds for the 20v Turbo Plus, with a top speed of 240 km/h (149 mph) or 250 km/h (155 mph) with later 6-speed gearbox. When production finally stopped in September 2000, a total number of 72,762 units had been produced. There are still well over 1000 units in the UK, so this is a Fiat which has proved durable as well as good to drive, and to look at.

 photo Picture 468_zpsj89senkl.jpg  photo Picture 469_zpsq4ac4ljk.jpg

Also here was the latest 124 Spider, Fiat’s first open topped sports car since the Barchetta was phased out more than 10 years ago. This one, which shares much under the skin with the Mazda MX-5, though you would need to look inside before that is obvious, went on sale around 12 months ago, and is still quite a rare sightt on our roads.

 photo Picture 442_zpsge0oglpp.jpg  photo Picture 441_zpsivdkrpbw.jpg

FORD

There were surprisingly few Ford models that captured my interest here and indeed the only one that I photographed was this Mustang Fastback from 1972.

 photo Picture 434_zpsfiaw9b0t.jpg  photo Picture 431_zpspd1pipx9.jpg

JAGUAR

Jaguar stunned the world with the XK120 that was the star of the Earls Court Motor Show in 1948. Seen in open two seater form, the car was a testbed and show car for the new Jaguar XK engine. The display car was the first prototype, chassis number 670001. It looked almost identical to the production cars except that the straight outer pillars of its windscreen would be curved on the production version. The roadster caused a sensation, which persuaded Jaguar founder and design boss William Lyons to put it into production. Beginning in 1948, the first 242 cars wore wood-framed open 2-seater bodies with aluminium panels. Production switched to the 112 lb heavier all-steel in early 1950. The “120” in the name referred to the aluminium car’s 120 mph top speed, which was faster with the windscreen removed. This made it the world’s fastest production car at the time of its launch. Indeed, on 30 May 1949, on the empty Ostend-Jabbeke motorway in Belgium, a prototype XK120 timed by the officials of the Royal Automobile Club of Belgium achieved an average of runs in opposing directions of 132.6 mph with the windscreen replaced by just one small aeroscreen and a catalogued alternative top gear ratio, and 135 mph with a passenger-side tonneau cover in place. In 1950 and 1951, at a banked oval track in France, XK120 roadsters averaged over 100 mph for 24 hours and over 130 mph for an hour, and in 1952 a fixed-head coupé took numerous world records for speed and distance when it averaged 100 mph for a week. Roadsters were also successful in racing and rallying. The first production roadster, chassis number 670003, was delivered to Clark Gable in 1949. The XK120 was ultimately available in two open versions, first as an open 2-seater described in the US market as the roadster (and designated OTS, for open two-seater, in America), and from 1953 as a drophead coupé (DHC); as well as a closed, or fixed head coupé (FHC) from 1951. A smaller-engined version with 2-litres and 4 cylinders, intended for the UK market, was cancelled prior to production. There were a number of the open two seater version seen here.

 photo Picture 118_zpspm3mcjqx.jpg

The XK140 was the successor to the XK120, with a number of useful changes and upgrades over the earlier car which included more interior space, improved brakes, rack and pinion steering, increased suspension travel, and telescopic shock absorbers instead of the older lever arm design. The XK140 was introduced in late 1954 and sold as a 1955 model. Exterior changes that distinguished it from the XK120 included more substantial front and rear bumpers with overriders, and flashing turn signals (operated by a switch on the dash) above the front bumper. The grille remained the same size but became a one-piece cast unit with fewer, and broader, vertical bar, making it easy to tell an XK140 apart from an XK120. The Jaguar badge was incorporated into the grille surround. A chrome trim strip ran along the centre of the bonnet and boot lid. An emblem on the boot lid contained the words “Winner Le Mans 1951–3”. The interior was made more comfortable for taller drivers by moving the engine, firewall and dash forward to give 3 inches more legroom. Two 6-volt batteries, one in each front wing were fitted to the Fixed Head Coupe, but Drop Heads and the Open Two Seater had a single 12-volt battery. This was installed in the front wing on the passenger side (e.g. In the left wing on right hand drive cars and in the right wing on left hand drive). The XK140 was powered by the Jaguar XK engine with the Special Equipment modifications from the XK120, which raised the specified power by 10 bhp to 190 bhp gross at 5500 rpm, as standard. The C-Type cylinder head, carried over from the XK120 catalogue, and producing 210 bhp ross at 5750 rpm, was optional equipment. When fitted with the C-type head, 2-inch sand-cast H8 carburettors, heavier torsion bars and twin exhaust pipes, the car was designated XK140 SE in the UK and XK140 MC in North America. In 1956 the XK140 became the first Jaguar sports car to be offered with automatic transmission. As with the XK120, wire wheels and dual exhausts were options, and most XK140s imported into the United States had wire wheels. Cars with the standard disc wheels had spats over the rear wheel opening. When leaving the factory it originally fitted either 6.00 × 16 inch crossply tyres or you could specify 185VR16 Pirelli Cinturato CA67 as a radial option on either 16 × 5K½ solid wheels or 16 × 5K (special equipment) wire wheels. The Roadster (designated OTS – Open Two Seater – in America) had a light canvas top that folded out of sight behind the seats. The interior was trimmed in leather and leatherette, including the dash. Like the XK120 Roadster, the XK140 version had removable canvas and plastic side curtains on light alloy barchetta-type doors, and a tonneau cover. The door tops and scuttle panel were cut back by two inches compared to the XK120, to allow a more modern positioning of the steering wheel. The angle of the front face of the doors (A-Post) was changed from 45 degrees to 90 degrees, to make access easier. The Drophead Coupé (DHC) had a bulkier lined canvas top that lowered onto the body behind the seats, a fixed windscreen integral with the body (the Roadster’s screen was removable), wind-up side windows, and a small rear seat. It also had a walnut-veneered dashboard and door cappings. The Fixed Head Coupé (FHC) shared the DHC’s interior trim and rear seat. The prototype Fixed Head Coupe retained the XK120 Fixed Head roof-profile, with the front wings and doors the same as the Drophead. In production, the roof was lengthened with the screen being placed further forward, shorter front wings, and longer doors. This resulted in more interior space, and more legroom. The XK140 was replaced by the XK150 in March 1957.

 photo Picture 497_zpsepx7qogh.jpg  photo Picture 498_zpsrqxkmklo.jpg

Although bearing a family resemblance to the earlier XK120 and XK140, the XK150, launched in the spring of 1957, was radically revised. A one-piece windscreen replaced the split screen, and the wing line no longer dropped so deeply at the doors. The widened bonnet opened down to the wings, and on the Roadster the windscreen frame was moved back 4 inches to make the bonnet longer. The XK140’s walnut dashboard was replaced by one trimmed in leather. On the early Drophead Coupés, the aluminium centre dash panel, which was discontinued after June 1958, had an X pattern engraving similar to the early 3.8 E-Type. Thinner doors gave more interior space. On the front parking lights, which were located atop the wings, a little red light reminded the driver the lights were on. Suspension and chassis were very similar to the XK140, and steering was by rack and pinion; power steering was not offered. The standard engine, the similar to the XK140, but with an new “B” type cylinder head, was the 3.4 litre DOHC Jaguar straight-6 rated at 180 SAE bhp at 5750 rpm but most cars were fitted with the SE engine whose modified cylinder head (B type) and larger exhaust valves boosted the power to 210 SAE bhp at 5500 rpm. Twin 1.75-inch (44 mm) SU HD6 carburettors were fitted. While the first XK150s were slower than their predecessors, the deficit was corrected in the spring of 1958 with a 3.4-litre “S” engine whose three 2-inch SU HD8 carburettors and straight-port cylinder head increased power to a claimed 250 SAE bhp. For 1960, the 3.4 litre engine was bored to 3.8 litres, rating this option at 220 hp in standard tune or 265 hp in “S” form. A 3.8 litre 150S could top 135 mph and go from 0–60 mph in around 7.0 seconds. Fuel economy was 18mpg. Four-wheel Dunlop 12 in disc brakes appeared for the first time although it was theoretically possible to order a car with drums. When leaving the factory the car originally fitted either 6.00 × 16 inch Dunlop Road Speed tyres as standard, or you could specify 185VR16 Pirelli Cinturato CA67 as a radial option on either 16 × 5K½ solid wheels (basic models) or 16 × 5K wire wheels. Production ended in October 1960, and totalled 2265 Roadsters, 4445 Fixed Head Coupés and 2672 Drophead Coupés.

 photo Picture 119_zpsb6gapjen.jpg

Jaguar launched 2 new models in 1961. One was the gargantuan Mark X, which replaced the elderly Mark IX at the top of the saloon car range, but it is the other one which is better remembered and loved even now, more than 50 years after stunning the world at the 1961 Geneva Show. That car, of course, is the famous E Type, considered by many to be Sir William Lyons’ greatest achievement. Not only did the car having stop-you-in-your-tracks gorgeous styling, but it had explosive performance (even if the 150 mph that was achieved in The Autocar’s Road Test is now known to have been with a little “help”), but it was the price that amazed people more than anything else. Whilst out of reach for most people, who could barely afford any new car, it was massively cheaper than contemporary Aston Martins and Ferraris, its market rivals. It was not perfect, though, and over the coming years, Jaguar made constant improvements. A 2+2 model joined the initial range of Roadster and Coupe, and more powerful and larger engines came when the 3.8 litre was enlarged to 4.2 litres, before more significant styling changes came with the 1967 Series 2 and the 1971 Series 3, where new front end treatments and lights were a consequence of legislative demands of the E Type’s most important market, America. There were several of these popular classics in the car park, including Series 1, and 2 Coupe models.

 photo Picture 606_zpsn6lpuaej.jpg  photo Picture 605_zpsisjqdvsg.jpg  photo Picture 504_zpsgd9sgzwv.jpg  photo Picture 390_zpsiwqmtvdb.jpg  photo Picture 619_zps1p0nj5uj.jpg

One of the most loved Jaguars of all time, both when it was new, and still now, is the Mark 2 saloon. Many will tell you that it is not the 3 Series BMW that “invented” the “compact sports saloon” car class, but this model, which dates back to 1959. A thorough revision of the small Jaguar saloon that had joined the range in 1955, the Mark 2 was notable in that it was the first car to use the Arabic numeral in its name, as opposed to the Roman numerals of the larger Jaguar models. At launch, the earlier model which had hitherto been known by its engine size was christened the Mark 1. Although clearly based on that car, the updated car looked significantly different, with an increase of 18% in cabin glass area greatly improving visibility. The car was re-engineered above the waistline. Slender front pillars allowed a wider windscreen and the rear window almost wrapped around to the enlarged side windows now with the familiar Jaguar D-shape above the back door and fully chromed frames for all the side windows. The radiator grille was amended and larger side, tail and fog lamps repositioned. Inside a new heating system was fitted and ducted to the rear compartment (although still notoriously ineffective). There was an improved instrument layout that became standard for all Jaguar cars until the XJ Series II of 1973. As well as the familiar 2.4 and 3.4 litre engines, what made this car particularly special was that it was also offered with the potent 220 bhp 3.8 litre unit that was fitted to the XK150 and which would later see service in the E Type. This gave the car a 0 – 60 time of around 8.5 seconds and a top speed of 125 mph. No wonder that the Mark 2 became popular as a get-away car for the criminal fraternity, and to keep up with and catch them, many police forces bought the car as well. With revised suspension and standard four wheel disc brakes, the car was effective on the track, taking plenty of class wins when new, and it is still popular in historic racing circles today. The quickest and most successful private entries came from John Coombs, a man with significant race experience who operated a large Jaguar dealership in Guildford. Coombs would undertake modifications to meet the demands of his customers, so not all the cars that he worked on are the same. Jaguar replaced the Mark 2 with simplified and slightly more cheaply finished 240 and 340 models, as an interim measure until an all-new model was ready to take over from them. The 3.8 litre disappeared from the range at this time, but in the 7 years it had been in production, it had been the best seller of the range, with around 30,000 cars produced, as compared to 28,666 of the 3.4 litre and 25,741 of the 2.4 litre model.

 photo Picture 123_zpssmp7n94c.jpg  photo Picture 618_zpshqolavqa.jpg

Although some of the older cars lived for a few months more, whilst production ramped up, the Jaguar XJ6 and Daimler Sovereign cars that were launched in 1968 were intended to replace all the saloon cars. Offered initially with a choice of 2.8 and 4.2 litre XK engines, these cars wowed the press and the public just as much as many of their predecessors had done, both for their excellence and the fact that they were priced well below their competitors. It was not long before there was a long waiting list. As if this was not enough, the new V12 engine which had first been seen in the Series 3 Jaguar E Type was slotted under the bonnet of the cars in Spring 1972, creating one of the fastest and most refined saloons available in the world. At the time, the fact that it would only average around 11 mpg was not an issue, but within 18 months, and the onset of the Yom Kippur war and the resultant fuel crisis of late 1973, suddenly these cars – desirable as they were – became rather harder to sell. A Series 2 model was launched in the autumn of 1973, with new front end styling and bumper height set to meet the requirements of the critical US market.

 photo Picture 505_zpsu3x2xzez.jpg

LAGONDA

The Lagonda 3-Litre was produced by Aston Martin Lagonda from 1953 to 1958, the second Lagonda model of the David Brown/Aston Martin era. The 3-Litre was fitted with a higher displacement 2.9 litre 140 bhp version of the twin overhead camshaft Lagonda Straight-6 engine designed by Walter Owen Bentley. Like its predecessor, the 3-Litre was available as a 4-seat 2-door coupé, built by David Brown subsidiary engineering company Tickford or as a drophead coupé produced by the same coach builders. A 4-door saloon was introduced in 1954 and the 2-door coupé was discontinued in 1956. In early 1955, the Mark II version introduced a floor-mounted gear lever. The car had a separate cruciform braced chassis and the suspension was independent all round, unusual for a car of its time, but utilising this form the previous 2.6 litre car, with the addition of a Jackall system. At the front there were coil springs and at the rear torsion bars and a swing axle. The Lockheed drum brakes, 12 in at the front and 11 in at the rear were servo assisted and steering was by a rack and pinion system with fore and aft adjustment on the steering column. The interior was luxurious with polished walnut for the dashboard and door trims and leather seats, individual in the front and a bench at the rear with a central fold down arm rest. There were also adjustable arm rests on the front doors. A heater, radio and built in hydraulic jacks were standard equipment. Single or two tone paint schemes were available. The 3-Litre was more expensive than its competitors and a total of just 270 of the three bodystyles were sold. The convertible ended production in 1957 (ca. 55 made), with the saloon following one year later.

 photo Picture 397_zps5bi7rwci.jpg  photo Picture 396_zps6dwgvybh.jpg

LANCIA

Designed by Vittorio Jano, the Lancia Aurelia was launched in 1950 and production lasted until the summer of 1958.The very first Aurelias were the B10 Berlinas. They used the first production V6 engine, a 60° design developed by Francesco de Virgilio who was, between 1943 and 1948 a Lancia engineer, and who worked under Jano. The first cars had a capacity of 1754 cc, and generated 56 hp. During production, capacity grew from 1.8 litres to 2.5 litres across six distinct Series. Prototype engines used a bore and stroke of 68 mm x 72 mm for 1569 cc; these were tested between 1946 and 1948. It was an all-alloy pushrod design with a single camshaft between the cylinder banks. A hemispherical combustion chamber and in-line valves were used. A single Solex or Weber carburettor completed the engine. Some uprated 1991 cc models were fitted with twin carburettors. At the rear was an innovative combination transaxle with the gearbox, clutch, differential, and inboard-mounted drum brakes. The front suspension was a sliding pillar design, with rear semi-trailing arms replaced by a de Dion tube in the Fourth series. The Aurelia was also first car to be fitted with radial tyres as standard equipment. Aurelia was named after Via Aurelia, a Roman road leading from Rome to France. The B21 version was released in 1951 with a larger 1991 cc 70 hp engine and a 2-door B20 GT coupé appeared that same year. It had a shorter wheelbase and a Ghia-designed, Pininfarina-built body. The same 1991 cc engine produced 75 hp in the B20. In all, 500 first series Aurelias were produced. This is generally believed to the first car to use the name GT, or Gran Turismo. The B20 GT Aurelia had a successful career in motorsport, too. In the 1951 Mille Miglia the 2-litre Aurelia, driven by Giovanni Bracco and Umberto Maglioli, finished 2nd beaten only by the Ferrari America. The same year it took first in class and 12th overall at LeMans. Modified Aurelias took the first three places on 1952’s Targa Florio with Felice Bonetto as the winner and another win on Lièges-Rome-Lièges of 1953. There was a B20 GT coupe model here.

 photo Picture 495_zpswr7wnban.jpg  photo Picture 496_zpss8b0pobp.jpg

This now rare car is a Flavia Berlina 2000. Named after the Via Flavia, the Roman road leading from Trieste (Tergeste) to Dalmatia, and launched at the 1960 Turin Motor Show, the Flavia was initially available only as a four-door saloon, featuring a 1.5 litre aluminium boxer engine, Dunlop disc brakes on all four wheels, front-wheel drive and front suspension by unequal-length wishbones. This model was soon joined by a two-door coupé, designed by Pininfarina on a shortened platform. Vignale built 1,601 two-door convertibles, while Zagato designed an outlandish-looking light weight two-door sport version. The sport version has twin carburettors for extra power (just over 100 hp); however, this version of the engine was notoriously difficult to keep in tune. Even the single-carburettor engine suffered from the problem of timing chain stretch. Sprockets with vernier adjusters were fitted to allow for chain wear, and the cam timing was supposed to be checked every 6000 miles. Early cars also suffered from corrosion of the cylinder heads caused by using copper gaskets on aluminium heads; nevertheless, the car was quite lively for its day, considering the cubic capacity. Later development of the engine included an enlargement to 1.8 litres, a mechanical injection version using the Kugelfischer system, and a five-speed manual gearbox. Towards the end of the 1960s, when Fiat took control of the company, the Vignale and Zagato versions were discontinued. The coupé and saloon versions received new bodywork, first presented in March 1969 at the Geneva Motor Show. The engine increased to 2.0 litres, available with carburettor or injection, and four- or five-speed gearbox. The 2.0 litre models were only made with revised Pininfarina Coupe and revised Berlina bodies.

 photo Picture 121_zpsdz0mpbiu.jpg  photo Picture 122_zpsimovsjan.jpg

Although their sales only amounted to a small fraction of the total number of first generation Delta cars produced, it is the Integrale models which are best known these days, and the ones you most often see. It may be over 20 years since the last one was produced, but everyone, even youngsters, knows what they are, and just about everyone lusts after them, declaring them as a clear candidate for their Dream Garage. I know that I would certainly have one in mine! Seen here were a number of examples, with Mike Butcher’s lovely car that I had first seen at the January photo shoot joined by some red models. The Integrale evolved over several years, starting off as the HF Turbo 4WD that was launched in April 1986, to homologate a new rally car for Lancia who needed something to fill the void left by the cancellation of Group B from the end of 1986. The Delta HF 4X4 had a four-wheel drive system with an in-built torque-splitting action. Three differentials were used. Drive to the front wheels was linked through a free-floating differential; drive to the rear wheels was transmitted via a 56/44 front/rear torque-splitting Ferguson viscous-coupling-controlled epicyclic central differential. At the rear wheels wa a Torsen (torque sensing) rear differential. It divided the torque between the wheels according to the available grip, with a maximum lockup of 70%. The basic suspension layout of the Delta 4WD remained the same as in the rest of the two-wheel drive Delta range: MacPherson strut–type independent suspension with dual-rate dampers and helicoidal springs, with the struts and springs set slightly off-centre. The suspension mounting provided more isolation by incorporating flexible rubber links. Progressive rebound bumpers were adopted, while the damper rates, front and rear toe-in and the relative angle between springs and dampers were all altered. The steering was power-assisted rack and pinion. The car looked little different from the front wheel drive models. In September 1987, Lancia showed a more sophisticated version of the car, the Delta HF Integrale 8V. This version incorporated some of the features of the Delta HF 4WD into a road car. The engine was an 8-valve 2 litre fuel injected 4-cylinder, with balancing shafts. The HF version featured new valves, valve seats and water pump, larger water and oil radiators, more powerful cooling fan and bigger air cleaner. A larger capacity Garrett T3 turbocharger with improved air flow and bigger inter-cooler, revised settings for the electronic injection/ignition control unit and a knock sensor, boosting power output to 185 bhp at 5300 rpm and maximum torque of 224 lb/ft at 3500 rpm. The HF Integrale had permanent 4-wheel drive, a front transversely mounted engine and five-speed gearbox. An epicyclic centre differential normally split the torque 56 per cent to the front axle, 44 per cent to the rear. A Ferguson viscous coupling balanced the torque split between front and rear axles depending on road conditions and tyre grip. The Torsen rear differential further divided the torque delivered to each rear wheel according to grip available. A shorter final drive ratio (3.111 instead of 2.944 on the HF 4WD) matched the larger 6.5×15 wheels to give 24 mph/1000 rpm in fifth gear. Braking and suspension were uprated to 284 mm ventilated front discs, a larger brake master cylinder and servo, as well as revised front springs, dampers, and front struts. Next update was to change the engine from 8 valves to 16. The 16v Integrale was introduced at the 1989 Geneva Motorshow, and made a winning debut on the 1989 San Remo Rally. It featured a raised centre of the bonnet to accommodate the new 16 valve engine, as well as wider wheels and tyres and new identity badges front and rear. The torque split was changed to 47% front and 53% rear. The turbocharged 2-litre Lancia 16v engine now produced 200 bhp at 5500 rpm, for a maximum speed of 137 mph and 0–100 km/h in 5.5 seconds. Changes included larger injectors, a more responsive Garrett T3 turbocharger, a more efficient intercooler, and the ability to run on unleaded fuel without modification. The first Evoluzione cars were built at the end of 1991 and through 1992. These were to be the final homologation cars for the Lancia Rally Team; the Catalytic Evoluzione II was never rallied by the factory. The Evoluzione I had a wider track front and rear than earlier Deltas. The bodyside arches were extended and became more rounded. The wings were now made in a single pressing. The front strut top mounts were also raised, which necessitated a front strut brace. The new Integrale retained the four wheel drive layout. The engine was modified to produce 210 bhp at 5750 rpm. External changes included: new grilles in the front bumper to improve the air intake for engine compartment cooling; a redesigned bonnet with new lateral air slats to further assist underbonnet ventilation; an adjustable roof spoiler above the tailgate; new five-bolt wheels with the same design of the rally cars; and a new single exhaust pipe. Interior trim was now grey Alcantara on the Recaro seats, as fitted to the earlier 16V cars; leather and air conditioning were offered as options, as well as a leather-covered Momo steering wheel. Presented in June 1993, the second Evolution version of the Delta HF Integrale featured an updated version of the 2-litre 16-valve turbo engine to produce more power, as well as a three-way catalyst and Lambda probe. A Marelli integrated engine control system with an 8 MHz clock frequency which incorporates: timed sequential multipoint injection; self-adapting injection times; automatic idling control; engine protection strategies depending on the temperature of intaken air; Mapped ignition with two double outlet coils; Three-way catalyst and pre-catalyst with lambda probe (oxygen sensor) on the turbine outlet link; anti-evaporation system with air line for canister flushing optimised for the turbo engine; new Garrett turbocharger: water-cooled with boost-drive management i.e. boost controlled by feedback from the central control unit on the basis of revs/throttle angle; Knock control by engine block sensor and new signal handling software for spark park advance, fuel quantity injected, and turbocharging. The engine now developed 215 PS as against 210 PS on the earlier uncatalysed version and marginally more torque. The 1993 Integrale received a cosmetic and functional facelift that included. new 16″ light alloy rims with 205/45 ZR 16 tyres; body colour roof moulding to underline the connection between the roof and the Solar control windows; aluminium fuel cap and air-intake grilles on the front mudguards; red-painted cylinder head; new leather-covered three-spoke MOMO steering wheel; standard Recaro seats upholstered in beige Alcantara with diagonal stitching. In its latter years the Delta HF gave birth to a number of limited and numbered editions, differing mainly in colour, trim and equipment; some were put on general sale, while others were reserved to specific markets, clubs or selected customers.

 photo Picture 164_zpsbes1ymjm.jpg  photo Picture 165_zpshiy9t5cx.jpg

LOTUS

This is a Mark VI. First owned by Chris Lindsay of Downpatrick, Northern Ireland and registered for the road SZ11, it was painted British Racing Green and powered by a Ford EOTA four cylinder 1508cc Consul engine. It was raced by the owner and Leslie Innis at Kirkistown, Dundrod, Craigantlet Hill Climb and Wicklow during the 1954, 1955 and 1956 seasons in various specifications. With the Ford Consul unit normally aspirated on single and twin carburettors, and also blown with a front mounted supercharger and finally with one of the then new FWA Coventry Climax engines fitted. Also latterly with wire wheels to the front and sometimes with twin wheels bare of wings to the rear. The car gets a mention and is pictured in the Autosport issues of both 25th June 1954 (Kirkistown) and 20th May 1955 (Dundrod). On 12th June 1958 the car was re-registered SZ9119 (as the owner wished to retain the SZ11 mark) and sold less engine and gearbox. The new owner was not known and the car was ‘lost’ until it re-appears competing in a Seven Oaks & District Motor Club Driving Test with a R. H. Coman on 25th March 1962 with what is probably a 1172cc Ford side valve engine. According to the Continuation logbook the next that is known of the car is on 11th December 1974 when owned by Robert James Nield of Cambridge with a Ford 1172cc side valve engine. According to the logbook further owners were: John Frederick Dixon Ashby of Eastbourne (27th July 1977), Stephen Charles Goddard of Eastbourne (n.d.), Gavin John Parrish of Hailsham (3rd October 1980), Brien Gibson of Wakefield (14th November 1981, Miles Renton Skinner & Vincent Haydon (12th April 1999) and finally the current owner (2nd September 2002). Whilst the condition of the car looked to be satisfactory when the current owner bought it, all the panel work was new and in much heavier 16 gauge aluminium and the chassis was in need of proper repair. In addition the owner thought it best to revert to the 1954 specification of 1508cc Ford Consul engine and (MG TC?) 4-speed gearbox. The ground-up restoration was carried out by F. J. Fairman near Bodmin, Cornwall. The appropriate engine and gearbox were sourced and a special 4.125:1 CW&P was made for the car along with six other sets by Guest Gears of Chesham.

 photo Picture 483_zpsqywuyjmc.jpg

The original Elan was introduced in 1962 as a roadster, although an optional hardtop was offered in 1963 and a coupé version appeared in 1965, and there were examples of all of these here. The two-seat Lotus Elan replaced the elegant, but unreliable and expensive to produce Lotus Elite. It was the first Lotus road car to use a steel backbone chassis with a fibreglass body. At 1,600 lb (726 kg), the Elan embodied the Colin Chapman minimum weight design philosophy. Initial versions of the Elan were also available as a kit to be assembled by the customer. The Elan was technologically advanced with a DOHC 1557 cc engine, 4-wheel disc brakes, rack and pinion steering, and 4-wheel independent suspension. Gordon Murray, who designed the spectacular McLaren F1 supercar, reportedly said that his only disappointment with the McLaren F1 was that he couldn’t give it the perfect steering of the Lotus Elan. This generation of the two-seater Elan was famously driven by the character Emma Peel on the 1960s British television series The Avengers. The “Lotus TwinCam” engine was based on Ford Kent Pre-Crossflow 4-cylinder 1498 cc engine, with a Harry Mundy-designed 2 valve alloy chain-driven twin-cam head. The rights to this design was later purchased by Ford, who renamed it to “Lotus-Ford Twin Cam”. It would go on to be used in a number of Ford and Lotus production and racing models. Seen here were a number of examples.

 photo Picture 433_zpspvti7vln.jpg  photo Picture 432_zpsfzvyhzj0.jpg  photo Picture 435_zpsruxc0oko.jpg  photo Picture 450_zps2wfkjvrg.jpg  photo Picture 145_zpspqvmt9vq.jpg photo Picture 499_zpsctafsq8c.jpg

There has only ever been one front wheel drive model with Lotus badges on it, the “M100” Elan sports car. Like many specialist produced cars of the era, there was a long wait for this car form when news first broke that it was under development to the actual release of cars people could buy. The M100 Elan story goes back to 1986 and the purchase of Lotus by General Motors which provided the financial backing to develop a new, small, affordable car in the same spirit as the original Elan, the last of which had been built in December 1972. A development prototype, the M90 (later renamed the X100) had been built a few years earlier, using a fibreglass body designed by Oliver Winterbottom and a Toyota-supplied 1.6-litre engine and transmission. Lotus was hoping to sell the car through Toyota dealerships worldwide, badged as a Lotus Toyota, but the project never came to fruition and the prototype was shelved, although Lotus’s collaboration with Toyota had some influence on the design of the Toyota MR2. The idea of a small roadster powered by an outsourced engine remained, however, and in late 1986 Peter Stevens’s design for the Type M100 was approved and work began by Lotus engineers to turn the clay styling buck into a car that could be built. This process was completed in just under three years, a remarkably short time from design to production car. The M100 Elan was conceived as a mass-market car and in particular one that would appeal to US buyers. Consequently, Lotus put an enormous effort (for such a small firm) into testing the car; over a two-year period 19 crash cars and 42 development vehicles were built, logging nearly a million test miles in locations from Arizona to the Arctic. The Elan was driven at racing speeds for 24 hours around the track at Snetterton. Finally each new car was test-driven for around 30 miles at Lotus’s Hethel factory to check for any manufacturing defects before being shipped to dealers. The choice of front-wheel drive is unusual for a sports car, but according to Lotus sales literature, “for a given vehicle weight, power and tyre size, a front wheel drive car was always faster over a given section of road. There were definite advantages in traction and controllability, and drawbacks such as torque steer, bump steer and steering kickback were not insurmountable.” This was the only front-wheel-drive vehicle made by Lotus. Every model made since the M100 Elan, such as the Lotus Elise, has been rear-wheel drive. The M100 Elan’s cornering performance was undeniable (on release the Elan was described by Autocar magazine as “the quickest point to point car available”). Press reaction was not uniformly positive, as some reviewers found the handling too secure and predictable compared to a rear-wheel-drive car. However, the Elan’s rigid chassis minimised roll through the corners and has led to its description as ‘the finest front wheel drive [car] bar none’. Unlike the naturally aspirated version, the turbocharged SE received power steering as standard, as well as tyres with a higher ZR speed rating. The M100 Elan used a 1,588 cc double overhead camshaft (DOHC) 16-valve engine, sourced from the Isuzu Gemini and extensively modified by Lotus (a third generation of this engine was later used in the Isuzu Impulse), which produced 162 hp. 0–60 acceleration time was measured by Autocar and Motor magazine at 6.5 seconds, and a top speed of 137 mph was recorded. Significant differences in the Isuzu-Lotus engine from the original include a new exhaust system, re-routed intake plumbing for better thermodynamic efficiency, improved engine suspension, and major modifications to the engine control unit to improve torque and boost response. Almost all models featured an IHI turbocharger. Two variants were available at launch, the 130 bhp Elan 1.6 (retailing at £17,850) and the 162 bhp Turbo SE (£19,850). Initial sales were disappointing, perhaps because its launch coincided with a major economic recession in the UK and USA, and perhaps also because it coincided with the cheaper Mazda MX-5 which was arguably similar in concept, though the MX-5 was quite intentionally nostalgic and old fashioned (apeing the original Elan), while the M100 was deliberately futuristic, modern and forward looking. The Elan was regarded as a good product in a bad market, but was also very expensive to make (the cost to design and produce the dashboard alone was more than the total cost of the Excel production line), and sales figures were too low to recoup its huge development costs. Altogether 3,855 Elans were built between November 1989 and July 1992, including 129 normally aspirated (non-turbo) cars. 559 of them were sold in the US, featuring a ‘stage 2 body’ which had a different rear boot spoiler arrangement together with a lengthened nose to accommodate a USA-compliant crash structure and airbag, and 16-inch wheels (optional in most markets, standard in the U.S.) instead of 15-inch as on the UK model. A limited edition of 800 Series 2 (S2) M100 Elans was released during the Romano Artioli era (produced June 1994–September 1995) when it was discovered that enough surplus engines were available to make this possible. According to Autocar magazine, the S2 addressed some of the concerns over handling, but power was reduced to 155 bhp and the 0–60 acceleration time increased to 7.5 seconds, due to the legislative requirement to fit a catalytic converter in all markets. The S2s have very similar performance to the USA vehicles, having an identical engine management system calibration and a slightly lower overall vehicle weight.

 photo Picture 455_zpsxo5knhds.jpg

One of the shortest lived Lotus models was the modern Europa. Based on the Elise, the car was officially introduced at the 2006 Geneva Motor Show. Lotus Europa S production commenced in July 2006 and continued to 2010. The engine was a 2.0 litre turbo delivering 197 bhp at 5,400 rpm, with a maximum torque of 272 N·m (201 lb·ft) at 5,400 rpm, delivering 0-60 mph in 5.6 seconds and a maximum speed of 143 mph. Lotus did not export the Europa S to the USA, but despite this, the American manufacturer Dodge developed an electric vehicle based on the Europa, known as the Dodge Circuit, which it planned to bring to the US market by 2010, but the project was cancelled in May 2009. The Europa SE was unveiled at the Geneva International Motor Show on 5 March 2008. The Europa was an upgraded model with more comfort in mind, intended to bring in more customers. The Europa S motor was modified to bring power to 222 bhp and torque to 300 N·m (221 lb·ft). Neither version was a success, though and the Europa was discontinued in 2010 after a short model life.

 photo Picture 136_zpsf8cnoroh.jpg

Final Lotus I spotted was one of the current Exige cars. The early models started out as an Elise with a fixed roof and more power, but in recent times, the differences between the two have become significantly greater, with a different body and the Exige using a 3.5 litre Toyota V6 engine to give it more power than you find in the Elise.

 photo Picture 510_zpsshmwaqsr.jpg

MERCEDES-BENZ

Oldest Mercedes here was a nice example of the “Ponton” series, the main stay of the range from their introduction in 1953 throughout the rest of the 50s. The Ponton was Daimler-Benz’s first totally new Mercedes-Benz series of passenger vehicles produced after World War II. In July 1953, the cars replaced the pre-war-designed Type 170 series and were the bulk of the automaker’s production through 1959, though some models lasted through 1962. The nickname comes from the German word for “pontoon” and refers to one definition of pontoon fenders — and a postwar styling trend, subsequently called ponton styling. A bewildering array of models were produced, with a mixture of 180 four and 220 six cylinder engines, with Mercedes W numbers of W120 for the 4 cylinder cars, and W180 for the 220s, as well as W105 for the little known or seen 219, a six cylinder model with a smaller engine. Mercedes introduced fuel injection to the 220 model in 1958, creating the W128 220SE, and the company was rare among car makers in the 50s in offering a diesel engine, so 180D models were also offered.

 photo Picture 473_zpsdw5vr3qk.jpg  photo Picture 609_zpsok2xztvh.jpg

Also here was a 190SL. Produced between May 1955 and February 1963, having first been seen in prototype at the 1954 New York Auto Show, this was designed as a more affordable sports car than the exclusive and rather pricey 300SL, sharing its basic styling, engineering, detailing, and fully independent suspension. While both cars had double wishbones in front and swing axles at the rear, the 190 SL did not use the 300 SL’s purpose-built W198 tubular spaceframe. Instead, it was built on a shortened monocoque R121 platform modified from the W120 saloon. The 190 SL was powered by a new, slightly oversquare 105 PS Type M121 1.9 litre four cylinder engine. Based on the 300 SL’s straight six, it had an unchanged 85 mm bore and 4.3 mm reduced 83.6 mm stroke, was fitted with twin-choke dual Solex carburettors, and produced 120 gross hp. In detuned form, it was later used in the W120 180 and W121 190 models.

 photo Picture 120_zpsdgy8sfdh.jpg

Next Mercedes to attract my camera was this 280SL “Pagoda”, from the series of W113 cars. By 1955, Mercedes-Benz Technical Director Prof. Fritz Nallinger and his team held no illusions regarding the 190 SL’s lack of performance, while the high price tag of the legendary 300 SL supercar kept it elusive for all but the most affluent buyers. Thus Mercedes-Benz started evolving the 190 SL on a new platform, model code W127, with a fuel-injected 2.2 litre M127 inline-six engine, internally denoted as 220SL. Encouraged by positive test results, Nallinger proposed that the 220SL be placed in the Mercedes-Benz program, with production commencing in July 1957. However, while technical difficulties kept postponing the production start of the W127, the emerging new S-Class W112 platform introduced novel body manufacturing technology altogether. So in 1960, Nallinger eventually proposed to develop a completely new 220SL design, based on the “fintail” W 111 sedan platform with its chassis shortened by 11.8 in, and technology from the W112. This led to the W113 platform, with an improved fuel-injected 2.3 litre M127 inline-six engine and the distinctive “pagoda” hardtop roof, designated as 230 SL. The 230 SL made its debut at the prestigious Geneva Motor Show in March 1963, where Nallinger introduced it as follows: “It was our aim to create a very safe and fast sports car with high performance, which despite its sports characteristics, provides a very high degree of travelling comfort”. The W113 was the first sports car with a “safety body,” based on Bela Barényi’s extensive work on vehicle safety: It had a rigid passenger cell and designated crumple zones with impact-absorbing front and rear sections built into the vehicle structure. The interior was “rounded,” with all hard corners and edges removed, as in the W111 sedan. Production of the 230 SL commenced in June 1963 and ended on 5 January 1967. Its chassis was based on the W 111 sedan platform, with a reduced wheelbase by 11.8 in, recirculating ball steering (with optional power steering), double wishbone front suspension and an independent single-joint, low-pivot swing rear-axle with transverse compensator spring. The dual-circuit brake system had front disc brakes and power-assisted rear drum brakes. The 230 SL was offered with a 4-speed manual transmission, or an optional, very responsive fluid coupled (no torque converter) 4-speed automatic transmission, which was popular for US models. From May 1966, the ZF S5-20 5-speed manual transmission was available as an additional option, which was particularly popular in Italy. The 2,308 cc M127.II inline-six engine with 150 hp and 145 lb/ft torque was based on Mercedes-Benz’ venerable M180 inline-six with four main bearings and mechanical Bosch multi-port fuel injection. Mercedes-Benz made a number of modifications to boost its power, including increasing displacement from 2,197 cc, and using a completely new cylinder head with a higher compression ratio (9.3 vs. 8.7), enlarged valves and a modified camshaft. A fuel injection pump with six plungers instead of two was fitted, which allowed placing the nozzles in the cylinder head and “shooting” the fuel through the intake manifold and open valves directly into the combustion chambers. An optional oil-water heat exchanger was also available. Of the 19,831 230 SLs produced, less than a quarter were sold in the US. Looking identical, the 250 SL was introduced at the 1967 Geneva Motor Show. Production had already commenced in December 1966 and ended in January 1968. The short one-year production run makes the 250 SL the rarest of the W113 series cars. The 250 SL retained the stiffer suspension and sportier feel of the early SLs, but provided improved agility with a new engine and rear disc brakes. Range also improved with increased fuel tank capacity from 65 litres to 82. Like its predecessor, the 250 SL was offered with a 4-speed automatic transmission, and 4-speed or ZF 5-speed manual transmissions. For the first time, an optional limited slip differential was also available. The main change was the use of the 2,496 cc M129.II engine with a larger stroke, increased valve ports, and seven main bearings instead of four. The nominal maximum power remained unchanged at 150 hp, but torque improved from 145 lb/ft to 159 lb/ft. Resiliency also improved with a new cooling water tank (“round top”) with increased capacity and a standard oil-water heat exchanger. The 250 SL also marked the introduction of a 2+2 body style, the so-called “California Coupé”, which had only the removable hardtop and no soft-top: a small fold-down rear bench seat replaced the soft-top well between passenger compartment and boot. It is estimated that only 10% of the 250SLs that were brought into America were California Coupes. Of the 5,196 250 SLs produced, more than a third were sold in the US.The 280 SL was introduced in December 1967 and continued in production through 23 February 1971, when the W 113 was replaced by its successor, the entirely new and substantially heavier R107 350 SL. The main change was an upgrade to the 2,778 cc M130 engine with 170 hp and 180 lb/ft, which finally gave the W 113 adequate power. The performance improvement was achieved by increasing bore by 4.5 mm (0.2 in), which stretched the limits of the M180 block, and required pairwise cylinder casts without cooling water passages. This mandated an oil-cooler, which was fitted vertically next to the radiator. Each engine was now bench-tested for two hours prior to being fitted, so their power specification was guaranteed at last. The M130 marked the final evolution of Mercedes-Benz’ venerable SOHC M180 inline-six, before it was superseded by the entirely new DOHC M110 inline-six introduced with R107 1974 European 280 SL models. For some time, it was also used in the W 109 300 S-Class, where it retired the expensive 3 liter M189 alloy inline-six. Over the years, the W 113 evolved from a sports car into a comfortable grand tourer, and US models were by then usually equipped with the 4-speed automatic transmission and air conditioning. Manual transmission models came with the standard 4-speed or the optional ZF 5-speed, which was ordered only 882 times and thus is a highly sought-after original option today. In Europe, manual transmissions without air conditioning were still the predominant choice. Of the 23,885 280 SLs produced, more than half were sold in the US.

 photo Picture 459_zpskma1sgia.jpg

Mercedes-Benz introduced the W123 four-door versions on 29 January 1976. While there were some technical similarities to their predecessors, the new models were larger in wheelbase and exterior dimensions. The styling was also updated, although stylistic links with the W114 / W115 were maintained. Initially, all models except 280/280E featured quad unequal-size round headlights and the latter large rectangular units. When facelifted, these units became standard across the range. All W115 engines were carried over, with the 3-litre 5-cylinder diesel model being renamed from “240D 3.0” to “300D” (as it had already been called before in North American markets). The only new engine was the 250’s 2,525 cc inline-six (Type M123, a short-stroke version of the 2.8-litre six Type M110) that replaced the old 2,496 cc Type M114 “six”. In the spring of 1976, a Coupé version was introduced on a shorter wheelbase than the saloon (106.7 in versus 110.0 in. This W123C/CE was available as a 230C (later 230CE) and as a 280C/CE in most markets; in North America there were additional 300CD versions with naturally aspirated, later turbocharged 3-litre diesel engines. In North America, buyers favored diesel engines for upmarket cars, while CAFE legislation meant that Mercedes-Benz North America had to lower their corporate average fuel economy. This led to the introduction of a few diesel models only sold in the United States. It is a tribute to the car’s instant popularity – and possibly to the caution built into the production schedules – that nine months after its introduction, a black market had developed in Germany for Mercedes-Benz W123s available for immediate delivery. Customers willing to order new cars from their local authorised dealer for the recommended list price faced waiting times in excess of twelve months. Meanwhile, models that were barely used and were available almost immediately commanded a premium over the new price of around DM 5,000. From August 1976, long-wheelbase versions (134.8 in) were produced. These were available as 7/8 seater saloons with works bodies or as a chassis with complete front body clip, the latter serving as the base for ambulance and hearse bodies by external suppliers like Binz or Miesen. These “Lang” versions could be ordered as 240D, 300D and 250 models. At the Frankfurt Auto Show in September, 1977 the W123T estate was introduced; the T in the model designation stood for “Touring and Transport”. All engines derivative except “200TD” were available in the range. T production began in March, 1978 in Mercedes’ Bremen factory. It was the first factory-built Mercedes-Benz estate, previous estates had been custom-built by external coachbuilders, such as Binz. In early 1979, the diesel models’ power output was increased; power rose from 54 hp to 59 hp in the 200D, from 64 hp to 71 hp in the 240D and from 79 hp to 87 hp in the 300D; at the same time, the 220D went out of production. The first Mercedes turbo diesel production W123 appeared in September, 1981. This was the 300 TD Turbodiesel, available with automatic transmission only. In most markets, the turbocharged 5-cylinder 3-litre diesel engine (Type OM617.95) was offered only in the T body style, while in North America it was also available in saloon and coupé guises. June 1980 saw the introduction of new four-cylinder petrol engines (Type M102). A new 2-litre four with shorter stroke replaced the old M115, a fuel-injected 2.3-litre version of this engine (in 230E/TE/CE) the old carburettor 230. Both engines were more powerful than their predecessors. In 1980/81, the carburettor 280 versions went out of production; the fuel-injected 280E continued to be offered. In September 1982, all models received a mild facelift. The rectangular headlights, previously fitted only to the 280/280E, were standardised across the board, as was power steering. Since February 1982, an optional five-speed manual transmission was available in all models (except the automatic-only 300 turbodiesel). W123 production ended in January, 1986 with 63 final T-models rolling out. Most popular single models were the 240D (455,000 built), the 230E (442,000 built), and the 200D (378,000 built). The W123 introduced innovations including ABS (optional from August, 1980), a retractable steering column and an airbag for the driver (optional from 1982). Power (vacuum servo) assisted disc brakes were standard on all W123s. Available options included MB-Tex (Mercedes-Benz Texturized Punctured Vinyl) upholstery or velour or leather upholstery, interior wood trim, passenger side exterior mirror (standard on T models), 5-speed manual transmission (European market only), 4-speed automatic transmission (standard in turbodiesel models), power windows with rear-seat switch cut-outs, vacuum powered central locking, rear-facing extra seats (estate only), Standheizung (prestart timer-controlled engine heating), self-locking differential, sun roof, air conditioning, climate control, “Alpine” horn (selectable quieter horn), headlamp wipers (European market only), Tempomat (cruise control), power steering (standard after 1982/08), seat heating, catalytic converter (available from 1984 for California only, from fall (autumn) 1984 also in Germany for the 230E of which one thousand were built). These days, the cars are very popular “youngtimer” classics, with all models highly rated.

 photo Picture 516_zpskfhiw4rv.jpg

MG

Whilst the TC, the first postwar MG and launched in 1945, was quite similar to the pre-war TB, sharing the same 1,250 cc pushrod-OHV engine, it had a slightly higher compression ratio of 7.4:1 giving 54.5 bhp at 5200 rpm. The makers also provided several alternative stages of tuning for “specific purposes”. It was exported to the United States, even though only ever built in right-hand drive. The export version had slightly smaller US specification sealed-beam headlights and larger twin rear lights, as well as turn signals and chrome-plated front and rear bumpers. The body of the TC was approximately 4 inches wider than the TB measured at the rear of the doors to give more cockpit space. The overall car width remained the same resulting in narrower running boards with two tread strips as opposed to the previous three. The tachometer was directly in front of the driver, while the speedometer was on the other side of the dash in front of the passenger. 10,001 TCs were produced, from September 1945 to Nov. 1949, more than any previous MG model. It cost £527 on the home market in 1947.

 photo Picture 449_zpsolecurgn.jpg

Following on from the TC, the 1950 TD combined the TC’s drivetrain, a modified hypoid-geared rear axle, the MG Y-type chassis, a familiar T-type style body and independent suspension using coil springs from the MG Y-type saloon. A 1950 road-test report described as “most striking” the resulting “transformation … in the comfort of riding”. Also lifted from the company’s successful 1¼-litre YA saloon for the TD was the (still highly geared) rack and pinion steering. In addition the TD featured smaller 15-inch disc type road wheels, a left-hand drive option and standard equipment bumpers and over-riders. The car was also 5 inches wider with a track of 50 inches. For the driver the “all-weather protection” was good by the standards of the time. For night driving, instrument illumination was “effective but not dazzling, by a pale green lighting effect”. There was still no fuel gauge, but the 12 gallon tank capacity gave a range between refuelling stops of about 300 miles and a green light on the facia flashed a “warning” when the fuel level was down to about 2½ gallons. In 1950 the TD MkII Competition Model was introduced, produced alongside the standard car, with a more highly tuned engine using an 8.1:1 compression ratio giving 57 bhp at 5,500 rpm. The higher compression ratio engine was offered with export markets in mind, and would not have been suitable for the UK, where thanks to the continued operation of wartime fuel restrictions, buyers were still limited to 72 octane “Pool petrol”. The TD MkII also featured twin fuel pumps, additional Andrex dampers, and a higher ratio rear-axle. Nearly 30,000 TDs had been produced, including about 1700 Mk II models, when the series ended in 1953 with all but 1656 exported, 23,488 of them to the US alone.

 photo Picture 388_zpsnpv2530r.jpg

Final version of the popular T Series sports car was the TF, launched on the 15 October 1953. Although it looked quite a bit different, this was really just a facelifted TD, fitted with the TD Mark II engine, headlights faired into the wings, a sloping radiator grille concealing a separate radiator, and a new pressurised cooling system along with a simulated external radiator cap. This XPAG engine’s compression ratio had been increased to 8.1:1 and extra-large valves with stronger valve springs and larger carburettors increased output to 57.5 bhp at 5,500 rpm. In mid-1954 the engine capacity was increased by 17 per cent to 1466 cc and designated XPEG. The bore was increased to 72 mm and compression raised to 8.3:1 giving 63 bhp at 5,000 rpm and a 17 per cent increase in torque. The car was now designated TF1500, and externally distinguished by a cream background enamel nameplate on both sides of the bonnet, placed just to the rear of the forward bonnet-release buttons. Production ended at chassis number TF10100 on 4 April 1955 after 9,602 TFs had been manufactured, including two prototypes and 3,400 TF1500s. A number of replica models have been built in more recent years, with the Naylor of the mid 1980s being perhaps the best known.

 photo Picture 511_zpszrryr5p8.jpg

I am not sure today’s 1 or 3 Series driver would be that enamoured of the prospect of one of these YB Saloons as his or her daily driver, but the reality is that this was a sports saloon of its era which would have appealed to the same sort of buyer who wanted something that was a cut above a regular Morris, Ford or Hillman. The Y Series was conceived before the war. when MG had sought to supplement its popular range of ‘Midget’ sports cars with three saloons of various sizes and engine capacities. These were the “S”, “V” and “W” models, seen above and introduced in the mid 1930s. But these were large and costly machines with the SA and WA aimed at the Jaguar Saloons of the era and even the VA having an engine of 1,548 cc, so the next development was to produce another saloon, of smaller engine capacity than the “VA”. To keep costs down, the Cowley design office turned to Morris’s Ten-Four Series M saloon, which was introduced during 1938, and the smaller Eight Series E which was launched at the Earls Court Motor show the same year for componentry. The prototype “Y” Type was constructed in 1939 with an intended launch at the Earls Court Motor show, the following year. However, as a result of the hostilities the public had to wait a further eight years before production commenced. All prototypes originating from the MG Factory at Abingdon were allocated numbers prefixed by the letters EX; this practice continued until the mid-fifties. Although the prototype of the MG “Y” Type was primarily a Morris concept from Cowley, much of the ‘fleshing out’ was completed at Abingdon. As a result it was allocated the prototype number EX.166. When the car was launched, the MG Sales Literature stated “A brilliant new Member of the famous MG breed. This new One and a Quarter Litre car perpetuates the outstanding characteristics of its successful predecessors – virile acceleration, remarkable ‘road manner,’ instant response to controls, and superb braking. A ‘lively’ car, the new One and a Quarter Litre provides higher standards of performance.” The UK price of the car was £525.0.0 ex works plus purchase tax of £146.11.8d. Gerald Palmer was responsible for body styling and, in essence he took a Morris Eight Series E four-door bodyshell in pressed steel, added a swept tail and rear wings, and also a front-end MG identity in the shape of their well-known upright grille. The MG 1 1/4 Litre Saloon would retain the traditional feature of separately mounted headlights at a time when Morris was integrating headlamps into the front wing and it was also to have a separate chassis under this pressed-steel bodywork, even though the trend in the industry was towards ‘unitary construction’. The car featured an independent front suspension layout designed by Gerald Palmer and Jack Daniels (an MG draughtsman). Independent front suspension was very much the latest technology at the time and the “Y” Type became the first Nuffield product and one of the first British production cars with this feature. The separate chassis facilitated the ‘Jackall System’, which consisted of four hydraulically activated rams that were bolted to the chassis, two at the front and two at the rear. The jacks were connected to a Jackall Pump on the bulkhead that enabled the front, the back, or the entire car to be raised to facilitate a wheel change. The power unit was a single carburettor version of the 1,250 cc engine used in the latest MG-TB. This engine, the XPAG, went on to power both the MG-TC and MG-TD series. The MG Y Type saloon developed 46 bhp at 4,800 rpm, with 58.5 lb ft of torque at 2,400 rpm, the YT Tourer (with the higher lift camshaft and twin carburettors) develop 54 bhp. With the exception of only the Rover Ten, which managed 2 additional bhp, the “Y” Type had more power than other British saloons of similar size. Indeed at the time many manufacturers were still producing side valve engines. The MG “Y” Type had an extremely high standard of interior furnishing and finish, in accordance with the best British traditions. The facing surfaces of all seats were leather, as were the door pockets. The rear of the front seats were made from Rexine, a form of leathercloth, which matched the leather fronts, as were the door panels themselves. A roller blind was fitted to the rear window as an anti-glare mechanism (not a privacy screen as many think). Considerable use of wood was made in the internal trim of the “Y” Type. Door windows, front and rear screens were framed in burr walnut, the instrument panel set in bookmatched veneer offsetting the passenger side glove box. The speedometer, clock, and three-gauge cluster of oil pressure, fuel and ammeter, were set behind octagonal chrome frames, a subtle iteration of the MG badge theme later replicated in the MG TF. An open topped YT Tourer was produced but fewer than 1000 of these were made. Production of the Y Type ended in 1953, when the car was replaced by the ZA Magnette. Just 8336 were made over its 6 year life.

 photo Picture 387_zpsaqpufdyq.jpg

The MGA replaced the long running T Series sports cars and presented a complete styling break from MG’s earlier sports cars. Announced on 26 September 1955, the car was officially launched at the Frankfurt Motor Show. A total of 101,081 units were sold through the end of production in July 1962, the vast majority of the 58.750 cars made were exported. Only 5869 cars were sold on the home market, the lowest percentage of any British car. It was replaced by the MGB. The MGA design dates back to 1951, when MG designer Syd Enever created a streamlined body for George Philips’ TD Le Mans car. The problem with this car was the high seating position of the driver because of the limitations of using the TD chassis. A new chassis was designed with the side members further apart and the floor attached to the bottom rather than the top of the frame sections. A prototype was built and shown to the BMC chairman Leonard Lord. He turned down the idea of producing the new car as he had just signed a deal with Donald Healey to produce Austin-Healey cars two weeks before. Falling sales of the traditional MG models caused a change of heart, and the car, initially to be called the UA-series, was brought back. As it was so different from the older MG models it was called the MGA, the “first of a new line” to quote the contemporary advertising. There was also a new engine available, therefore the car did not have the originally intended XPAG unit but was fitted with the BMC corporate B-Series type allowing a lower bonnet line. The MGA convertible had no exterior door handles, however the coupe did. It was a body-on-frame design and used the straight-4 1489cc “B series” engine from the MG Magnette saloon driving the rear wheels through a 4-speed gearbox. Suspension was independent with coil springs and wishbones at the front and a rigid axle with semi-elliptic springs at the rear. Steering was by rack and pinion. The car was available with either wire-spoked or steel-disc road wheels. The 1489 cc engine fitted with twin H4 type SU Carburettors produced 68 hp at first, but was soon uprated to 72 hp. Lockheed hydraulic drum brakes were used on all wheels. A high-performance Twin-Cam model was added for 1958. It used a high-compression (9.9:1 later 8.3:1) DOHC aluminium cylinder head version of the B-Series engine producing 108 hp. Due to detonation problems, a 100 bhp low-compression version was introduced later. Four-wheel disc brakes by Dunlop were fitted, along with Dunlop peg drive knock-off steel wheels similar to wheels used on racing Jaguars, unique to the Twin-Cam and “DeLuxe” MGA 1600 and 1600 MkII roadsters. These wheels and chassis upgrades were used on a small number of the “DeLuxe” models built after Twin-Cam production came to a halt. Aside from the wheels, the only outside identifier was a “Twin-Cam” logo near the vent aside the bonnet. A careful look at the rear wheel vents would also reveal another feature unique to Twin-Cam and DeLuxe: those 4 wheel Dunlop disc brakes . The temperamental engine was notorious for warranty problems during the course of production, and sales dropped quickly. The engine suffered from detonation and burnt oil. Most of the problems with the Twin-Cam engine were rectified with the low-compression version, but by then the damage had been done. Many restored Twin-Cams are running more reliably today than they ever did during production. The Twin-Cam was dropped in 1960 after 2,111 had been produced. Production ended in April 1960, but had slowed to a trickle long before. In May 1959 the standard cars also received an updated engine, now at 1588 cc producing 79.5 bhp . At the front disc brakes were fitted, but drums remained in the rear. Externally the car was very similar to the 1500 with differences including: amber or white (depending on market) front turn indicators shared with white parking lamps, separate stop/tail and turn lamps in the rear, and 1600 badging on the boot and the cowl. 31,501 of these were produced in less than three years. A number of 1600 De Luxe versions were produced with leftover special wheels and four-wheel disc brakes of the departed Twin-Cam, or using complete modified Twincam chassis left redundant by the discontinuance of that model. Seventy roadsters and 12 coupés were built. The engine size was increased again to 1622 cc by increasing the bore from 75.4 mm to 76.2 mm for the 1961 Mark II MGA. The cylinder head was also revised with larger valves and re-engineered combustion chambers. Horsepower increased to 90 bhp. It also had a higher ratio 4:1 rear axle, which made for more relaxed high-speed driving. An inset grille and Morris Mini tail lamps appearing horizontally below the deck lid were the most obvious visual changes. 8,198 Mark II roadsters and 521 coupés were built. As with the 1600 De Luxe, there were also some Mark II De Luxe versions; 290 roadsters and 23 coupés were produced.

 photo Picture 137_zpsblh18ua4.jpg  photo Picture 493_zpswwpeppqn.jpg  photo Picture 488_zpsqlr3dqfn.jpg

As one of Britain’s most popular classic cars, it was no surprise to find several examples of the MGB here, with cars from throughout the model’s long life, both in Roadster and MGB GT guise, as well as one of the short-lived V8 engined cars. Launched in October 1962, this car was produced for the next 18 years and it went on to become Britain’s best selling sports car. When first announced, the MGB was an innovative, modern design, with a monocoque structure instead of the traditional body-on-frame construction used on both the MGA and MG T-types and the MGB’s rival, the Triumph TR series, though components such as the brakes and suspension were developments of the earlier 1955 MGA and the B-Series engine had its origins back in 1947. The lightweight design reduced manufacturing costs while adding to overall vehicle strength, and with a 95hp 3-bearing 1798cc engine under the bonnet, performance was quite respectable with a 0–60 mph time of just over 11 seconds. The car was rather more civilised than its predecessor, with wind-up windows now fitted as standard, and a comfortable driver’s compartment offered plenty of legroom. The roadster was the first of the MGB range to be produced. The body was a pure two-seater but a small rear seat was a rare option at one point. By making better use of space the MGB was able to offer more passenger and luggage accommodation than the earlier MGA while being 3 inches shorter overall. The suspension was also softer, giving a smoother ride, and the larger engine gave a slightly higher top speed. The four-speed gearbox was an uprated version of the one used in the MGA with an optional (electrically activated) overdrive transmission. A five-bearing engine was introduced in 1964 and a number of other modifications crept into the specification. In late 1967, sufficient changes were introduced for the factory to define a Mark II model. Alterations included synchromesh on all 4 gears with revised ratios, an optional Borg-Warner automatic gearbox, a new rear axle, and an alternator in place of the dynamo with a change to a negative earth system. To accommodate the new gearboxes there were significant changes to the sheet metal in the floorpan, and a new flat-topped transmission tunnel. US market cars got a new safety padded dashboard, but the steel item continued for the rest of the world. Rostyle wheels were introduced to replace the previous pressed steel versions in 1969 and reclining seats were standardised. 1970 also saw a new front grille, recessed, in black aluminium. The more traditional-looking polished grille returned in 1973 with a black “honeycomb” insert. Further changes in 1972 were to the interior with a new fascia. To meet impact regulations, in late 1974, the chrome bumpers were replaced with new, steel-reinforced black rubber bumpers, the one at the front incorporating the grille area as well, giving a major restyling to the B’s nose, and a matching rear bumper completed the change. New US headlight height regulations also meant that the headlamps were now too low. Rather than redesign the front of the car, British Leyland raised the car’s suspension by 1-inch. This, in combination with the new, far heavier bumpers resulted in significantly poorer handling. For the 1975 model year only, the front anti-roll bar was deleted as a cost-saving measure (though still available as an option). The damage done by the British Leyland response to US legislation was partially alleviated by revisions to the suspension geometry in 1977, when a rear anti-roll bar was made standard equipment on all models. US emissions regulations also reduced horsepower. In March 1979 British Leyland started the production of black painted limited edition MGB roadsters for the US market, meant for a total of 500 examples. Due to a high demand of the limited edition model, production ended with 6682 examples. The United Kingdom received bronze painted roadsters and a silver GT model limited editions. The production run of home market limited edition MGBs was split between 421 roadsters and 579 GTs. Meanwhile, the fixed-roof MGB GT had been introduced in October 1965, and production continued until 1980, although export to the US ceased in 1974. The MGB GT sported a ground-breaking greenhouse designed by Pininfarina and launched the sporty “hatchback” style. By combining the sloping rear window with the rear deck lid, the B GT offered the utility of a station wagon while retaining the style and shape of a coupe. This new configuration was a 2+2 design with a right-angled rear bench seat and far more luggage space than in the roadster. Relatively few components differed, although the MGB GT did receive different suspension springs and anti-roll bars and a different windscreen which was more easily and inexpensively serviceable. Although acceleration of the GT was slightly slower than that of the roadster, owing to its increased weight, top speed improved by 5 mph to 105 mph because of better aerodynamics. 523,826 examples of the MGB of all model types were built, and although many of these were initially sold new in North America, a lot have been repatriated here. There were several Roadsters and MGB GT models here.

 photo Picture 492_zps2jfvjeqv.jpg  photo Picture 494_zpsp9d8e3uj.jpg  photo Picture 512_zpsneqjg4sm.jpg  photo Picture 131_zpseej26dnm.jpg  photo Picture 461_zpsbc3d27y8.jpg  photo Picture 490_zpsu3nfsdu0.jpg  photo Picture 607_zpsmrcekitd.jpg  photo Picture 140_zpsebrsnveo.jpg  photo Picture 391_zpski5gwzxy.jpg

In advance of the all-new MX5 rival that was still some way off production, MG decided to re-enter the open topped sports car market in 1992 when they launched the MGR V8, which combined new body panels with the standard MGB body shell to create an updated MGB model. The suspension was only slightly updated, sharing the leaf spring rear of the MGB. The boot lid and doors were shared with the original car, as were the rear drum brakes. The engine was the 3.9-litre version of the aluminium Rover V8, similar to the one previously used in the MGB GT V8. A limited-slip differential was also fitted. The interior featured veneered burr elm woodwork and Connolly Leather. The engine produced 190 bhp at 4,750 rpm, achieving 0–60 mph in 5.9 seconds, which was fast but largely due to the rear drum brakes and rear leaf springs, the RV8 was not popular with road testers at the time. A large proportion of the limited production went to Japan – 1579 of the 2000 produced. Only 330 RV8s were sold initially in the UK, but several hundred (possibly as many as 700) of these cars were re-imported back to the UK and also Australia between 2000–2010 with a peak number of 485 registered at the DVLA in the UK. There were no examples of the standard car here, but making another appearance was this one-off conversion to a car with a GT body, which I have seen before at Prescott and elsewhere a number of times.

 photo Picture 146_zpsoybhdsmk.jpg

MORGAN

The traditional British sports cars from nearby Malvern Link are popular with Prescott visitors, and there are usually several of the type in the car park and this was no exception with a number of the outwardly little changed shape in evidence. Also here was one of the more recent open-topped versions of the Aeromax 8.

 photo Picture 173_zpsalwes83a.jpg  photo Picture 125_zpsxoc0mmux.jpg  photo Picture 138_zpserjefoeh.jpg  photo Picture 139_zpsb64rhyva.jpg  photo Picture 486_zpsce2zszn1.jpg  photo Picture 515_zpscsji2mej.jpg  photo Picture 440_zpsfdjacytm.jpg  photo Picture 444_zpsk7nqurht.jpg  photo Picture 443_zpswmcvnpsg.jpg

MORRIS

No surprise to see the evergreen Morris Minor here as this is a very popular classic, with the 2 door, Tourer and the Traveller parked up. The Minor was conceived in 1941. Although the Nuffield Organization was heavily involved in war work and there was a governmental ban on civilian car production, Morris Motors’ vice chairman, Miles Thomas, wanted to prepare the ground for new products to be launched as soon as the war was over. Vic Oak, the company’s chief engineer, had already brought to Thomas’ attention a promising junior engineer, Alec Issigonis, who had been employed at Morris since 1935 and specialised in suspension design but he had frequently impressed Oak with his advanced ideas about car design in general. Issigonis had come to Oak’s particular attention with his work on the new Morris Ten, which was in development during 1936/7. This was the first Morris to use unitary construction and was conceived with independent front suspension. Issigonis designed a coil-sprung wishbone system which was later dropped on cost grounds. Although the design would later be used on the MG Y-type and many other post-war MGs the Morris Ten entered production with a front beam axle. Despite his brief being to focus on the Ten’s suspension Issigonis had also drawn up a rack and pinion steering system for the car. Like his suspension design this was not adopted but would resurface in the post-war years on the MG Y-type, but these ideas proved that he was the perfect candidate to lead the design work on a new advanced small car. With virtually all resources required for the war effort, Thomas nonetheless approved the development of a new small family car that would replace the Morris Eight. Although Oak (and Morris’ technical director, Sidney Smith) were in overall charge of the project it was Issigonis who was ultimately responsible for the design, working with only two other draughtsmen. Thomas named the project ‘Mosquito’ and ensured that it remained as secret as possible, both from the Ministry of Supply and from company founder William Morris (now Lord Nuffield), who was still chairman of Morris Motors and, it was widely expected, would not look favourably on Issigonis’ radical ideas. Issigonis’ overall concept was to produce a practical, economical and affordable car for the general public that would equal, if not surpass, the convenience and design quality of a more expensive car. In later years he summed up his approach to the Minor; that he wanted to design an economy car that “the average man would take pleasure in owning, rather than feeling of it as something he’d been sentenced to” and “people who drive small cars are the same size as those who drive large cars and they should not be expected to put up with claustrophobic interiors.” Issigonis wanted the car to be as spacious as possible for its size and comfortable to drive for inexperienced motorists. Just as he would with the Mini ten years later, he designed the Mosquito with excellent roadholding and accurate, quick steering not with any pretence of making a sports car, but to make it safe and easy to drive by all. As work proceeded, there were plenty of battle to overcome, to get Issigonis’ ideas approved, and not all of them were. The production car, called the Minor was launched at the British Motor Show at Earls Court in London on October 27, 1948. At the same show Morris also launched the new Morris Oxford and Morris Six models, plus Wolseley variants of both cars, which were scaled-up versions of the new Minor, incorporating all the same features and designed with Issigonis’ input under Vic Oak’s supervision. Thus Issigonis’ ideas and design principles underpinned the complete post-war Morris and Wolseley car ranges. The original Minor MM series was produced from 1948 until 1953. It included a pair of four-seat saloons, two-door and (from 1950) a four-door, and a convertible four-seat Tourer. The front torsion bar suspension was shared with the larger Morris Oxford MO, as was the almost-unibody construction. Although the Minor was originally designed to accept a flat-4 engine, late in the development stage it was replaced by a 918 cc side-valve inline-four engine, little changed from that fitted in the 1935 Morris 8, and producing 27.5 hp and 39 lbf·ft of torque. This little engine pushed the Minor to just 64 mph but delivered 40 mpg. Brakes were four-wheel drums. Early cars had a painted section in the centre of the bumpers to cover the widening of the production car from the prototypes. This widening of 4 inches is also visible in the creases in the bonnet. Exports to the United States began in 1949 with the headlamps removed from within the grille surround to be mounted higher on the wings to meet local safety requirements. In 1950 a four-door version was released, initially available only for export, and featuring from the start the headlamps faired into the wings rather than set lower down on either side of the grille. The raised headlight position became standard on all Minors in time for 1951. From the start, the Minor had semaphore-type turn indicators, and subsequent Minor versions persisted with these until 1961 An Autocar magazine road test in 1950 reported that these were “not of the usual self-cancelling type, but incorporate[d] a time-basis return mechanism in a switch below the facia, in front of the driver”. It was all too easy for a passenger hurriedly emerging from the front passenger seat to collide with and snap off a tardy indicator “flipper” that was still sticking out of the B-pillar, having not yet been safely returned by the time-basis return mechanism to its folded position. Another innovation towards the end of 1950 was a water pump (replacing a gravity dependent system), which permitted the manufacturer to offer an interior heater “as optional equipment”. When production of the first series ended, just over a quarter of a million had been sold, 30 per cent of them the convertible Tourer model. In 1952, the Minor line was updated with an Austin-designed 803 cc overhead valve A-series engine, replacing the original side-valve unit. The engine had been designed for the Minor’s main competition, the Austin A30, but became available as Austin and Morris were merged into the British Motor Corporation. The new engine felt stronger, though all measurements were smaller than the old. The 52 second drive to 60 mph was still calm, with 63 mph as the top speed. Fuel consumption also rose to 36 mpg. An estate version was introduced in 1952, known as the Traveller (a Morris naming tradition for estates, also seen on the Mini). The Traveller featured an external structural ash (wood) frame for the rear bodywork, with two side-hinged rear doors. The frame was varnished rather than painted and a highly visible feature of the body style. Commercial models, marketed as the Morris Quarter Ton Van and Pick-up were added in May 1953. Rear bodies of the van versions were all steel. The 4-seat convertible and saloon variants continued as well. The car was again updated in 1956 when the engine was increased in capacity to 948 cc. The two-piece split windscreen was replaced with a curved one-piece one and the rear window was enlarged. In 1961 the semaphore-style trafficators were replaced by the flashing direction indicators, these were US-style red at the rear (using the same bulb filament as the brake lamp) and white at the front (using a second brighter filament in the parking lamp bulb) which was legal in the UK and many export markets at the time (such as New Zealand). An upmarket car based on the Minor floorpan using the larger BMC B-Series engine was sold as the Riley One-Point-Five/Wolseley 1500 beginning in 1957: versions of this Wolseley/Riley variant were also produced by BMC Australia as the Morris Major and the Austin Lancer. In December 1960 the Morris Minor became the first British car to sell more than 1,000,000 units. To commemorate the achievement, a limited edition of 350 two-door Minor saloons (one for each UK Morris dealership) was produced with distinctive lilac paintwork and a white interior. Also the badge name on the side of the bonnet was modified to read “Minor 1,000,000” instead of the standard “Minor 1000”. The millionth Minor was donated to the National Union of Journalists, who planned to use it as a prize in a competition in aid of the union’s Widow and Orphan Fund. The company, at the same time, presented a celebratory Minor to London’s Great Ormond Street Hospital for Sick Children, but this car was constructed of cake.The final major upgrades to the Minor were made in 1962. Although the name Minor 1000 was retained, the changes were sufficient for the new model to be given its own ADO development number. A larger version of the existing A-Series engine had been developed in conjunction with cylinder head specialist Harry Weslake for the then new ADO16 Austin/Morris 1100 range. This new engine used a taller block than did the 948 cc unit, with increased bore and stroke bringing total capacity up to 1,098 cc. Although fuel consumption suffered moderately at 38 mpg, the Minor’s top speed increased to 77 mph with noticeable improvements in low-end torque, giving an altogether more responsive drive. Other changes included a modified dashboard layout with toggle switches, textured steel instrument binnacle, and larger convex glove box covers. A different heater completed the interior upgrade, whilst the larger combined front side/indicator light units, common to many BMC vehicles of the time, were fitted to the front wings. These now included a separate bulb and amber lens for indicators while larger tail lamp units also included amber rear flashers. During the life of the Minor 1000 model, production declined. The last Convertible/Tourer was manufactured on 18 August 1969, and the saloon models were discontinued the following year. Production of the more practical Traveller and commercial versions ceased in 1972, although examples of all models were still theoretically available from dealers with a surplus of unsold cars for a short time afterwards. 1,619,857 Minors of all variants were ultimately sold.

 photo Picture 460_zpsqzjbfdx0.jpg  photo Picture 147_zpsbtnythdo.jpg

PEUGEOT

Peugeot launched their new “supermini”, the 205 in January 1983, just one day after Fiat had presented the Uno, one of the car’s principal rivals. It was an immediate hit, with smart styling and a range of engines which combined with sharp handling made it good to drive. Mindful of the success of the Golf GTi, in the class above, and how a small car with good handling could take more power, as the Mini Cooper had proved, Peugeot came up with the GTi in early 1984. The first models had a 1.6 litre XU5J engine, producing 105 PS, which was uprated in 1987 with a cylinder head with larger valves thus becoming XU5JA, which took the power output up to 115 bhp. Visually the car retained the good looks of the 3 door version of the regular models, but it featured plastic wheel arch extensions and trim, beefier front and rear bumper valances and judicious use of red badging and trim. The shell also underwent some minor changes, including larger wheel arches (to suit the larger wheels , and the suspension was redesigned and sat lower on the GTI with stiffer springs, different wishbones and a drop-linked anti-roll bar. Red was a dominant colour inside. The car was an instant hit. At the end of 1986, Peugeot followed up with a more potent model, the 1.9 GTi, whose XU9JA engine produced 128 PS. Internally the engine of this car and the 1.6 model are very similar, the main differences on 1.9 litre versions being the longer stroke, oil cooler, and some parts of the fuel injection system. The shorter stroke 1.6 litre engine is famed for being revvy and eager, while the 1.9 litre feels lazier and torquier. Outside the engine bay the main differences between the 1.6 GTi and the 1.9 GTi are half-leather seats on the 1.9 GTi vs. cloth seats and disc brakes all-round (1.9 GTi) vs. discs at the front and drum brakes at the back; as well as the 14-inch Speedline SL201 wheels on the 1.6 GTi vs. 15 inch Speedline SL299 alloys on the 1.9 GTi. The 205 is still often treated as a benchmark in group car tests of the newest GTI models or equivalent. Peugeot itself has never truly recreated this success in future GTI models, although they came very close with the highly regarded GTI-6 variant of the Peugeot 306. A cabriolet version of the 205, known as the CJ (or CT in France), was designed and partially assembled by Pininfarina of Italy. A CTi version, with the same plastic arches and wheels as the 1.6 GTI was also available. Only minor changes were made to the car in the next few years, with the most obvious visual change being the switch to grey bumpers and trim from black ones in 1990, along with revised lights. A new dashboard had been incorporated across the entire 205 range a couple of years before this. Sales of the GTI in the UK in the early 1990s were badly hit by soaring insurance premiums, brought about by high theft and ‘joyriding’ of cars of this sort. Increasingly stringent emissions regulations meant the 1.6 GTi went out of production in 1992, while the 1.9 litre was sold for a couple more years thanks to re-engineering of the engine to enable it to work properly with a catalytic converter, which dropped power to 122 bhp. Many of them had a hard life, but there are some nice original cars out there and people are starting to spend serious money in restoring them. Seen here was a nice GTi.

 photo Picture 178_zpspgoalnuu.jpg

PORSCHE

The original 550 RS is to valuable (and too rare) for you to say them out and about very often, but a number of good quality replica versions have been built over the years and this is one of them.

 photo Picture 393_zpsrq27rh0f.jpg

The 356 was created by Ferdinand “Ferry” Porsche (son of Dr. Ing. Ferdinand Porsche, founder of the German company), who founded the Austrian company with his sister, Louise. Like its cousin, the Volkswagen Beetle (which Ferdinand Porsche Senior had designed), the 356 was a four-cylinder, air-cooled, rear-engine, rear-wheel-drive car utilising unitised pan and body construction. The chassis was a completely new design as was the 356’s body which was designed by Porsche employee Erwin Komenda, while certain mechanical components including the engine case and some suspension components were based on and initially sourced from Volkswagen. Ferry Porsche described the thinking behind the development of the 356 in an interview with the editor of Panorama, the PCA magazine, in September 1972. “….I had always driven very speedy cars. I had an Alfa Romeo, also a BMW and others. ….By the end of the war I had a Volkswagen Cabriolet with a supercharged engine and that was the basic idea. I saw that if you had enough power in a small car it is nicer to drive than if you have a big car which is also overpowered. And it is more fun. On this basic idea we started the first Porsche prototype. To make the car lighter, to have an engine with more horsepower…that was the first two seater that we built in Carinthia (Gmünd)”. The first 356 was road certified in Austria on June 8, 1948, and was entered in a race in Innsbruck where it won its class. Porsche re-engineered and refined the car with a focus on performance. Fewer and fewer parts were shared between Volkswagen and Porsche as the ’50’s progressed. The early 356 automobile bodies produced at Gmünd were handcrafted in aluminium, but when production moved to Zuffenhausen, Germany in 1950, models produced there were steel-bodied. Looking back, the aluminium bodied cars from that very small company are what we now would refer to as prototypes. Porsche contracted with Reutter to build the steel bodies and eventually bought the Reutter company in 1963. The Reutter company retained the seat manufacturing part of the business and changed its name to Recaro. Little noticed at its inception, mostly by a small number of auto racing enthusiasts, the first 356s sold primarily in Austria and Germany. It took Porsche two years, starting with the first prototype in 1948, to manufacture the first 50 automobiles. By the early 1950s the 356 had gained some renown among enthusiasts on both sides of the Atlantic for its aerodynamics, handling, and excellent build quality. The class win at Le Mans in 1951 was clearly a factor. It was always common for owners to race the car as well as drive them on the streets. They introduced the four-cam racing “Carrera” engine, a totally new design and unique to Porsche sports cars, in late 1954. Increasing success with its racing and road cars brought Porsche orders for over 10,000 units in 1964, and by the time 356 production ended in 1965 approximately 76,000 had been produced. The 356 was built in four distinct series, the original (“pre-A”), followed by the 356 A, 356 B, and then finally the 356 C. To distinguish among the major revisions of the model, 356’s are generally classified into a few major groups. 356 coupés and “cabriolets” (soft-top) built through 1955 are readily identifiable by their split (1948 to 1952) or bent (centre-creased, 1953 to 1955) windscreens. In late 1955 the 356 A appeared, with a curved windshield. The A was the first road going Porsche to offer the Carrera 4 cam engine as an option. In late 1959 the T5 356 B appeared; followed by the redesigned T6 series 356 B in 1962. The final version was the 356 C, little changed from the late T6 B cars but with disc brakes to replace the drums.

 photo Picture 406_zps74iohx6z.jpg  photo Picture 514_zpsfnr4skug.jpg

In 1979, Porsche unveiled a concept version of the 924 at the Frankfurt Auto show wearing Carrera badges. One year later, in 1980, Porsche released the 924 Carrera GT, making clear their intention to enter the 924 in competition. By adding an intercooler and increasing compression to 8.5:1, as well as various other little changes, Porsche was able to develop the 924 Turbo into the race car they had wanted, dubbing it the “924 Carrera GT”. 406 examples (including prototypes) of the Carrera GT were built to qualify it for Group 4 racing requirements. Of the 400 roadgoing examples, 75 were made in right hand drive for the UK market. In 1981 Porsche released the limited production 924 Carrera GTS. 59 GTS models were built, all in left hand drive, with 15 of the 59 being raced prepped Clubsport versions. A 924 Carrera GTR campaigned by GTi Engineering in 1981 and 1982. Visually, the Carrera GT differed from the standard 924 Turbo in that it had polyurethane plastic front and rear flared guards, a polyurethane plastic front spoiler, a top mounted air scoop for the intercooler, a much larger rubber rear spoiler and a flush mounted front windscreen. It featured Pirelli P6 tyres as standard, and Pirelli P7 tyres were available as an option along with a limited slip differential. It lost the 924 Turbo’s NACA duct in the hood but retained the air intakes in the badge panel. This more aggressive styling was later used for as motivation for the 944. The later Carrera GTS differed stylistically from the GT with fixed headlamps under Perspex covers (instead of the GT’s pop up units). GTS models were also 59 kg (130 lb) lighter than their GT counterparts at 1,121 kg (2,471 lb), and Clubsport versions were even lighter at 1,060 kg (2,337 lb). In order to comply with the homologation regulations, the 924 Carrera GT and later 924 Carrera GTS were offered as road cars, producing 210 and 245 bhp respectively. Clubsport versions of the GTS were also available with 280 bhp, and factory included Matter roll cage and race seats. 924 Carrera GT variations were known by model numbers 937 (left hand drive) and 938 (right hand drive).

 photo Picture 501_zps9trtbbrj.jpg

RENAULT-ALPINE

The GTA was the first car launched by Alpine under Renault ownership (though Alpine had been affiliated with Renault for many years, with its earlier models using many Renault parts). It effectively updated the design of its predecessor, the Alpine A310, updating that car’s silhouette with modern design features like body-integrated bumpers and a triangular C pillar with large rear windshield. It used the PRV V6 engine in a rear-engined layout, with extensive use of Polyester plastics and fibreglass for the body panels making it considerably lighter and quicker than rivals such as the Porsche 944. It was one of the most aerodynamic cars of its time, the naturally aspirated version achieved a world record 0.28 drag coefficient in its class. The GTA name, used to denote the entire range of this generation, stood for “Grand Tourisme Alpine” but in most markets the car was marketed as the Renault Alpine V6 GT or as the Renault Alpine V6 Turbo. In Great Britain it was sold simply as the Renault GTA, Rather than being cast in a single piece as for the preceding A310, the new Alpine’s body was cast in a large number of small separate panels. This required a major overhaul of the Alpine plant, leaving only the sandblasting machinery intact. The car was also considerably more efficient to manufacture, with the time necessary to build a finished car dropping from 130 to 77 hours – still a long time, but acceptable for a small-scale specialty car. The PRV engine in the naturally aspirated model was identical to the version used in the Renault 25, a 2849 cc unit producing 160 hp. Also available was the smaller (2.5 litres) turbocharged model. The central backbone chassis (with outriggers for side impact protection) was built by Heuliez and then transferred to Dieppe – aside from the body, most of the car was subcontracted to various suppliers. At the time of introduction, daily production was ten cars. This soon dropped considerably, as the somewhat less than prestigious Renault had a hard time in the sports car marketplace. The average production for the six full years of production was just above 1000 per annum, or just above three per day. The first model introduced was the naturally aspirated V6 GT, which entered production in November 1984, although press photos had been released in September 1984. The car was first shown at the 1985 Amsterdam Rai, immediately after which it also went on sale. In July 1985 the Europa Cup model appeared; this limited edition model was intended for a single-make racing championship and 69 cars were built (54 in 1985 and 15 more in 1987). In September 1985 the turbo model followed, which increased the power of the PRV unit to 200 PS. At the 1986 Birmingham Show the right-hand-drive version was presented and UK sales, as the Renault GTA, commenced. In early 1987 a catalysed version appeared, with fifteen less horsepower. This meant that the Turbo could finally be sold in Switzerland, and later in other European countries such as Germany and the Netherlands when they adopted stricter legislation. The catalysed model had lower gearing in fourth and fifth gears, in order to somewhat mask its power deficit. In 1988 anti-lock brakes became available. For the 1989 model year the Mille Miles version appeared. With the non-catalysed engine, this model heralded a re-focus on the Alpine name. The Renault logo was gone from the car, with an alpine logo up front and a large “Alpine” print appearing between the taillights. However, as the name ‘Alpine’ could not be used in the UK the name Alpine was removed from cars destined for the UK; there was no large print at the back of these cars and a UK specific logo was fitted to the front of the car. The Mille Miles, a limited edition of 100 cars, also featured a special dark red metallic paintjob, polished aluminium wheels, and a large silver grey triangular stripe with the Alpine “A” across the left side of the front. In February 1990 the limited edition Le Mans arrived, this car had a more aggressive body kit with polyester wheel arch extensions and a one piece front with smaller headlights. Wheels were 3 piece BBS style produced by ACT, 8×16″ front & 10×17″ rear. Many of these changes were adopted for the succeeding A610. The regular V6 GT and V6 Turbo ended production during 1990, while the Le Mans version continued to be produced until February 1991. 325 of these were built in total. Also in 1990, Renault was forced to install the less powerful catalysed engine in cars destined for the home market, leading to grumbling amongst Alpine enthusiasts about the loss of power (down to 185 PS) while the 25 Turbo saloon actually gained power when it became catalysed. In response Danielson SA, a famous French tuner, created an upgraded version of the Le Mans with 210 PS.

 photo Picture 438_zps5he8mw56.jpg

ROLLS ROYCE

When new, the Silver Shadow was considered a big car, but looking at this one, it does not seem quite so massive any more. The Silver Shadow was produced from 1965 to 1976, and the Silver Shadow II from 1977 to 1980. Initially, the model was planned to be called “Silver Mist”, a natural progression from its predecessor Silver Cloud. The name was changed to “Silver Shadow” after realising that “Mist” is the German word for manure, rubbish, or dirt. The design was a major departure from its predecessor, the Silver Cloud; although several styling cues from the Silver Cloud were modified and preserved, as the automobile had sold well. The John Polwhele Blatchley design was the firm’s first single bow model. The original Shadow was 3 1⁄2 inches narrower and 7 inches shorter than the car it replaced, but nevertheless managed to offer increased passenger and luggage space thanks to more efficient packaging made possible by unitary construction. Aside from a more modern appearance and construction, the Silver Shadow introduced many new features such as disc rather than drum brakes, and independent rear suspension, rather than the outdated live axle design of previous cars. The Shadow featured a 172 hp 6.2 litre V8 from 1965 to 1969, and a 189 hp 6.75 ltire V8 from 1970 to 1980. Both powerplants were coupled to a General Motors-sourced Turbo Hydramatic 400 automatic gearbox, except on pre-1970 right-hand-drive models, which used the same 4-speed automatic gearbox as the Silver Cloud (also sourced from General Motors, the Hydramatic). The car’s most innovative feature was a high-pressure hydropneumatic suspension system licensed from Citroën, with dual-circuit braking and hydraulic self-levelling suspension. At first, both the front and rear of the car were controlled by the levelling system; the front levelling was deleted in 1969 as it had been determined that the rear levelling did almost all the work. Rolls-Royce achieved a high degree of ride quality with this arrangement. In 1977, the model was renamed the Silver Shadow II in recognition of several major changes, most notably rack and pinion steering; modifications to the front suspension improved handling markedly. Externally, the bumpers were changed from chrome to alloy and rubber starting with the late 1976 Silver Shadows. These new energy absorbing bumpers had been used in the United States since 1974, as a response to tightening safety standards there. Nonetheless, the bumpers on cars sold outside of North America were still solidly mounted and protruded 2 in less. Also now made standard across the board was the deletion of the small grilles mounted beneath the headlamps. Outside of North America, where tall kerbs and the like demanded more ground clearance, a front skirt was also fitted to the Silver Shadow II and its sister cars. In 1979 75 Silver Shadow II cars were specially fitted to commemorate the 75th anniversary of the company with the original red “RR” badges front and rear, pewter/silver paint, grey leather with red piping, scarlet red carpets, and a silver commemorative placard on the inside of the glove box door. 33 75th anniversary cars were designated for and shipped to the North American market. 8425 examples of the Shadow II were made, which, when added to the total of over 16,000 of the first generation cars made this the biggest selling Rolls Royce of all time.

 photo Picture 466_zpsnji7jjlv.jpg

ROVER

The first new car that Rover announced after the war was the P4 model, known as the 75. It was launched at the Earls Court Motor Show in September 1949, to replace all previous models and then continued in production until 1964, though the car underwent lots of change under the skin in those 15 years. Designed by Gordon Bashford, the car went into production in 1949 as the 6-cylinder 2.1-litre Rover 75. It featured unusual modern styling in stark contrast with the outdated Rover P3 model 75 which it replaced. Gone were the traditional radiator, separate headlamps and external running boards. In their place were a chromium grille, recessed headlamps and a streamlined body the whole width of the chassis. The car’s styling was derived from the then controversial 1947 Studebakers. The Rover executives purchased two such vehicles and fitted the body from one of them to a prototype P4 chassis to create a development mule. In James Taylor’s highly regarded book ‘Rover P4 – The Complete Story’ he advised that this vehicle was affectionately known as the ‘Roverbaker’ hybrid. Another, at the time minor, distinctive feature but this one did not catch-on was the centrally mounted light in the grille where most other manufacturers of good quality cars provided a pair, one fog and one driving light often separately mounted behind the bumper. Known, unkindly, as the “Cyclops eye” it was discontinued in the new grille announced 23 October 1952. The earliest cars used a more powerful version of the Rover engine from the 1948 Rover P3 75, a 2103 cc straight-6 engine now with chromium plated cylinder bores, an aluminium cylinder head with built-in induction manifold and a pair of horizontal instead of downdraught carburettors. A four-speed manual transmission was used with a column-mounted gear lever which was replaced by a floor-mounted mechanism in September 1953. At first the gearbox only had synchromesh on third and top but it was added to second gear as well in 1953. A freewheel clutch, a traditional Rover feature, was fitted to cars without overdrive until mid-1959, when it was removed from the specifications, shortly before the London Motor Show in October that year. The cars had a separate chassis with independent suspension by coil springs at the front and a live axle with half-elliptical leaf springs at the rear. The brakes on early cars were operated by a hybrid hydro-mechanical system but became fully hydraulic in 1950. Girling disc brakes replaced drums at the front from October 1959. The complete body shells were made by the Pressed Steel company and featured aluminium/magnesium alloy (Birmabright) doors, boot lid and bonnets until the final 95/110 models, which were all steel to reduce costs. The P4 series was one of the last UK cars to incorporate rear-hinged “suicide” doors. After four years of the one model policy Rover returned to a range of the one car but three different sized engines when in September 1953 they announced a four-cylinder Rover 60 and a 2.6-litre Rover 90. A year later, an enlarged 2230cc engine was installed in the 75, and an updated body was shown with a larger boot and a bigger rear window and the end of the flapping trafficators, with redesigned light clusters. Further detailed changes would follow. Announced 16 October 1956, the 105R and 105S used a high-output, 8.5:1 compression version of the 2.6 litres engine used in the 90. The higher compression was to take advantage of the higher octane fuel that had become widely available. This twin-SU carburettor engine produced 108 hp. Both 105 models also featured the exterior changes of the rest of the range announced a month earlier. The 105S featured separate front seats, a cigar lighter, chromed wheel trim rings and twin Lucas SFT 576 spotlamps. To minimise the cost of the 105R, these additional items were not standard, however they were provided on the (higher priced) 105R De Luxe. The 105R featured a “Roverdrive” automatic transmission. This unit was designed and built by Rover and at the time was the only British-built automatic transmission. Others had bought in units from American manufacturers such as Borg-Warner. This unit was actually a two-speed automatic (Emergency Low which can be selected manually and Drive) with an overdrive unit for a total of three forward gears. The 105S made do with a manual transmission and Laycock de Normanville overdrive incorporating a kick-down control. The 105S could reach a top speed of 101 mph. Production of the 105 line ended in 1958 for the 105R and 1959 for the manual transmission 105S, 10,781 had been produced, two-thirds with the manual transmission option. For 1959 the manual model was described simply as a 105 and the trim and accessory level was reduced to match the other models. In 1959, the engines were upgraded again, with the 80 replacing the 60 and the 100 replacing the 90 and the 105. The four cylinder cars were not particularly popular, though and in September they were replaced by the six cylinder 95. Final model was the 110, seen here, which took its place at the top of the range until production ceased, a few months after the very different P6 model 2000 had come along. These cars are popular classics these days and there were a couple of examples of the 100 here.

 photo Picture 604_zpsrbbpzhly.jpg

There was also an example of the larger P5 model here, a car beloved of Government Ministers, who kept the car in service long after production had ceased in 1973, thanks to an amount of stock-piling. Now a much loved classic, the P5 is a quintessentially British motor car. Launched in late 1958, it was a partial replacement for the then 10 year old P4 model, but also an extension of the Rover range further upmarket. Early cars were known as the 3 litre, as they had It was powered by a 2,995 cc straight-6 engine which used an overhead intake valve and side exhaust valve, an unusual arrangement inherited from the Rover P4. In this form, output of 115 bhp was claimed. An automatic transmission, overdrive on the manual, and Burman power steering were optional with overdrive becoming standard from May 1960. Stopping power came originally from a Girling brake system that employed 11″ drums all round ,but this was a heavy car and by the time of the London Motor Show in October 1959 Girling front-wheel power discs brakes had appeared on the front wheels. The suspension was independent at the front using wishbones and torsion bars and at the rear had a live axle with semi-elliptic leaf springs. A Mark I-A line, introduced in September 1961, featured a minor restyle with added front quarter windows, intended to “assist the dashboard ventilation”. Under the skin, the 1A featured modifications to the engine mountings and the automatic transmission and hydrosteer variable ratio power steering as an option. By 1962, when production of the original Mark I series ended, 20,963 had been produced. The Mark II version was introduced in 1962. It featured more power, 129 hp, from the same 3 litre engine and an improved suspension, while dropping the glass wind deflectors from the top of the window openings which also, on the front doors, now featured “quarterlight” windows. The most notable addition to the range was the option of the Coupé body style launched in autumn 1962. Unlike most coupés, which tend to be two-door versions of four-door saloons, this retained the four doors and was of the same width and length as the saloon, but featured a roofline lowered by two and a half inches along with thinner b-pillars, giving it the look of a hardtop. Hydrosteer was standard on the Coupe and optional on the Saloon. Production of the Mark II ended in 1965, by which time 5,482 coupés and 15,676 saloons had been produced. The Mark III was presented at the London Motor Show in October 1965, described at the time as “even more luxuriously trimmed and furnished”. It was again available in two 4-door body styles, coupé and saloon. The Mark III used the same engine as its predecessor, but it now produced 134 hp. Externally it could be distinguished by the full-length trim strip along the body and Mark III badging; internally it replaced the rear bench seat with two individually moulded rear seats, making it more comfortable to ride in for four occupants but less so for five. A total of 3,919 saloons and 2,501 coupés had been sold by the time production ended in 1967. The final iteration of the P5 appeared in September 1967. Now powered by the 3,528 cc Rover V8 engine also used in the P6 model 3500, the car was badged as the “3.5 Litre”, and commonly known as the 3½ Litre. The final letter in the “P5B” model name came from Buick, the engine’s originator. Rover did not have the budget or time to develop such engines, hence they chose to redevelop the lightweight aluminium concept Buick could not make successful. They made it considerably stronger, which added some weight but still maintained the engine’s light and compact features. The Borg Warner Type-35 automatic transmission, hydrosteer variable ratio power steering and front Lucas fog lights were now standard. Output of 160 bhp was claimed along with improved torque. When compared to its predecessor, the aluminium engine enabled the car to offer improved performance and fuel economy resulting both from the greater power and the lesser weight of the power unit. The exterior was mostly unchanged, apart from bold ‘3.5 Litre’ badging, a pair of fog lights which were added below the head lights, creating a striking 4 light array, and the fitting of chrome Rostyle wheels with black painted inserts. The P5B existed as both the 4-door coupe and saloon body style until end of production. Production ended in 1973, by when 9099 coupés and 11,501 saloons had been built.

 photo Picture 402_zpsboedvlcs.jpg

SUNBEAM

The Sunbeam-Talbot 90 was a compact executive car produced and built by Sunbeam-Talbot from 1948 to 1954 and continued as the Sunbeam Mk III from 1954 to 1957. The car was launched in 1948 along with the smaller-engined Sunbeam-Talbot 80 but many features dated back to the pre war Sunbeam-Talbot 2 Litre. The body was completely new and available as a 4-door saloon or 2-door drophead coupe. The saloon featured a “pillarless” join between the glass on the rear door and the rear quarter window. The car went through three versions before the name was changed to Sunbeam Mk III (without “Talbot”) in 1954. The original version had a 64 bhp 1,944 cc side-valve four-cylinder engine derived from a pre-war Humber unit carried over from the Sunbeam-Talbot 2-Litre. The chassis was derived from the Ten model but with wider track and had beam axles front and rear and leaf springs. The brakes were updated to have hydraulic operation. Saloon and Drophead coupé bodies were fitted to the chassis and the rear wheel openings were covered by metal “spats”. 4000 were made. The Mk II got a new chassis with independent front suspension using coil springs. The engine was enlarged to 2267 cc. The increased engine block capacity was shared with the company’s 1950 Humber Hawk, but in the cylinder head the Humber retained (until 1954) the old side-valve arrangement. The Sunbeam’s cylinder head was changed to incorporate overhead valves, giving rise to a claimed power output of 70 bhp compared with only 58 bhp for the Humber. The favourable power-to-weight ratio meant that the Talbot could be “geared quite high” and still provide impressive acceleration where needed for “quick overtaking”.The front of the Talbot 90 body was modified; the headlights were higher and there were air inlet grilles on either side of the radiator. 5493 were made. Clming in 1952, the Mk IIA had a higher compression engine raising output to 77 bhp. To cater for the higher speeds the car was now capable of, the brakes were enlarged and to improve brake cooling the wheels were pierced. The Talbot MkIIA coupe/convertible is regarded as the rarest of the Sunbeam Talbots. The rear wheel spats were no longer fitted. 10,888 were made. From 1954 to 1957 the car continued, but without the Talbot name and was marketed as the Sunbeam MkIII and badged on the radiator shell as Sunbeam Supreme. The drophead coupé was not made after 1955. There were some minor styling changes to the front with enlarged air intakes on each side of the radiator shell and three small portholes just below each side of the bonnet near to the windscreen. Duo-tone paint schemes were also available. Engine power was increased to 80 bhp and overdrive became an option. Approximately 2250 were made.

 photo Picture 030_zpsylccugsu.jpg  photo Picture 451_zpsqsdnpgal.jpg

The Alpine was launched in 1959, and was aimed directly at the MGA. Lacking perhaps the sporting pedigree of the MG, even though the Alpine name was taken from the previous car to bear the name, an open -topped version of the Sunbeam-Talbot 90, which had enjoyed considerable success in motor-sports including the Monaco Rally, the car never really achieved the same sale success as the rival Abingdon product. The first cars, such as this Series 1, sported rather sizeable tail fins, but these ere quickly toned down as part of the annual revisions that Rootes Group made to their cars. The Alpine was produced until late 1967 and is an interesting alternative to the MGA and MGB. This is a late model Alpine Series V.

 photo Picture 462_zpsyo2cdf4g.jpg  photo Picture 500_zpspob7nxkt.jpg

TRIUMPH

Oldest of a number of TR models here was a TR2. By the start of the 1950s, Standard’s Triumph Roadster was out-dated and under-powered. Company boss Sir John Black tried to acquire the Morgan Motor Company but failed. He still wanted an affordable sports car, so a prototype two-seater was built on a shortened version of the Standard Eight’s chassis and powered by the Standard Vanguard’s 2-litre straight-4. The resulting Triumph 20TS prototype was revealed at the 1952 London Motor Show. Black asked BRM development engineer and test driver Ken Richardson to assess the 20TS. After he declared it to be a “death trap” a project was undertaken to improve on the design; a year later the TR2 was revealed. It had better looks; a simple ladder-type chassis; a longer body; and a bigger boot. The car had a 2 litre four-cylinder Standard wet liner inline-four engine from the Vanguard, fitted with twin H4 type SU Carburettors and tuned to increase its output to 90 bhp. The body was mounted on a substantial separate chassis with coil-sprung independent suspension at the front and a leaf spring live axle at the rear. Either wire or disc wheels could be supplied. The transmission was a four-speed manual unit, with optional top gear overdrive. Lockheed drum brakes were fitted all round. It was loved by American buyers, and became the best earner for Triumph. In 1955 the TR3 came out with more power; a re-designed grille; and a GT package that included a factory hard-top. A total of 8,636 TR2s were produced before it was replaced by the TR3 in 1955. A surprising number have survived with over 400 believed to be in the UK and a further 1800 in the United States.

 photo Picture 446_zpsnt3yfoio.jpg

Launched in 1955, the TR3 was an evolution of the TR2 and not a brand new model. It was powered by a 1991 cc straight-4 OHV engine initially producing 95 bhp, an increase of 5 hp over the TR2 thanks to the larger SU-H6 carburettors fitted. This was later increased to 100 bhp at 5000 rpm by the addition of a “high port” cylinder head and enlarged manifold. The four-speed manual gearbox could be supplemented by an overdrive unit on the top three ratios, electrically operated and controlled by a switch on the dashboard. In 1956 the front brakes were changed from drums to discs, the TR3 thus becoming the first British series production car to be so fitted. The TR3 was updated in 1957, with various changes of which the full width radiator grille is the easiest recognition point and the facelifted model is commonly referred to as the Triumph “TR3A”, though unlike the later TR4 series, where the “A” suffix was adopted, the cars were not badged as such and the “TR3A” name was not used officially, Other updates included exterior door handles, a lockable boot handle and the car came with a full tool kit as standard (this was an option on the TR3). The total production run of the “TR3A” was 58,236. This makes it the third best-selling TR after the TR6 and TR7. The TR3A was so successful that the original panel moulds eventually wore out and had to be replaced. In 1959 a slightly modified version came out that had raised stampings under the bonnet and boot hinges and under the door handles, as well as a redesigned rear floor section. In addition, the windscreen was attached with bolts rather than the Dzus connectors used on the early “A” models. Partly because it was produced for less time, the original TR3 sold 13,377 examples, of which 1286 were sold within the UK; the rest being exported mainly to the USA.

 photo Picture 479_zpszqurjvb7.jpg  photo Picture 478_zpsspco9tdd.jpg  photo Picture 029_zpsjsr0xkde.jpg

Successor to the TR3a, and code named “Zest” during development, the TR4 was based on the chassis and drivetrain of the previous TR sports cars, but with a modern Michelotti styled body. The TR 4 engine was carried over from the earlier TR2/3 models, but the displacement was increased from 1991cc to 2138 cc by increasing the bore size. Gradual improvements in the manifolds and cylinder head allowed for some improvements culminating in the TR4A model. The 1991 cc engine became a no-cost option for those cars destined to race in the under-two-litre classes of the day. Some cars were fitted with vane-type superchargers, as the three main bearing engine was liable to crankshaft failure if revved beyond 6,500 rpm; superchargers allowed a TR4 to produce much more horse-power and torque at relatively modest revolutions. The standard engine produced 105 bhp but, supercharged and otherwise performance-tuned, a 2.2-litre I4 version could produce in excess of 200 bhp at the flywheel. The TR4, in common with its predecessors, was fitted with a wet-sleeve engine, so that for competition use the engine’s cubic capacity could be changed by swapping the cylinder liners and pistons, allowing a competitor to race under different capacity rules (i.e. below or above 2 litres for example). Other key improvements over the TR3 included a wider track front and rear, slightly larger standard engine displacement, full synchromesh on all forward gears, and rack and pinion steering. In addition, the optional Laycock de Normanville electrically operated overdrive Laycock Overdrive could now be selected for 2nd and 3rd gear as well as 4th, effectively providing the TR4 with a seven-speed manual close ratio gearbox. The TR4 was originally fitted with 15×4.5″ disc wheels. Optional 48-lace wire wheels could be ordered painted the same colour as the car’s bodywork (rare), stove-enamelled (matte silver with chrome spinners, most common) or in matte or polished chrome finishes (originally rare, but now more commonly fitted). The most typical tyre originally fitted was 590-15 bias ply or optional radial tires. In the US at one point, American Racing alloy (magnesium and aluminium) wheels were offered as an option, in 15×5.5″ or 15×6″ size. Tyres were a problem for original owners who opted for 60-spoke wire wheels, as the correct size radial-ply tyre for the factory rims was 155-15, an odd-sized tyre at the time only available from Michelin at considerable expense. Some original TR4 sales literature says the original radial size was 165-15. The much more common 185-15 radials were too wide to be fitted safely. As a result, many owners had new and wider rims fitted and their wheels re-laced. The new TR4 body style did away with the classical cutaway door design of the previous TRs to allow for wind-down windows (in place of less convenient side-curtains), and the angular rear allowed a boot with considerable capacity for a sports car. Advanced features included the use of adjustable fascia ventilation, and the option of a unique hard top that consisted of a fixed glass rear window with an integral rollbar and a detachable, steel centre panel (aluminium for the first 500 units). This was the first such roof system on a production car and preceded by 5 years the Porsche 911/912 Targa, which has since become a generic name for this style of top. On the TR4 the rigid roof panel was replaceable with an easily folded and stowed vinyl insert and supporting frame called a Surrey Top. The entire hard top assembly is often mistakenly referred to as a Surrey Top. In original factory parts catalogues the rigid top and backlight assembly is listed as the Hard Top kit. The vinyl insert and frame are offered separately as a Surrey Top. Features such as wind-down windows were seen as a necessary step forward to meet competition and achieve good sales in the important US market, where the vast majority of TR4s were eventually sold. Dealers had concerns that buyers might not fully appreciate the new amenities, therefore a special short run of TR3As (commonly called TR3Bs) was produced in 1961 and ’62. The TR4 proved very successful and continued the rugged, “hairy-chested” image that the previous TRs had enjoyed. 40,253 cars were built during production years. Most were sold new to the US, but plenty have returned, and it is estimated that there are not far short of 900 examples of the model in the UK at present.

 photo Picture 445_zps8kf0pclt.jpg  photo Picture 116_zpszp7z8xf9.jpg

The next bodystyle appeared on the TR6, the first Triumph for some time not to have been styled by Michelotti. By the mid 1960s, money was tight, so when it came to replacing the TR4 and TR5 models, Triumph were forced into trying to minimise the costs of the redesign, which meant that they kept the central section of the old car, but came up with new bodywork with the front and back ends were squared off, reportedly based on a consultancy contract involving Karmann. The resulting design, which did look modern when it was unveiled in January 1969 has what is referred to as a Kamm tail, which was very common during 1970s era of cars and a feature on most Triumphs of the era. All TR6 models featured inline six-cylinder engines. For the US market the engine was carburetted, as had been the case for the US-only TR250 engine. Like the TR5, the TR6 was fuel-injected for other world markets including the United Kingdom, hence the TR6PI (petrol-injection) designation. The Lucas mechanical fuel injection system helped the home-market TR6 produce 150 bhp at model introduction. Later, the non-US TR6 variant was detuned to 125 bhp for it to be easier to drive, while the US variant continued to be carburetted with a mere 104 hp. Sadly, the Lucas injection system proved somewhat troublesome, somewhat denting the appeal of the car. The TR6 featured a four-speed manual transmission. An optional overdrive unit was a desirable feature because it gave drivers close gearing for aggressive driving with an electrically switched overdrive which could operate on second, third, and fourth gears on early models and third and fourth on later models because of constant gearbox failures in second at high revs. Both provided “long legs” for open motorways. TR6 also featured semi-trailing arm independent rear suspension, rack and pinion steering, 15-inch wheels and tyres, pile carpet on floors and trunk/boot, bucket seats, and a full complement of instrumentation. Braking was accomplished by disc brakes at the front and drum brakes at the rear. A factory steel hardtop was optional, requiring two people to fit it. TR6 construction was fundamentally old-fashioned: the body was bolted onto a frame instead of the two being integrated into a unibody structure; the TR6 dashboard was wooden (plywood with veneer). Other factory options included a rear anti-roll bar and a limited-slip differential. Some say that the car is one of Leyland’s best achievements, but a number of issues were present and remain because of poor design. As well as the fuel injection problems, other issues include a low level radiator top-up bottle and a poor hand-brake. As is the case with other cars of the era, the TR6 can suffer from rust issues, although surviving examples tend to be well-cared for. The TR6 can be prone to overheating. Many owners fit an aftermarket electric radiator fan to supplement or replace the original engine-driven fan. Also the Leyland factory option of an oil cooler existed. Despite the reliability woes, the car proved popular, selling in greater quantity than any previous TR, with 94,619 of them produced before production ended in mid 1976. Of these, 86,249 were exported and only 8,370 were sold in the UK. A significant number have since been re-imported, as there are nearly 3000 of these much loved classics on the road and a further 1300 on SORN, helped by the fact that parts and services to support ownership of a TR6 are readily available and a number of classic car owners’ clubs cater for the model.

 photo Picture 439_zps0miu09g9.jpg

Largest Triumph model here was the Stag. Envisioned as a luxury sports car, this car was designed to compete directly with the Mercedes-Benz SL. It started as a styling experiment, cut and shaped from a 1963–4 Triumph 2000 pre-production saloon, which had also been styled by Michelotti, and loaned to him by Harry Webster, Director of Engineering at Triumph. Their agreement was that if Webster liked the design, Triumph could use the prototype as the basis of a new Triumph model. Harry Webster, who was a long time friend of Giovanni Michelotti, whom he called “Micho”, loved the design and took the prototype back to England. The end result, a two-door drop head (convertible), had little in common with the styling of its progenitor 2000, but retained the suspension and drive line. Triumph liked the Michelotti design so much that they propagated the styling lines of the Stag into the new Mark 2 2000/2500 saloon and estate. The initial Stag design was based around the saloon’s 2.5-litre six cylinder engine, but Harry Webster intended the Stag, large saloons and estate cars to use a new Triumph-designed overhead cam 2.5-litre fuel injected V8. Under the direction of Harry Webster’s successor, Spen King in 1968, the new Triumph OHC 2.5 PI V8 was enlarged to 2997 cc to increase torque. To meet emission standards in the USA, a key target market, the troublesome mechanical fuel injection was dropped in favour of dual Zenith-Stromberg 175 CDSE carburettors. A key aim of Triumph’s engineering strategy at the time was to create a family of engines of different size around a common crankshaft. This would enable the production of power plants of capacity between 1.5 and 4 litres, sharing many parts, and hence offering economies of manufacturing scale and of mechanic training. A number of iterations of this design went into production, notably a slant four-cylinder engine used in the later Triumph Dolomite and Triumph TR7, and a variant manufactured by StanPart that was initially used in the Saab 99. The Stag’s V8 was the first of these engines into production. Sometimes described as two four-cylinder engines Siamesed together, it is more correct to say that the later four-cylinder versions were half a Stag engine. It has sometimes been alleged that Triumph were instructed to use the proven all-aluminium Rover V8, originally designed by Buick, but claimed that it would not fit. Although there was a factory attempt by Triumph to fit a Rover engine, which was pronounced unsuccessful, the decision to go with the Triumph V8 was probably driven more by the wider engineering strategy and by the fact that the Buick’s different weight and torque characteristics would have entailed substantial re-engineering of the Stag when it was almost ready to go on sale. Furthermore Rover, also owned by British Leyland, could not necessarily have supplied the numbers of V8 engines to match the anticipated production of the Stag anyway. As in the Triumph 2000 model line, unitary construction was employed, as was fully independent suspension – MacPherson struts in front, semi-trailing arms at the rear. Braking was by front disc and rear drum brakes, while steering was power-assisted rack and pinion. Although other bodystyles were envisaged, these never made production, so all Stags were four-seater convertible coupés. For structural rigidity – and to meet new American rollover standards of the time – the Stag required a B-pillar “roll bar” hoop connected to the windscreen frame by a T-bar. A removable hardtop was a popular factory option for the early Stags, and was later supplied as a standard fitment. The car was launched one year late in 1970, to a warm welcome at the various international auto shows. Sadly, it rapidly acquired a reputation for mechanical unreliability, usually in the form of overheating. These problems arose from a variety of causes, all of which are now well understood, and for which solutions have been identified, but at the time, they really hurt the reputation and hence sales of the car. They ranged from late changes to the engine which gave rise to design features that were questionable from an engineering perspective, the choice of materials which necessitated the use of antifreeze all year round, the engine’s use of long, simplex roller link chains, which would first stretch and then often fail inside fewer than 25,000 miles; the arrangement of the cylinder head fixing studs, half of which were vertical and the other half at an angle causing sideways forces which caused premature failure of the cylinder head gaskets. and poor quality production from a plant troubled with industrial unrest and poor quality control. At the time, British Leyland never provided a budget sufficient to correct the few design shortcomings of the Triumph 3.0 litre OHC V8, and the dealers did not help matters. The Stag was always a relatively rare car. British Leyland had around 2,500 UK dealers when the Stag was on sale and a total of around 19,000 were sold in the UK. Thus the average dealer sold only seven or eight Stags during the car’s whole production run, or roughly one car per year. This meant that few dealers saw defective Stags often enough to recognise and diagnose the cause of the various problems. Many owners simply replaced the engine altogether, often with the Rover V8, Ford Essex V6, or even the Triumph 6-cylinder engine around which the car was originally designed. Perhaps thanks to such a reputation for its unreliable engine, only 25,877 cars were produced between 1970 and 1977. Of this number, 6780 were export models, of which 2871 went to the United States. The majority of cars were fitted with a Borg-Warner 3-speed automatic transmission. The other choice was a derivative of the ancient Triumph TR2 gearbox which had been modified and improved over the years for use in the TR series of sports cars. Other than the choice of transmissions there were very few factory-installed options. On early cars buyers could choose to have the car fitted with just the soft-top, just the hard-top (with the hood storage compartment empty) or with both. Later cars were supplied with both roofs. Three wheel styles were offered. The standard fitments were steel wheels with Rostyle “tin-plate” trims. Five-spoke alloy wheels were an option, as were a set of traditional steel spoke wheels with “knock-off”‘ hubcaps. The latter were more commonly found on Stags sold in North America on Federal Specification vehicles. Electric windows, power steering and power-assisted brakes were standard. Options included air conditioning, a luggage rack, uprated Koni shock absorbers, floor mats and Lucas Square Eight fog lamps, and a range of aftermarket products, most of which were dealer installed as optional accessories could also be fitted. Rather unusually for a 4-seat touring car, the accessory list included a sump protector plate that was never produced. This was probably included as a slightly “gimmicky” tribute to Triumph’s rallying successes. Nowadays, the Stag is seen in a very different light, with lots of very enthusiastic and knowledgeable owners who enjoy the good points of this attractive looking car and who revel in the fact that the market has not yet boosted prices into the unaffordable category, as one day will surely happen.

 photo Picture 407_zpspczgvfog.jpg  photo Picture 124_zps7nzbupmj.jpg  photo Picture 482_zpsklfihixx.jpg

Three years after the launch of the Herald, Triumph created a more sporting version by putting a 1600cc 6 cylinder engine under the bonnet, calling the result the Vitesse. Handling of the early cars, on their swing axle suspension was best described as “interesting”, but Triumph worked hard to revise (tame!) it so by the time that the 2 litre models were launched in 1965, the car was rather easier to drive briskly on bendy roads. A Mark 2 version was launched in 1968, with new front end styling and other trim differences, and the model lived on until 1971. To be seen here was a late-model Vitesse 2 litre Mark 2 Convertible.

 photo Picture 503_zpsmplhfzzh.jpg

TVR

After the “wedge” cars of the early 80s, TVR’s next model took something of a retro look, the S Series which was announced at the 1986 British International Motor Show, initially as a concept. Due to a massive positive response, the car went into production in less than 12 months, with 250 pre-manufacture orders. This was Peter Wheeler’s first major development since buying the company from Martin Lilley, and the turning point in TVR’s fortunes, which had struggled with the “Wedge” based cars that had been introduced in 1980 to replace the long running M Series models. With styling which looked more like these popular M Series cars, the first S Series cars used Ford’s Cologne V6 in 2.8 litre 160 hp and for the later S2 to S4 had the later 2.9 litre 170 hp unit. TVR made frequent updates to the cars, moving from those retrospectively called the S1 to S2 and later S3 and S4 in short succession. The S3 and S4 received longer doors, although some late S2’s were also thus equipped. Vehicle models ending with “C” were used to denote vehicles which were fitted with a catalytic converter. Only the S3 and S4 were fitted with catalysts. The Cat was only introduced to the UK in August 1992, at “K” registration, but catalysed cars were produced before that, intended for export to markets with tighter emissions standards. Just as they had done with the “wedges”, TVR found more excitement by putting the Rover V8 engine under the bonnet of the car in lieu of the Ford unit, though the two models were offered in parallel. The V8S used a 4.0 litre fuel-injected Rover V8 engine, with gas-flowed cylinder heads, higher lift camshaft, compression ratio upped to 10:5:1, revised manifold, new chip for the engine management system and a limited slip differential. The result was 240 bhp at 5250 rpm and 270 lb/ft of torque at 3000 rpm. The V8S had a number of cosmetic differences over the V6. The bonnet had a large hump – created to house the Italian specification supercharger but carried over to all V8S models. The V8S had a small vent facing the windscreen, whereas S1 to S3 models face forward. Very late S3 and S4 models had no hump at all. As with all TVR’s there is no specific point in time when they changed styles, probably when they ran out! The suspension track was slightly wider on the V8S achieved with revised wishbones at the front and revised trailing arms at the rear. Disc brakes are fitted all round. The standard specification of the V8S included ½ hide leather interior, walnut trim, mohair hood, OZ alloy wheels, driving lamps, electric windows and door mirrors. 0-60 mph could be achieved in 4.9 seconds and 0-100 mph in 12.9 seconds. It was faster than an Aston Martin Virage, a Ferrari Testarossa, Lotus Esprit Turbo SE and Porsche Carrera 2 the supercars of the early 1990s. Between 1986 and 1994 2,604 S Series cars were made; 410 of these were of the V8S variety.

 photo Picture 620_zpstzfwrxev.jpg

VOLVO

Volvo introduced the 850 saloon in 1991, the first large front wheel drive model in their range, positioned as a slightly more sporting model compared to the established 940 and 960 cars against which it was produced. An estate model and a wider range of engines soon joined that initial car. For 1995, the special limited edition 850 T-5R was offered, and was a commercial success, leading Volvo to produce a second run in 1996. Originally, it was to be called 850 Plus 5. The vehicle was based on the 850 Turbo, utilising the B5234T4 engine with a special ECU (Bosch #628 in U.S and #629 in EU) that added an additional 2 psi (0.1 bar) of turbocharger boost pressure, giving the engine an extra 18 hp for a total of 243 hp and 250 lb/ft (340 Nm) of torque. The engine was mated to a 4-speed automatic transmission or 5-speed manual transmission, the latter of which was not available in the United States. The T-5R was renowned as a sleeper car; despite its boxy, understated appearance, it boasted a drag coefficient of 0.29 and was capable of accelerating from 0 to 60 mph (97 km/h) in 5.8 – 6.0 seconds (depending on transmission and body type). The top speed was electronically limited to 152.2 mph (244.9 km/h). The vehicle came standard with Pirelli P-Zero tyres, providing lateral grip of 0.88 g. The engine tuning was co-developed with Porsche, as was the transmission and other powertrain components. Porsche also aided in designing some of the interior, such as the Alcantara seat inserts. These cars came as standard with nearly every feature available, only a handful of options – such as heated rear seats – were available. On the North American market only two options could be chosen, a trunk-mounted Alpine 6-CD changer and no-cost 16″ wheels for a smoother, more comfortable ride and driveability in snow when using all-season tyres. Also included in the 1995 T-5R package was a front bumper with a lip, rear spoiler, side skirts, polished aluminium door sills, special graphite leather and Alcantara seats, and a black interior with deep walnut wood grain accents. Both yellow and black versions came with the same black interior as the only choice. The T-5R has an additional badge to the left of the “850” on the trunk, referred to as “The Motorsport badge”. The standard road wheel was the titanium-grey 5-spoke 17×7 “Titan”. 1995 was the only year that the a model was badged as a “T-5R”; the following year, as Volvo recognised the vehicle’s popularity, the model was renewed with the designation “850R”. The T-5R featured side airbags installed in the seat cushions. The side airbags were integrated into the rest of the Volvo model line the following year as an option, and became standard a year after that; other manufacturers soon followed suit. The car was also fitted with an early example of daytime running lamps. Also, just like the 940, it had three-point seatbelts at all five seating positions (previously, cars had only a lap belt for the centre rear seat). The T-5R also used the OBDII diagnostics system, a year before OBDII was made an automotive standard. 6964 T-5Rs were produced worldwide, of which the largest market was Germany (1,433), Italy (914; 2.0 turbo), United States (876), Japan (749), Netherlands (489), UK (440), Sweden (321), Spain (185), and Canada (103). The 1995 850 T-5R was limited in exterior paint colour choices: Stone Black – 2,516 worldwide including saloon and estate; Olive Green metallic – 1,911 worldwide including saloon and estate; Cream Yellow – 2,537 worldwide including saloon and estate. Only 346 sedans in this colour were imported into the United States; wagons, only 49. Cream Yellow was marketed in the Australian market as ‘Faded Yellow’ to compensate for the unrelenting Australian sun. The Gothenburg boffins were aware of the 1990s paint technology, and the fact it wouldn’t retain its deep lustre over the course of time, and hence, the clever marketing descriptor, ‘Faded Yellow’ was coined. Colour distribution was limited in some countries i.e. not all countries got all 3 colours, Norway only received yellow. Two white, two Aubergine and three grey T-5Rs were also produced. The white and aubergine cars were pre-production cars whereas the grey ones were produced by special demand for the Arabian market. Both aubergines, at least one grey and at least one white T-5R were still registered in Sweden as late as 2014.

 photo Picture 513_zpsrlgu7scu.jpg  photo Picture 617_zpsvue7ehoa.jpg

Despite the truly torrential downpour which arrived just before the lunchbreak on the Saturday, which did bring a complete halt to proceedings whilst it lasted, this was in all other respects an excellent weekend. It is probably a unique experience, to see quite so many pre-war cars assembled in one place, and to see only cars of this period making the ascents of the hill all weekend, which makes this seem like a particularly special event to attend. Wander around the cars at lunchtime and see large groups of gathered together enjoying expansive picnics and it is clear that there are plenty of others who think the same and who revel in the chance to get together with friends to enjoy the idyllic setting, the special Prescott atmosphere as well as all the old cars. It is an event which will definitely feature in my 2018 plans.

Leave a Reply

Your email address will not be published. Required fields are marked *